Esempio n. 1
0
    def __init__(self,
                 output_dim,
                 hidden_sizes,
                 hidden_nonlinearity,
                 output_nonlinearity,
                 hidden_w_init=LI.GlorotUniform(),
                 hidden_b_init=LI.Constant(0.),
                 output_w_init=LI.GlorotUniform(),
                 output_b_init=LI.Constant(0.),
                 name=None,
                 input_var=None,
                 input_layer=None,
                 input_shape=None,
                 batch_norm=False):

        Serializable.quick_init(self, locals())

        if name is None:
            prefix = ""
        else:
            prefix = name + "_"

        if input_layer is None:
            l_in = L.InputLayer(shape=(None, ) + input_shape,
                                input_var=input_var)
        else:
            l_in = input_layer
        self._layers = [l_in]
        l_hid = l_in
        for idx, hidden_size in enumerate(hidden_sizes):
            l_hid = L.DenseLayer(
                l_hid,
                num_units=hidden_size,
                nonlinearity=hidden_nonlinearity,
                name="%shidden_%d" % (prefix, idx),
                W=hidden_w_init,
                b=hidden_b_init,
            )
            if batch_norm:
                l_hid = L.batch_norm(l_hid)
            self._layers.append(l_hid)

        l_out = L.DenseLayer(
            l_hid,
            num_units=output_dim,
            nonlinearity=output_nonlinearity,
            name="%soutput" % (prefix, ),
            W=output_w_init,
            b=output_b_init,
        )
        self._layers.append(l_out)
        self._l_in = l_in
        self._l_out = l_out
        # self._input_var = l_in.input_var
        self._output = L.get_output(l_out)
        LasagnePowered.__init__(self, [l_out])
    def __init__(
        self,
        name,
        env_spec,
        conv_filters,
        conv_filter_sizes,
        conv_strides,
        conv_pads,
        hidden_sizes=[],
        hidden_nonlinearity=NL.rectify,
        output_nonlinearity=NL.softmax,
        prob_network=None,
    ):
        """
        :param env_spec: A spec for the mdp.
        :param hidden_sizes: list of sizes for the fully connected
        hidden layers
        :param hidden_nonlinearity: nonlinearity used for each hidden
        layer
        :param prob_network: manually specified network for this
        policy, other network params are ignored
        :return:
        """
        assert isinstance(env_spec.action_space, Discrete)

        Serializable.quick_init(self, locals())

        self._env_spec = env_spec

        if prob_network is None:
            prob_network = ConvNetwork(
                input_shape=env_spec.observation_space.shape,
                output_dim=env_spec.action_space.n,
                conv_filters=conv_filters,
                conv_filter_sizes=conv_filter_sizes,
                conv_strides=conv_strides,
                conv_pads=conv_pads,
                hidden_sizes=hidden_sizes,
                hidden_nonlinearity=hidden_nonlinearity,
                output_nonlinearity=NL.softmax,
                name="prob_network",
            )

        self._l_prob = prob_network.output_layer
        self._l_obs = prob_network.input_layer
        self._f_prob = tensor_utils.compile_function(
            [prob_network.input_layer.input_var],
            L.get_output(prob_network.output_layer))

        self._dist = Categorical(env_spec.action_space.n)

        super(CategoricalConvPolicy, self).__init__(env_spec)
        LasagnePowered.__init__(self, [prob_network.output_layer])
Esempio n. 3
0
    def __init__(self,
                 env_spec,
                 hidden_sizes=(32, 32),
                 hidden_nonlinearity=NL.rectify,
                 hidden_w_init=LI.HeUniform(),
                 hidden_b_init=LI.Constant(0.),
                 output_nonlinearity=NL.tanh,
                 output_w_init=LI.Uniform(-3e-3, 3e-3),
                 output_b_init=LI.Uniform(-3e-3, 3e-3),
                 bn=False):

        assert isinstance(env_spec.action_space, Box)

        Serializable.quick_init(self, locals())

        l_obs = L.InputLayer(shape=(None, env_spec.observation_space.flat_dim))

        l_hidden = l_obs
        if bn:
            l_hidden = batch_norm(l_hidden)

        for idx, size in enumerate(hidden_sizes):
            l_hidden = L.DenseLayer(
                l_hidden,
                num_units=size,
                W=hidden_w_init,
                b=hidden_b_init,
                nonlinearity=hidden_nonlinearity,
                name="h%d" % idx)
            if bn:
                l_hidden = batch_norm(l_hidden)

        l_output = L.DenseLayer(
            l_hidden,
            num_units=env_spec.action_space.flat_dim,
            W=output_w_init,
            b=output_b_init,
            nonlinearity=output_nonlinearity,
            name="output")

