def run_task(v): env = normalize(CartpoleEnv()) policy = GaussianMLPPolicy(env_spec=env.spec, hidden_sizes=(32, 32)) baseline = LinearFeatureBaseline(env_spec=env.spec) algo = TRPO( env=env, policy=policy, baseline=baseline, batch_size=4000, max_path_length=100, n_itr=40, discount=0.99, step_size=v["step_size"], # plot=True, ) algo.train()
def run_task(*_): env = TheanoEnv(normalize(CartpoleEnv())) policy = GaussianMLPPolicy(env_spec=env.spec, hidden_sizes=(32, 32)) baseline = LinearFeatureBaseline(env_spec=env.spec) algo = TRPO( env=env, policy=policy, baseline=baseline, batch_size=4000, max_path_length=100, n_itr=1000, discount=0.99, step_size=0.01, # Uncomment both lines (this and the plot parameter below) to enable # plotting #plot=True ) algo.train()