(1 + np.sum(np.exp(cls_prior_rand_0_lg)))), axis=None) cls_prior_rand = cls_prior_rand_0.tolist() belief_list.append( HybridBelief(5, geo_model, da_model, cls_model, cls_prior_rand, GT_poses[0], prior_noise, cls_enable=cls_enable, pruning_threshold=1000, ML_update=ML_update)) lambda_belief = LambdaBelief(belief_list) lambda_planner = LambdaPlannerPrimitives(lambda_belief, entropy_lower_limit=entropy_lower_limit, AVD_mapping=scenario_data, AVD_poses=GT_pose) if Lambda_BSP_mode == 2: lambda_belief = gaussianb_jlp.JLPBelief(geo_model, da_model, cls_model, GT_poses[0], prior_noise, lambda_prior_mean=lambda_prior, lambda_prior_noise=np.diag(lambda_prior_noise_diag), cls_enable=cls_enable) lambda_planner = JLPPLannerPrimitives(lambda_belief, entropy_lower_limit=entropy_lower_limit, AVD_mapping=scenario_data, AVD_poses=GT_pose) # ACTION GENERATOR def action_generator(action, action_noise_diag, no_noise=False): """ :type action: gtsam.Pose3 """ action_noise = np.diag(action_noise_diag) action_rotation = action.rotation().rpy() action_vector = np.array([action_rotation[2], action_rotation[1], action_rotation[0], action.x(), action.y(), action.z()])
np.array([0.0, 0.5, 0.0]))) GT_objects.append( gtsam.Pose3(gtsam.Rot3.Ypr(-math.pi / 4, 0.0, 0.0), np.array([-.0, -0.5, 0.0]))) GT_objects.append( gtsam.Pose3(gtsam.Rot3.Ypr(math.pi / 2, 0.0, 0.0), np.array([1.0, 1.5, 0.0]))) GT_objects.append( gtsam.Pose3(gtsam.Rot3.Ypr(-math.pi / 2, 0.0, 0.0), np.array([1.0, -1.5, 0.0]))) # Initialize JLP belief ------------------------------------------------ JLP_belief = gaussianb_jlp.JLPBelief(geo_model, da_model, lambda_model, prior, prior_noise, cls_enable=True, lambda_prior_mean=np.array([0.]), lambda_prior_noise=((0.5))) # Measurement and action generation def geo_measurement_generator(relative_pose, meas_cov, no_noise=False): # Break down pose to components pose_pos = [relative_pose.x(), relative_pose.y(), relative_pose.z()] pose_rot = relative_pose.rotation().rpy() # pose_total = np.concatenate((pose_rot, pose_pos))
ML_update=ML_update)) for idx_1 in range(len(sequence)): lambda_belief_list.append( LambdaBelief(belief_list[number_of_beliefs * idx_1:number_of_beliefs * (idx_1 + 1)])) lambda_planner_list.append( LambdaPlannerPrimitives(lambda_belief_list[-1])) if Lambda_BSP_mode == 2: for idx_1 in range(len(sequence)): lambda_belief_list.append( gaussianb_jlp.JLPBelief(geo_model, da_model, cls_model, Init_poses[idx_1], prior_noise, lambda_prior_mean=lambda_prior, lambda_prior_noise=lambda_prior_noise_diag, cls_enable=cls_enable)) lambda_planner_list.append(JLPPLannerPrimitives( lambda_belief_list[-1])) # Plot all the GT sequences fig = plt.figure(0) ax = fig.gca() for sequence_idx in range(len(sequence)): GT_sequence = list() #GT_sequence.append(GT_poses[0]) GT_sequence.append(Init_poses[sequence_idx])