        # Note the deterministic=True argument. It makes sure that when getting
        # actions from single observations, we do not update params in the
        # batch normalization layers

        action_var = L.get_output(l_output, deterministic=True)
        self._output_layer = l_output

        self._f_actions = tensor_utils.compile_function([l_obs.input_var],
                                                        action_var)

        super(DeterministicMLPPolicy, self).__init__(env_spec)
        LasagnePowered.__init__(self, [l_output])
Esempio n. 4
0
    def __init__(
        self,
        env_spec,
        hidden_sizes=(32, 32),
        hidden_nonlinearity=NL.tanh,
        num_seq_inputs=1,
        prob_network=None,
    ):
        """
        :param env_spec: A spec for the mdp.
        :param hidden_sizes: sizes list for the fully connected hidden layers
        :param hidden_nonlinearity: nonlinearity used for each hidden layer
        :param prob_network: manually specified network for this policy, other
         network params
        are ignored
        :return:
        """
        assert isinstance(env_spec.action_space, Discrete)

        Serializable.quick_init(self, locals())

        if prob_network is None:
            prob_network = MLP(
                input_shape=(env_spec.observation_space.flat_dim *
                             num_seq_inputs, ),
                output_dim=env_spec.action_space.n,
                hidden_sizes=hidden_sizes,
                hidden_nonlinearity=hidden_nonlinearity,
                output_nonlinearity=NL.softmax,
            )

        self._l_prob = prob_network.output_layer
        self._l_obs = prob_network.input_layer
        self._f_prob = tensor_utils.compile_function(
            [prob_network.input_layer.input_var],
            L.get_output(prob_network.output_layer))

        self._dist = Categorical(env_spec.action_space.n)

        super(CategoricalMLPPolicy, self).__init__(env_spec)
        LasagnePowered.__init__(self, [prob_network.output_layer])
Esempio n. 5
0
    def __init__(
            self,
            env_spec,
            hidden_sizes=(32, 32),
            learn_std=True,
            init_std=1.0,
            adaptive_std=False,
            std_share_network=False,
            std_hidden_sizes=(32, 32),
            min_std=1e-6,
            std_hidden_nonlinearity=NL.tanh,
            hidden_nonlinearity=NL.tanh,
            output_nonlinearity=None,
            mean_network=None,
            std_network=None,
            dist_cls=DiagonalGaussian,
    ):
        """
        :param env_spec:
        :param hidden_sizes: sizes list for the fully-connected hidden layers
        :param learn_std: Is std trainable
        :param init_std: Initial std
        :param adaptive_std:
        :param std_share_network:
        :param std_hidden_sizes: sizes list for the fully-connected layers
         for std
        :param min_std: whether to make sure that the std is at least some
         threshold value, to avoid numerical issues
        :param std_hidden_nonlinearity:
        :param hidden_nonlinearity: nonlinearity used for each hidden layer
        :param output_nonlinearity: nonlinearity for the output layer
        :param mean_network: custom network for the output mean
        :param std_network: custom network for the output log std
        :return:
        """
        assert isinstance(env_spec.action_space, Box)

        Serializable.quick_init(self, locals())

        obs_dim = env_spec.observation_space.flat_dim
        action_flat_dim = env_spec.action_space.flat_dim

        # create network
        if mean_network is None:
            mean_network = MLP(
                input_shape=(obs_dim, ),
                output_dim=action_flat_dim,
                hidden_sizes=hidden_sizes,
                hidden_nonlinearity=hidden_nonlinearity,
                output_nonlinearity=output_nonlinearity,
            )
        self._mean_network = mean_network

        l_mean = mean_network.output_layer
        obs_var = mean_network.input_layer.input_var

        if std_network is not None:
            l_log_std = std_network.output_layer
        else:
            if adaptive_std:
                std_network = MLP(
                    input_shape=(obs_dim, ),
                    input_layer=mean_network.input_layer,
                    output_dim=action_flat_dim,
                    hidden_sizes=std_hidden_sizes,
                    hidden_nonlinearity=std_hidden_nonlinearity,
                    output_nonlinearity=None,
                )
                l_log_std = std_network.output_layer
            else:
                l_log_std = ParamLayer(
                    mean_network.input_layer,
                    num_units=action_flat_dim,
                    param=lasagne.init.Constant(np.log(init_std)),
                    name="output_log_std",
                    trainable=learn_std,
                )

        self.min_std = min_std

        mean_var, log_std_var = L.get_output([l_mean, l_log_std])

        if self.min_std is not None:
            log_std_var = TT.maximum(log_std_var, np.log(min_std))

        self._mean_var, self._log_std_var = mean_var, log_std_var

        self._l_mean = l_mean
        self._l_log_std = l_log_std

        self._dist = dist_cls(action_flat_dim)

