def distribution(self):
        """Policy distribution.

        Returns:
            garage.tf.distributions.DiagonalGaussian: Policy distribution.

        """
        return RecurrentCategorical(self._action_dim)
Esempio n. 2
0
    def __init__(
        self,
        env_spec,
        name="CategoricalGRUPolicy",
        hidden_dim=32,
        feature_network=None,
        state_include_action=True,
        hidden_nonlinearity=tf.tanh,
        gru_layer_cls=L.GRULayer,
    ):
        """
        :param env_spec: A spec for the env.
        :param hidden_dim: dimension of hidden layer
        :param hidden_nonlinearity: nonlinearity used for each hidden layer
        :return:
        """
        assert isinstance(env_spec.action_space, Discrete)

        self._prob_network_name = "prob_network"
        with tf.variable_scope(name, "CategoricalGRUPolicy"):
            Serializable.quick_init(self, locals())
            super(CategoricalGRUPolicy, self).__init__(env_spec)

            obs_dim = env_spec.observation_space.flat_dim
            action_dim = env_spec.action_space.flat_dim

            if state_include_action:
                input_dim = obs_dim + action_dim
            else:
                input_dim = obs_dim

            l_input = L.InputLayer(shape=(None, None, input_dim), name="input")

            if feature_network is None:
                feature_dim = input_dim
                l_flat_feature = None
                l_feature = l_input
            else:
                feature_dim = feature_network.output_layer.output_shape[-1]
                l_flat_feature = feature_network.output_layer
                l_feature = L.OpLayer(
                    l_flat_feature,
                    extras=[l_input],
                    name="reshape_feature",
                    op=lambda flat_feature, input: tf.reshape(
                        flat_feature,
                        tf.stack([
                            tf.shape(input)[0],
                            tf.shape(input)[1], feature_dim
                        ])),
                    shape_op=lambda _, input_shape:
                    (input_shape[0], input_shape[1], feature_dim))

            prob_network = GRUNetwork(input_shape=(feature_dim, ),
                                      input_layer=l_feature,
                                      output_dim=env_spec.action_space.n,
                                      hidden_dim=hidden_dim,
                                      hidden_nonlinearity=hidden_nonlinearity,
                                      output_nonlinearity=tf.nn.softmax,
                                      gru_layer_cls=gru_layer_cls,
                                      name=self._prob_network_name)

            self.prob_network = prob_network
            self.feature_network = feature_network
            self.l_input = l_input
            self.state_include_action = state_include_action

            flat_input_var = tf.placeholder(dtype=tf.float32,
                                            shape=(None, input_dim),
                                            name="flat_input")
            if feature_network is None:
                feature_var = flat_input_var
            else:
                with tf.name_scope("feature_network", values=[flat_input_var]):
                    feature_var = L.get_output(
                        l_flat_feature,
                        {feature_network.input_layer: flat_input_var})

            with tf.name_scope(self._prob_network_name, values=[feature_var]):
                out_prob_step, out_prob_hidden = L.get_output(
                    [
                        prob_network.step_output_layer,
                        prob_network.step_hidden_layer
                    ], {prob_network.step_input_layer: feature_var})
                out_prob_step = tf.identity(out_prob_step, "prob_step_output")
                out_prob_hidden = tf.identity(out_prob_hidden,
                                              "prob_step_hidden")

            self.f_step_prob = tensor_utils.compile_function(
                [flat_input_var, prob_network.step_prev_state_layer.input_var],
                [out_prob_step, out_prob_hidden])

            self.input_dim = input_dim
            self.action_dim = action_dim
            self.hidden_dim = hidden_dim
            self.name = name

            self.prev_actions = None
            self.prev_hiddens = None
            self.dist = RecurrentCategorical(env_spec.action_space.n)

            out_layers = [prob_network.output_layer]
            if feature_network is not None:
                out_layers.append(feature_network.output_layer)