def motion_primitive_planning(seed, Lambda_BSP_mode, reward_mode, cls_model, number_of_beliefs, random_objects=True): # Initializations ---------------------------------------------------- sample_use_flag = True ML_planning_flag = False track_length = 20 horizon = 5 ML_update = True MCTS_flag = True MCTS_branches = 4 cls_enable = True display_graphs = True measurement_radius_limit = 10 measurement_radius_minimum = 0 com_radius = 100000 class_GT = {1: 1, 2: 1, 3: 2, 4: 2, 5: 1}#, 6: 2}#, 7: 1, 8: 1, 9: 2}#, 10: 1} np.random.seed(seed) measurements_enabler = True opening_angle = 60 opening_angle_rad = opening_angle * math.pi / 180 num_samp = 50 CVaR_flag = True start_time = time.time() entropy_lower_limit = None # Set models --------------------------------------------------------- np.set_printoptions(precision=3) plt.rcParams.update({'font.size': 16}) prior_lambda = (1, 1) lambda_prior = np.array([special.digamma(prior_lambda[0]) - special.digamma(prior_lambda[1])]) # lambda_prior_noise_diag = np.matrix(special.polygamma(1, prior_lambda[0]) + special.polygamma(1, prior_lambda[1])) lambda_prior_noise = gtsam.noiseModel.Diagonal.Variances(lambda_prior_noise_diag) da_model = damodel.DAModel(camera_fov_angle_horizontal=opening_angle_rad, range_limit=measurement_radius_limit, range_minimum=measurement_radius_minimum) geo_model_noise_diag = np.array([0.00001, 0.00001, 0.001, 0.0001, 0.0001, 0.001]) geo_model_noise = gtsam.noiseModel.Diagonal.Variances(geo_model_noise_diag) geo_model = geomodel_proj.GeoModel(geo_model_noise) # DEFINE GROUND TRUTH ------------------------------------------------- # Objects GT_objects = list() # GT_objects.append(gtsam.Pose3(gtsam.Rot3.Ypr(0.0, 0.0, 0.0), np.array([0.0, -2.0, 0.0]))) # GT_objects.append(gtsam.Pose3(gtsam.Rot3.Ypr(-math.pi/2, 0.0, 0.0), np.array([1.0, 2.0, 0.0]))) # GT_objects.append(gtsam.Pose3(gtsam.Rot3.Ypr(math.pi/2, 0.0, 0.0), np.array([-2.5, 3.5, 0.0]))) # GT_objects.append(gtsam.Pose3(gtsam.Rot3.Ypr(-3*math.pi/4, 0.0, 0.0), np.array([1.0, 4.0, 0.0]))) # GT_objects.append(gtsam.Pose3(gtsam.Rot3.Ypr(0.0, 0.0, 0.0), np.array([-6.0, -3.0, 0.0]))) # GT_objects.append(gtsam.Pose3(gtsam.Rot3.Ypr(math.pi/4, 0.0, 0.0), np.array([3.0, -2.0, 0.0]))) # GT_objects.append(gtsam.Pose3(gtsam.Rot3.Ypr(-3*math.pi/2, 0.0, 0.0), np.array([1.5,-6.0, 0.0]))) # GT_objects.append(gtsam.Pose3(gtsam.Rot3.Ypr(math.pi, 0.0, 0.0), np.array([-1.0, -4.0, 0.0]))) # GT_objects.append(gtsam.Pose3(gtsam.Rot3.Ypr(-math.pi, 0.0, 0.0 / 2), np.array([-1.5, -1.0, 0.0]))) # GT_objects.append(gtsam.Pose3(gtsam.Rot3.Ypr(3.141, 0.0, 0.0), np.array([-6.5, 1.0, 0.0]))) if random_objects is False: # GT_objects.append(gtsam.Pose3(gtsam.Rot3.Ypr(0.0, 0.0, 0.0), np.array([2.5, -4.0, 0.0]))) # GT_objects.append(gtsam.Pose3(gtsam.Rot3.Ypr(3.141/2, 0.0, 0.0), np.array([4, -7.0, 0.0]))) # GT_objects.append(gtsam.Pose3(gtsam.Rot3.Ypr(-3.141/2, 0.0, 0.0), np.array([4.5, -1.0, 0.0]))) GT_objects.append(gtsam.Pose3(gtsam.Rot3.Ypr(-3.141 / 4, 0.0, 0.0), np.array([1.0, -4.0, 0.0]))) # GT_objects.append(gtsam.Pose3(gtsam.Rot3.Ypr(0*3.141, 0.0, 0.0), np.array([7.5, 4.0, 0.0]))) GT_objects.append(gtsam.Pose3(gtsam.Rot3.Ypr(-3.141 / 4, 0.0, 0.0), np.array([2, -2, 0.0]))) GT_objects.append(gtsam.Pose3(gtsam.Rot3.Ypr(-3.141 / 2, 0.0, 0.0), np.array([8.5, 4.7, 0.0]))) GT_objects.append(gtsam.Pose3(gtsam.Rot3.Ypr(-3.141 / 4, 0.0, 0.0), np.array([11.5, 1.0, 0.0]))) GT_objects.append(gtsam.Pose3(gtsam.Rot3.Ypr(-2 * 3.141 / 4, 0.0, 0.0), np.array([12, -6.5, 