        LasagnePowered.__init__(self, [l_mean, l_log_std])
        super(GaussianMLPPolicy, self).__init__(env_spec)

        self._f_dist = tensor_utils.compile_function(
            inputs=[obs_var],
            outputs=[mean_var, log_std_var],
        )
Esempio n. 6
0
    def __init__(self,
                 env_spec,
                 hidden_dim=32,
                 feature_network=None,
                 state_include_action=True,
                 hidden_nonlinearity=NL.tanh):
        """
        :param env_spec: A spec for the env.
        :param hidden_dim: dimension of hidden layer
        :param hidden_nonlinearity: nonlinearity used for each hidden layer
        :return:
        """
        assert isinstance(env_spec.action_space, Discrete)

        Serializable.quick_init(self, locals())
        super(CategoricalGRUPolicy, self).__init__(env_spec)

        obs_dim = env_spec.observation_space.flat_dim
        action_flat_dim = env_spec.action_space.flat_dim

        if state_include_action:
            input_dim = obs_dim + action_flat_dim
        else:
            input_dim = obs_dim

        l_input = L.InputLayer(shape=(None, None, input_dim), name="input")

        if feature_network is None:
            feature_dim = input_dim
            l_flat_feature = None
            l_feature = l_input
        else:
            feature_dim = feature_network.output_layer.output_shape[-1]
            l_flat_feature = feature_network.output_layer
            l_feature = OpLayer(
                l_flat_feature,
                extras=[l_input],
                name="reshape_feature",
                op=lambda flat_feature, input: TT.reshape(
                    flat_feature,
                    [input.shape[0], input.shape[1], feature_dim]),
                shape_op=lambda _, input_shape:
                (input_shape[0], input_shape[1], feature_dim))

        prob_network = GRUNetwork(input_shape=(feature_dim, ),
                                  input_layer=l_feature,
                                  output_dim=env_spec.action_space.n,
                                  hidden_dim=hidden_dim,
                                  hidden_nonlinearity=hidden_nonlinearity,
                                  output_nonlinearity=TT.nnet.softmax,
                                  name="prob_network")

        self.prob_network = prob_network
        self.feature_network = feature_network
        self.l_input = l_input
        self.state_include_action = state_include_action

        flat_input_var = TT.matrix("flat_input")
        if feature_network is None:
            feature_var = flat_input_var
        else:
            feature_var = L.get_output(
                l_flat_feature, {feature_network.input_layer: flat_input_var})

        self.f_step_prob = tensor_utils.compile_function(
            [flat_input_var, prob_network.step_prev_hidden_layer.input_var],
            L.get_output([
                prob_network.step_output_layer, prob_network.step_hidden_layer
            ], {prob_network.step_input_layer: feature_var}))

        self.input_dim = input_dim
        self.action_flat_dim = action_flat_dim
        self.hidden_dim = hidden_dim

        self.prev_action = None
        self.prev_hidden = None
        self.dist = RecurrentCategorical(env_spec.action_space.n)

        out_layers = [prob_network.output_layer]
        if feature_network is not None:
            out_layers.append(feature_network.output_layer)

        LasagnePowered.__init__(self, out_layers)
    def __init__(self,
                 env_spec,
                 hidden_sizes=(32, 32),
                 hidden_nonlinearity=NL.rectify,
                 hidden_w_init=lasagne.init.HeUniform(),
                 hidden_b_init=lasagne.init.Constant(0.),
                 action_merge_layer=-2,
                 output_nonlinearity=None,
                 output_w_init=lasagne.init.Uniform(-3e-3, 3e-3),
                 output_b_init=lasagne.init.Uniform(-3e-3, 3e-3),
                 bn=False):
        Serializable.quick_init(self, locals())

        l_obs = L.InputLayer(shape=(None, env_spec.observation_space.flat_dim),
                             name="obs")
        l_action = L.InputLayer(shape=(None, env_spec.action_space.flat_dim),
                                name="actions")

