def __init__(self, r_s=None, rho_s=1 * u.Unit("GeV / cm3")): r_s = self.DEFAULT_SCALE_RADIUS if r_s is None else r_s self.parameters = Parameters([ Parameter("r_s", u.Quantity(r_s)), Parameter("rho_s", u.Quantity(rho_s)) ])
def __init__(self, index, amplitude, reference, mean, width): self.parameters = Parameters([ Parameter("index", index, min=0), Parameter("amplitude", amplitude, min=0), Parameter("reference", reference, frozen=True), Parameter("mean", mean, min=0), Parameter("width", width, min=0, frozen=True), ])
def __init__(self, r_s=None, alpha=None, rho_s=1 * u.Unit("GeV / cm3")): alpha = self.DEFAULT_ALPHA if alpha is None else alpha r_s = self.DEFAULT_SCALE_RADIUS if r_s is None else r_s self.parameters = Parameters([ Parameter("r_s", u.Quantity(r_s)), Parameter("alpha", u.Quantity(alpha)), Parameter("rho_s", u.Quantity(rho_s)), ])
def parameters(self): """List of parameters (`~gammapy.utils.fitting.Parameters`)""" parameters = [] if self.model: parameters += self.model.parameters.parameters if self.background_model: parameters += self.background_model.parameters.parameters return Parameters(parameters)
def __init__(self, amplitude=1E-12 * u.Unit('cm-2 s-1 TeV-1'), reference=10 * u.TeV, alpha=2, beta=1): self.parameters = Parameters([ Parameter('amplitude', amplitude), Parameter('reference', reference, frozen=True), Parameter('alpha', alpha), Parameter('beta', beta) ])
def __init__( self, amplitude=1e-12 * u.Unit("cm-2 s-1 TeV-1"), reference=10 * u.TeV, alpha=2, beta=1, ): self.parameters = Parameters([ Parameter("amplitude", amplitude), Parameter("reference", reference, frozen=True), Parameter("alpha", alpha), Parameter("beta", beta), ])
def __init__(self): self.parameters = Parameters( [ Parameter("amplitude", 3e-12, unit="cm-2 s-1 TeV-1"), Parameter("reference", 1, unit="TeV", frozen=True), Parameter("alpha", 2.4, min=1, max=5), Parameter("beta", 0.2, min=0.001, max=1), Parameter("z_fermi", 0), Parameter("z_magic", 0), Parameter("z_veritas", 0), Parameter("z_fact", 0), Parameter("z_hess", 0), ] )
def model(self, model): self._model = model if model is not None: self._parameters = Parameters(self._model.parameters.parameters) self._predictor = SpectrumEvaluator( model=self.model, livetime=self.livetime, aeff=self.aeff, e_true=self._energy_axis.edges, edisp=self.edisp, ) else: self._parameters = None self._predictor = None
def pars(): x = Parameter("x", 2.1) y = Parameter("y", 3.1, scale=1e5) z = Parameter("z", 4.1, scale=1e-5) return Parameters([x, y, z])
def __init__(self): self.parameters = Parameters( [Parameter("x", 2), Parameter("y", 3e2), Parameter("z", 4e-2)])
def parameters(self): parameters = [] for skymodel in self.skymodels: for p in skymodel.parameters: parameters.append(p) return Parameters(parameters)
def spectral_model(self, model): """`~gammapy.spectrum.models.SpectralModel`""" self._spectral_model = model self._parameters = Parameters( self.spatial_model.parameters.parameters + self.spectral_model.parameters.parameters)
def __init__(self): self.parameters = Parameters( [Parameter("x", 2), Parameter("y", 3e2), Parameter("z", 4e-2)]) self.data_shape = (1, )
def pars(): return Parameters( [Parameter("spam", 42, "deg"), Parameter("ham", 99, "TeV")])
def test_parameters_autoscale(): pars = Parameters([Parameter("", 20)]) pars.autoscale() assert_allclose(pars[0].factor, 2) assert_allclose(pars[0].scale, 10)