def main(args): # load and preprocess dataset if args.dataset == 'cora': data = CoraGraphDataset() elif args.dataset == 'citeseer': data = CiteseerGraphDataset() elif args.dataset == 'pubmed': data = PubmedGraphDataset() else: raise ValueError('Unknown dataset: {}'.format(args.dataset)) g = data[0] if args.gpu < 0: cuda = False ctx = mx.cpu(0) else: cuda = True ctx = mx.gpu(args.gpu) g = g.to(ctx) features = g.ndata['feat'] labels = mx.nd.array(g.ndata['label'], dtype="float32", ctx=ctx) mask = g.ndata['train_mask'] mask = mx.nd.array(np.nonzero(mask.asnumpy())[0], ctx=ctx) val_mask = g.ndata['val_mask'] val_mask = mx.nd.array(np.nonzero(val_mask.asnumpy())[0], ctx=ctx) test_mask = g.ndata['test_mask'] test_mask = mx.nd.array(np.nonzero(test_mask.asnumpy())[0], ctx=ctx) in_feats = features.shape[1] n_classes = data.num_labels n_edges = data.graph.number_of_edges() g = dgl.remove_self_loop(g) g = dgl.add_self_loop(g) # create model heads = ([args.num_heads] * args.num_layers) + [args.num_out_heads] model = GAT(g, args.num_layers, in_feats, args.num_hidden, n_classes, heads, elu, args.in_drop, args.attn_drop, args.alpha, args.residual) if args.early_stop: stopper = EarlyStopping(patience=100) model.initialize(ctx=ctx) # use optimizer trainer = gluon.Trainer(model.collect_params(), 'adam', {'learning_rate': args.lr}) dur = [] for epoch in range(args.epochs): if epoch >= 3: t0 = time.time() # forward with mx.autograd.record(): logits = model(features) loss = mx.nd.softmax_cross_entropy(logits[mask].squeeze(), labels[mask].squeeze()) loss.backward() trainer.step(mask.shape[0]) if epoch >= 3: dur.append(time.time() - t0) print("Epoch {:05d} | Loss {:.4f} | Time(s) {:.4f} | ETputs(KTEPS) {:.2f}".format( epoch, loss.asnumpy()[0], np.mean(dur), n_edges / np.mean(dur) / 1000)) val_accuracy = evaluate(model, features, labels, val_mask) print("Validation Accuracy {:.4f}".format(val_accuracy)) if args.early_stop: if stopper.step(val_accuracy, model): break print() if args.early_stop: model.load_parameters('model.param') test_accuracy = evaluate(model, features, labels, test_mask) print("Test Accuracy {:.4f}".format(test_accuracy))
def main(args): # load and preprocess dataset data = load_data(args) features = mx.nd.array(data.features) labels = mx.nd.array(data.labels) mask = mx.nd.array(np.where(data.train_mask == 1)) test_mask = mx.nd.array(np.where(data.test_mask == 1)) val_mask = mx.nd.array(np.where(data.val_mask == 1)) in_feats = features.shape[1] n_classes = data.num_labels n_edges = data.graph.number_of_edges() if args.gpu < 0: ctx = mx.cpu() else: ctx = mx.gpu(args.gpu) features = features.as_in_context(ctx) labels = labels.as_in_context(ctx) mask = mask.as_in_context(ctx) test_mask = test_mask.as_in_context(ctx) val_mask = val_mask.as_in_context(ctx) # create graph g = data.graph # add self-loop g.remove_edges_from(nx.selfloop_edges(g)) g = DGLGraph(g) g.add_edges(g.nodes(), g.nodes()) # create model heads = ([args.num_heads] * args.num_layers) + [args.num_out_heads] model = GAT(g, args.num_layers, in_feats, args.num_hidden, n_classes, heads, elu, args.in_drop, args.attn_drop, args.alpha, args.residual) stopper = EarlyStopping(patience=100) model.initialize(ctx=ctx) # use optimizer trainer = gluon.Trainer(model.collect_params(), 'adam', {'learning_rate': args.lr}) dur = [] for epoch in range(args.epochs): if epoch >= 3: t0 = time.time() # forward with mx.autograd.record(): logits = model(features) loss = mx.nd.softmax_cross_entropy(logits[mask].squeeze(), labels[mask].squeeze()) loss.backward() trainer.step(mask.shape[0]) if epoch >= 3: dur.append(time.time() - t0) print( "Epoch {:05d} | Loss {:.4f} | Time(s) {:.4f} | ETputs(KTEPS) {:.2f}" .format(epoch, loss.asnumpy()[0], np.mean(dur), n_edges / np.mean(dur) / 1000)) val_accuracy = evaluate(model, features, labels, val_mask) print("Validation Accuracy {:.4f}".format(val_accuracy)) if stopper.step(val_accuracy, model): break model.load_parameters('model.param') test_accuracy = evaluate(model, features, labels, test_mask) print("Test Accuracy {:.4f}".format(test_accuracy))