        n_layers = len(hidden_sizes) + 1

        if n_layers > 1:
            action_merge_layer = \
                (action_merge_layer % n_layers + n_layers) % n_layers
        else:
            action_merge_layer = 1

        l_hidden = l_obs

        for idx, size in enumerate(hidden_sizes):
            if bn:
                l_hidden = batch_norm(l_hidden)

            if idx == action_merge_layer:
                l_hidden = L.ConcatLayer([l_hidden, l_action])

            l_hidden = L.DenseLayer(l_hidden,
                                    num_units=size,
                                    W=hidden_w_init,
                                    b=hidden_b_init,
                                    nonlinearity=hidden_nonlinearity,
                                    name="h%d" % (idx + 1))

        if action_merge_layer == n_layers:
            l_hidden = L.ConcatLayer([l_hidden, l_action])

        l_output = L.DenseLayer(l_hidden,
                                num_units=1,
                                W=output_w_init,
                                b=output_b_init,
                                nonlinearity=output_nonlinearity,
                                name="output")

        output_var = L.get_output(l_output, deterministic=True).flatten()

        self._f_qval = tensor_utils.compile_function(
            [l_obs.input_var, l_action.input_var], output_var)
        self._output_layer = l_output
        self._obs_layer = l_obs
        self._action_layer = l_action
        self._output_nonlinearity = output_nonlinearity

        LasagnePowered.__init__(self, [l_output])
    def __init__(
            self,
            input_shape,
            output_dim,
            mean_network=None,
            hidden_sizes=(32, 32),
            hidden_nonlinearity=NL.rectify,
            optimizer=None,
            use_trust_region=True,
            step_size=0.01,
            learn_std=True,
            init_std=1.0,
            adaptive_std=False,
            std_share_network=False,
            std_hidden_sizes=(32, 32),
            std_nonlinearity=None,
            normalize_inputs=True,
            normalize_outputs=True,
            name=None,
            batchsize=None,
            subsample_factor=1.,
    ):
        """
        :param input_shape: Shape of the input data.
        :param output_dim: Dimension of output.
        :param hidden_sizes: Number of hidden units of each layer of the mean
         network.
        :param hidden_nonlinearity: Non-linearity used for each layer of the
         mean network.
        :param optimizer: Optimizer for minimizing the negative log-likelihood.
        :param use_trust_region: Whether to use trust region constraint.
        :param step_size: KL divergence constraint for each iteration
        :param learn_std: Whether to learn the standard deviations. Only
         effective if adaptive_std is False. If adaptive_std is True, this
         parameter is ignored, and the weights for the std network are always
         learned.
        :param adaptive_std: Whether to make the std a function of the states.
        :param std_share_network: Whether to use the same network as the mean.
        :param std_hidden_sizes: Number of hidden units of each layer of the
         std network. Only used if `std_share_network` is False. It defaults to
         the same architecture as the mean.
        :param std_nonlinearity: Non-linearity used for each layer of the std
         network. Only used if `std_share_network`
        is False. It defaults to the same non-linearity as the mean.
        """
        Serializable.quick_init(self, locals())

        self._batchsize = batchsize
        self._subsample_factor = subsample_factor

        if optimizer is None:
            if use_trust_region:
                optimizer = PenaltyLbfgsOptimizer()
            else:
                optimizer = LbfgsOptimizer()

        self._optimizer = optimizer

        if mean_network is None:
            mean_network = MLP(
                input_shape=input_shape,
                output_dim=output_dim,
                hidden_sizes=hidden_sizes,
                hidden_nonlinearity=hidden_nonlinearity,
                output_nonlinearity=None,
            )

        l_mean = mean_network.output_layer

        if adaptive_std:
            l_log_std = MLP(
                input_shape=input_shape,
                input_var=mean_network.input_layer.input_var,
                output_dim=output_dim,
                hidden_sizes=std_hidden_sizes,
                hidden_nonlinearity=std_nonlinearity,
                output_nonlinearity=None,
            ).output_layer
        else:
            l_log_std = ParamLayer(
                mean_network.input_layer,
                num_units=output_dim,
                param=lasagne.init.Constant(np.log(init_std)),
                name="output_log_std",
                trainable=learn_std,
            )