            LayersPowered.__init__(self, out_layers)
Esempio n. 3
0
 def distribution(self):
     """Policy distribution."""
     return RecurrentCategorical(self._action_dim)
Esempio n. 4
0
    def __init__(self,
                 env_spec,
                 name='CategoricalLSTMPolicy',
                 hidden_dim=32,
                 hidden_nonlinearity=tf.nn.tanh,
                 recurrent_nonlinearity=tf.nn.sigmoid,
                 recurrent_w_x_init=L.XavierUniformInitializer(),
                 recurrent_w_h_init=L.OrthogonalInitializer(),
                 output_nonlinearity=tf.nn.softmax,
                 output_w_init=L.XavierUniformInitializer(),
                 feature_network=None,
                 prob_network=None,
                 state_include_action=True,
                 forget_bias=1.0,
                 use_peepholes=False,
                 lstm_layer_cls=L.LSTMLayer):
        """
        :param env_spec: A spec for the env.
        :param hidden_dim: dimension of hidden layer
        :param hidden_nonlinearity: nonlinearity used for each hidden layer
        :return:
        """
        assert isinstance(env_spec.action_space, Discrete)

        self._prob_network_name = 'prob_network'
        with tf.variable_scope(name, 'CategoricalLSTMPolicy'):
            Serializable.quick_init(self, locals())
            super(CategoricalLSTMPolicy, self).__init__(env_spec)

            obs_dim = env_spec.observation_space.flat_dim
            action_dim = env_spec.action_space.flat_dim

            if state_include_action:
                input_dim = obs_dim + action_dim
            else:
                input_dim = obs_dim

            l_input = L.InputLayer(shape=(None, None, input_dim), name='input')

            if feature_network is None:
                feature_dim = input_dim
                l_flat_feature = None
                l_feature = l_input
            else:
                feature_dim = feature_network.output_layer.output_shape[-1]
                l_flat_feature = feature_network.output_layer
                l_feature = L.OpLayer(
                    l_flat_feature,
                    extras=[l_input],
                    name='reshape_feature',
                    op=lambda flat_feature, input: tf.reshape(
                        flat_feature,
                        tf.stack([
                            tf.shape(input)[0],
                            tf.shape(input)[1], feature_dim
                        ])),
                    shape_op=lambda _, input_shape:
                    (input_shape[0], input_shape[1], feature_dim))

            if prob_network is None:
                prob_network = LSTMNetwork(
                    input_shape=(feature_dim, ),
                    input_layer=l_feature,
                    output_dim=env_spec.action_space.n,
                    hidden_dim=hidden_dim,
                    hidden_nonlinearity=hidden_nonlinearity,
                    recurrent_nonlinearity=recurrent_nonlinearity,
                    recurrent_w_x_init=recurrent_w_x_init,
                    recurrent_w_h_init=recurrent_w_h_init,
                    output_nonlinearity=output_nonlinearity,
                    output_w_init=output_w_init,
                    forget_bias=forget_bias,
                    use_peepholes=use_peepholes,
                    lstm_layer_cls=lstm_layer_cls,
                    name=self._prob_network_name)

            self.prob_network = prob_network
            self.feature_network = feature_network
            self.l_input = l_input
            self.state_include_action = state_include_action

            flat_input_var = tf.placeholder(dtype=tf.float32,
                                            shape=(None, input_dim),
                                            name='flat_input')
            if feature_network is None:
                feature_var = flat_input_var
            else:
                with tf.name_scope('feature_network', values=[flat_input_var]):
                    feature_var = L.get_output(
                        l_flat_feature,
                        {feature_network.input_layer: flat_input_var})

            with tf.name_scope(self._prob_network_name, values=[feature_var]):
                out_prob_step, out_prob_hidden, out_step_cell = L.get_output(
                    [
                        prob_network.step_output_layer,
                        prob_network.step_hidden_layer,
                        prob_network.step_cell_layer
                    ], {prob_network.step_input_layer: feature_var})

            self.f_step_prob = tensor_utils.compile_function([
                flat_input_var,
                prob_network.step_prev_state_layer.input_var,
            ], [out_prob_step, out_prob_hidden, out_step_cell])

            self.input_dim = input_dim
            self.action_dim = action_dim
            self.hidden_dim = hidden_dim
            self.name = name

            self.prev_actions = None
            self.prev_hiddens = None
            self.prev_cells = None
            self.dist = RecurrentCategorical(env_spec.action_space.n)

            out_layers = [prob_network.output_layer]
            if feature_network is not None:
                out_layers.append(feature_network.output_layer)

            LayersPowered.__init__(self, out_layers)