        LasagnePowered.__init__(self, [l_mean, l_log_std])

        xs_var = mean_network.input_layer.input_var
        ys_var = TT.matrix("ys")
        old_means_var = TT.matrix("old_means")
        old_log_stds_var = TT.matrix("old_log_stds")

        x_mean_var = theano.shared(
            np.zeros((1, ) + input_shape, dtype=theano.config.floatX),
            name="x_mean",
            broadcastable=(True, ) + (False, ) * len(input_shape))
        x_std_var = theano.shared(
            np.ones((1, ) + input_shape, dtype=theano.config.floatX),
            name="x_std",
            broadcastable=(True, ) + (False, ) * len(input_shape))
        y_mean_var = theano.shared(
            np.zeros((1, output_dim), dtype=theano.config.floatX),
            name="y_mean",
            broadcastable=(True, False))
        y_std_var = theano.shared(
            np.ones((1, output_dim), dtype=theano.config.floatX),
            name="y_std",
            broadcastable=(True, False))

        normalized_xs_var = (xs_var - x_mean_var) / x_std_var
        normalized_ys_var = (ys_var - y_mean_var) / y_std_var

        normalized_means_var = L.get_output(
            l_mean, {mean_network.input_layer: normalized_xs_var})
        normalized_log_stds_var = L.get_output(
            l_log_std, {mean_network.input_layer: normalized_xs_var})

        means_var = normalized_means_var * y_std_var + y_mean_var
        log_stds_var = normalized_log_stds_var + TT.log(y_std_var)

        normalized_old_means_var = (old_means_var - y_mean_var) / y_std_var
        normalized_old_log_stds_var = old_log_stds_var - TT.log(y_std_var)

        dist = self._dist = DiagonalGaussian(output_dim)

        normalized_dist_info_vars = dict(
            mean=normalized_means_var, log_std=normalized_log_stds_var)

        mean_kl = TT.mean(
            dist.kl_sym(
                dict(
                    mean=normalized_old_means_var,
                    log_std=normalized_old_log_stds_var),
                normalized_dist_info_vars,
            ))

        loss = - \
            TT.mean(dist.log_likelihood_sym(
                normalized_ys_var, normalized_dist_info_vars))

        self._f_predict = compile_function([xs_var], means_var)
        self._f_pdists = compile_function([xs_var], [means_var, log_stds_var])
        self._l_mean = l_mean
        self._l_log_std = l_log_std

        optimizer_args = dict(
            loss=loss,
            target=self,
            network_outputs=[normalized_means_var, normalized_log_stds_var],
        )

        if use_trust_region:
            optimizer_args["leq_constraint"] = (mean_kl, step_size)
            optimizer_args["inputs"] = [
                xs_var, ys_var, old_means_var, old_log_stds_var
            ]
        else:
            optimizer_args["inputs"] = [xs_var, ys_var]

        self._optimizer.update_opt(**optimizer_args)

        self._use_trust_region = use_trust_region
        self._name = name

        self._normalize_inputs = normalize_inputs
        self._normalize_outputs = normalize_outputs
        self._mean_network = mean_network
        self._x_mean_var = x_mean_var
        self._x_std_var = x_std_var
        self._y_mean_var = y_mean_var
        self._y_std_var = y_std_var
    def __init__(
            self,
            input_shape,
            output_dim,
            prob_network=None,
            hidden_sizes=(32, 32),
            hidden_nonlinearity=NL.rectify,
            optimizer=None,
            use_trust_region=True,
            step_size=0.01,
            normalize_inputs=True,
            name=None,
    ):
        """
        :param input_shape: Shape of the input data.
        :param output_dim: Dimension of output.
        :param hidden_sizes: Number of hidden units of each layer of the mean
         network.
        :param hidden_nonlinearity: Non-linearity used for each layer of the
         mean network.
        :param optimizer: Optimizer for minimizing the negative log-likelihood.
        :param use_trust_region: Whether to use trust region constraint.
        :param step_size: KL divergence constraint for each iteration
        """
        Serializable.quick_init(self, locals())

        if optimizer is None:
            if use_trust_region:
                optimizer = PenaltyLbfgsOptimizer()
            else:
                optimizer = LbfgsOptimizer()

        self.output_dim = output_dim
        self._optimizer = optimizer

        if prob_network is None:
            prob_network = MLP(
                input_shape=input_shape,
                output_dim=output_dim,
                hidden_sizes=hidden_sizes,
                hidden_nonlinearity=hidden_nonlinearity,
                output_nonlinearity=NL.softmax,
            )

        l_prob = prob_network.output_layer

        LasagnePowered.__init__(self, [l_prob])

        xs_var = prob_network.input_layer.input_var
        ys_var = TT.imatrix("ys")
        old_prob_var = TT.matrix("old_prob")

        x_mean_var = theano.shared(
            np.zeros((1, ) + input_shape),
            name="x_mean",
            broadcastable=(True, ) + (False, ) * len(input_shape))
        x_std_var = theano.shared(
            np.ones((1, ) + input_shape),
            name="x_std",
            broadcastable=(True, ) + (False, ) * len(input_shape))

        normalized_xs_var = (xs_var - x_mean_var) / x_std_var

        prob_var = L.get_output(l_prob,
                                {prob_network.input_layer: normalized_xs_var})

        old_info_vars = dict(prob=old_prob_var)
        info_vars = dict(prob=prob_var)

        dist = self._dist = Categorical(output_dim)

        mean_kl = TT.mean(dist.kl_sym(old_info_vars, info_vars))

        loss = -TT.mean(dist.log_likelihood_sym(ys_var, info_vars))

        predicted = tensor_utils.to_onehot_sym(
            TT.argmax(prob_var, axis=1), output_dim)

        self._f_predict = tensor_utils.compile_function([xs_var], predicted)
        self._f_prob = tensor_utils.compile_function([xs_var], prob_var)
        self._prob_network = prob_network
        self._l_prob = l_prob

        optimizer_args = dict(
            loss=loss,
            target=self,
            network_outputs=[prob_var],
        )

        if use_trust_region:
            optimizer_args["leq_constraint"] = (mean_kl, step_size)
            optimizer_args["inputs"] = [xs_var, ys_var, old_prob_var]
        else:
            optimizer_args["inputs"] = [xs_var, ys_var]

        self._optimizer.update_opt(**optimizer_args)

        self._use_trust_region = use_trust_region
        self._name = name

        self._normalize_inputs = normalize_inputs
        self._x_mean_var = x_mean_var
        self._x_std_var = x_std_var
Esempio n. 10
0
    def __init__(
        self,
        env_spec,
        hidden_sizes=(32, ),
        state_include_action=True,
        hidden_nonlinearity=NL.tanh,
        learn_std=True,
        init_std=1.0,
        output_nonlinearity=None,
    ):
        """
        :param env_spec: A spec for the env.
        :param hidden_sizes: sizes list for the fully connected hidden layers
        :param hidden_nonlinearity: nonlinearity used for each hidden layer
        :return:
        """
        assert isinstance(env_spec.action_space, Box)

        Serializable.quick_init(self, locals())
        super(GaussianGRUPolicy, self).__init__(env_spec)

        assert len(hidden_sizes) == 1

        if state_include_action:
            obs_dim = env_spec.observation_space.flat_dim +\
                env_spec.action_space.flat_dim
        else:
            obs_dim = env_spec.observation_space.flat_dim
        action_flat_dim = env_spec.action_space.flat_dim

        mean_network = GRUNetwork(
            input_shape=(obs_dim, ),
            output_dim=action_flat_dim,
            hidden_dim=hidden_sizes[0],
            hidden_nonlinearity=hidden_nonlinearity,
            output_nonlinearity=output_nonlinearity,
        )

        l_mean = mean_network.output_layer
        obs_var = mean_network.input_var

        l_log_std = ParamLayer(
            mean_network.input_layer,
            num_units=action_flat_dim,
            param=lasagne.init.Constant(np.log(init_std)),
            name="output_log_std",
            trainable=learn_std,
        )

        l_step_log_std = ParamLayer(
            mean_network.step_input_layer,
            num_units=action_flat_dim,
            param=l_log_std.param,
            name="step_output_log_std",
            trainable=learn_std,
        )

        self._mean_network = mean_network
        self._l_log_std = l_log_std
        self._state_include_action = state_include_action

        self._f_step_mean_std = tensor_utils.compile_function(
            [
                mean_network.step_input_layer.input_var,
                mean_network.step_prev_hidden_layer.input_var
            ],
            L.get_output([
                mean_network.step_output_layer, l_step_log_std,
                mean_network.step_hidden_layer
            ]))

        self._prev_action = None
        self._prev_hidden = None
        self._hidden_sizes = hidden_sizes
        self._dist = RecurrentDiagonalGaussian(action_flat_dim)

        self.reset()

        LasagnePowered.__init__(self, [mean_network.output_layer, l_log_std])