0.0]))) # GT_objects.append(gtsam.Pose3(gtsam.Rot3.Ypr(-2*3.141/4, 0.0, 0.0), np.array([14.5, 2.7, 0.0]))) elif random_objects is True: for idx in range(len(class_GT)): GT_objects.append(gtsam.Pose3(gtsam.Pose2(np.random.uniform(0, 10, 1), np.random.uniform(-8, 8, 1), np.random.uniform(-3.141, 3.141, 1)))) # Init poses Init_poses = list() Init_poses.append(gtsam.Pose3(gtsam.Rot3.Ypr(0.0, 0.0, 0.0), np.array([-8.0, 0.2, 0.0]))) Init_poses.append(gtsam.Pose3(gtsam.Rot3.Ypr(0.0, 0.0, 0.0), np.array([-8.0, 0.1, 0.0]))) Init_poses.append(gtsam.Pose3(gtsam.Rot3.Ypr(0.0, 0.0, 0.0), np.array([-8.0, -0.1, 0.0]))) Init_poses.append(gtsam.Pose3(gtsam.Rot3.Ypr(0.0, 0.0, 0.0), np.array([-8.0, -0.3, 0.0]))) Init_poses.append(gtsam.Pose3(gtsam.Rot3.Ypr(0.0, 0.0, 0.0), np.array([-8.0, -0.4, 0.0]))) Init_poses.append(gtsam.Pose3(gtsam.Rot3.Ypr(0.0, 0.0, 0.0), np.array([-8.0, -0.5, 0.0]))) # Robot poses GT_poses = list() GT_poses.append(gtsam.Pose3(gtsam.Rot3.Ypr(-0*math.pi/2, 0.0, 0.0), np.array([-4.0, 0.0, 0.0]))) # DEFINE ACTION PRIMITIVES ---------------------------------------------- stride_length = 1.0 motion_primitives = list() motion_primitives.append(gtsam.Pose3(gtsam.Rot3.Ypr(-0.00, 0.0, 0.0), np.array([stride_length, 0.0, 0.0]))) motion_primitives.append(gtsam.Pose3(gtsam.Rot3.Ypr(+math.pi/4, 0.0, 0.0), np.array([stride_length, stride_length, 0.0]))) motion_primitives.append(gtsam.Pose3(gtsam.Rot3.Ypr(-math.pi/4, 0.0, 0.0), np.array([stride_length, -stride_length, 0.0]))) motion_primitives.append(gtsam.Pose3(gtsam.Rot3.Ypr(+math.pi/2, 0.0, 0.0), np.array([0.0, stride_length, 0.0]))) motion_primitives.append(gtsam.Pose3(gtsam.Rot3.Ypr(-math.pi/2, 0.0, 0.0), np.array([0.0, -stride_length, 0.0]))) #------------------------------------------------ PRIORS # Robot priors #prior = gtsam.Pose3(gtsam.Rot3.Ypr(0.0, 0.0, 0.0), np.array([0.0, 0.0, 0.0])) prior = GT_poses[0] prior_noise_diag = np.array([00.000001, 0.000001, 0.0000038, 00.00002, 00.0000202, 0.000001]) prior_noise = gtsam.noiseModel.Diagonal.Variances(prior_noise_diag) prior_noise_cov = np.diag(prior_noise_diag) # Create belief based on the switch if Lambda_BSP_mode == 1: belief_list = list() lambda_planner_list = list() for idx in range(number_of_beliefs): # cls_prior_rand_0 = np.random.dirichlet(prior_lambda) cls_prior_rand_0_lg = np.random.multivariate_normal(lambda_prior, lambda_prior_noise_diag) cls_prior_rand_0_con = np.exp(cls_prior_rand_0_lg) / (1 + np.sum(np.exp(cls_prior_rand_0_lg))) cls_prior_rand_0 = np.concatenate((cls_prior_rand_0_con, 1 / (1 + np.sum(np.exp(cls_prior_rand_0_lg)))), axis=None) cls_prior_rand = cls_prior_rand_0.tolist() belief_list.append( HybridBelief(2, geo_model, da_model, cls_model, cls_prior_rand, GT_poses[0], prior_noise, cls_enable=cls_enable, pruning_threshold=250, ML_update=ML_update)) lambda_belief = LambdaBelief(belief_list) lambda_planner = LambdaPlannerPrimitives(lambda_belief) if Lambda_BSP_mode == 2: lambda_belief = gaussianb_jlp.JLPBelief(geo_model, da_model, cls_model, GT_poses[0], prior_noise, lambda_prior_mean=lambda_prior, lambda_prior_noise=lambda_prior_noise_diag, cls_enable=cls_enable) lambda_planner = JLPPLannerPrimitives(lambda_belief, entropy_lower_limit=entropy_lower_limit) # Plot all the GT sequences # fig = plt.figure(0) # ax = fig.gca() # plotterdaac2d.GT_plotter_line(GT_poses, GT_objects, color=(0.8, 0.4, 0.4), # limitx=[-10, 7], limity=[-8, 8], show_plot=False, ax=ax, # start_pose=GT_poses[0]) # ax.set_xlabel('X axis [m]') # ax.set_ylabel('Y axis [m]') # plt.tight_layout() # plt.show() # SEMANTIC MEASUREMENT GENERATION FUNCTION----------------------------------------------------- def sem_measurements_generator(relative_pose, no_noise=False): radius = np.sqrt(relative_pose.x()**2 + relative_pose.y()**2) psi = np.arctan2(relative_pose.y(), relative_pose.x()) theta = np.arctan2(-relative_pose.z(), radius) K = 2 Alpha = 0.5 R = K * (0.7 + 0.3 * np.cos(psi + theta)) Sigma = 1 / R ** 2 f = Alpha * np.cos(2 * psi + 2 * theta) + Alpha sem_gen = -1 if no_noise is False: sem_gen = np.random.normal(f, Sigma) else: sem_gen = f sem_gen_vector = [ np.exp(sem_gen) / (1 + np.exp(sem_gen)), 1 / (1 + np.exp(sem_gen))] return sem_gen_vector def sem_measurements_generator_2(relative_pose, no_noise=False): radius = np.sqrt(relative_pose.x()**2 + relative_pose.y()**2) psi = np.arctan2(relative_pose.y(), relative_pose.x()) theta = np.arctan2(-relative_pose.z(), radius) K = 2 Alpha = -0.5 R = K * (0.7 + 0.3 * np.cos(psi + theta)) Sigma = 1 / R ** 2 f = Alpha * np.cos(2 * psi + 2 * theta) + Alpha sem_gen = -1 if no_noise is False: sem_gen = np.random.normal(f, Sigma) else: sem_gen = f sem_gen_vector = [ np.exp(sem_gen) / (1 + np.exp(sem_gen)), 1 / (1 + np.exp(sem_gen))] return sem_gen_vector # GEOMETRIC MEASUREMENT GENERATOR ------------------------------------------------------------------- def geo_measurement_generator(relative_pose, meas_cov, no_noise=False): # Break down pose to components pose_pos = [relative_pose.x(), relative_pose.y(), relative_pose.z()] pose_rot = relative_pose.rotation().rpy() # pose_total = np.concatenate((pose_rot, pose_pos)) # Create the pose if no_noise is False: pose_sample = np.random.multivariate_normal(pose_total, meas_cov) else: pose_sample = pose_total # Transfer to pose3 pose_generated = gtsam.Pose3(gtsam.Rot3.Ypr(pose_sample[2], pose_sample[1], pose_sample[0]), np.array([pose_sample[3], pose_sample[4], pose_sample[5]])) return pose_generated # ACTION GENERATOR def action_generator(action, action_noise_diag, no_noise=False): """ :type action: gtsam.Pose3 """ action_noise = np.diag(action_noise_diag) action_rotation = action.rotation().rpy() action_vector = np.array([action_rotation[2], action_rotation[1], action_rotation[0], action.x(), action.y(), action.z()]) generated_action = np.random.multivariate_normal(action_vector, action_noise) generated_action_pose = gtsam.Pose3(gtsam.Rot3.Ypr(generated_action[0], generated_action[1], generated_action[2]), np.array([generated_action[3], generated_action[4], generated_action[5]])) if no_noise is False: return generated_action_pose else: return action def lambda_entropy_individual_numeric(exp, covariance, number_of_samples=100): entropy = 0 for idx in range(number_of_samples): sample = np.random.multivariate_normal(exp, covariance) sample_aug = np.concatenate((sample, 0), axis=None) sample_cpv = np.exp(sample_aug)/(np.sum(np.exp(sample_aug))) log_pdf_value = np.log(stats.multivariate_normal.pdf(sample, exp, covariance)) - \ np.sum(np.log(sample_cpv)) entropy -= log_pdf_value / number_of_samples return entropy prior_entropy = lambda_entropy_individual_numeric(lambda_prior, lambda_prior_noise_diag) # INFERENCE action_noise_diag = np.array([0.0003, 0.0003, 0.0001, 0.0003, 0.00030, 0.001]) action_noise = gtsam.noiseModel.Diagonal.Variances(action_noise_diag) reward_collections = list() chosen_action_list = list() current_entropy_list = list() current_entropy_list.append(0) sigma_list = list() sigma_list.append(0) time_list = list() time_list.append(0) MSDE = list() MSDE.append(1/4) #for sequence_idx in range(track_length): for idx in range(track_length): step_time = time.time() # action, reward = lambda_planner.planning_session(action_noise, np.diag(geo_model_noise_diag), horizon=horizon, reward_print=True, # enable_MCTS=MCTS_flag, MCTS_braches_per_action=MCTS_branches, # ML_planning=ML_planning_flag, sample_use_flag=sample_use_flag, # reward_mode=reward_mode, motion_primitives=motion_primitives) # action = motion_primitives[0] if idx < 5: action = gtsam.Pose3(gtsam.Pose2(1.0, 0.0, -np.pi / 16)) elif idx < 15: action = gtsam.Pose3(gtsam.Pose2(1.0, 0.0, np.pi / 16)) else: action = gtsam.Pose3(gtsam.Pose2(1.0, 0.0, -np.pi / 16)) chosen_action_list.append(action) # action = motion_primitives[0] print('----------------------------------------------------------------------------') print('Action:\n' + str(action)) # print('Reward: ' + str(reward)) GT_poses.append(GT_poses[idx].compose(action)) action_generated = action_generator(action, action_noise_diag, no_noise=True) print('idx ' + str(idx)) lambda_belief.action_step(action_generated, action_noise) #TODO: see if belief within the planner is update # Defining opening angle geo_measurements = list() sem_measurements = list() for lambda_real in range(num_samp): sem_measurements.append(list()) GT_DA = list() # Generate measurements and forward the beliefs for j in range(len(GT_objects)): # Check if the object is seen xy_angle = np.arctan2(GT_objects[j].y() - GT_poses[idx + 1].y(), GT_objects[j].x() - GT_poses[idx + 1].x()) angles = GT_poses[idx + 1].rotation().matrix() psi = np.arctan2(angles[1, 0], angles[0, 0]) geo_part = GT_poses[idx + 1].between(GT_objects[j]) geo_radius = np.sqrt(geo_part.x() ** 2 + geo_part.y() ** 2 + geo_part.z() ** 2) # if np.abs(xy_angle - psi) <= opening_angle_rad and geo_radius <= measurement_radius_limit and \ # geo_radius >= measurement_radius_minimum: if da_model.object_observation_3d(GT_poses[idx + 1], GT_objects[j]) is 1: GT_DA.append(j + 1) geo_cov = np.diag(geo_model_noise_diag) meas_relative_pose = geo_measurement_generator(geo_part, geo_cov, no_noise=False) geo_measurements.append(meas_relative_pose) # print(geo_measurements) for lambda_real in range(num_samp): if class_GT[j + 1] == 2: sem_part = sem_measurements_generator_2(GT_objects[j].between(GT_poses[idx + 1]), no_noise=False) #print('Object: ' + str(j + 1) + ',sem: ' + str(sem_part) + ',robot ' + robot_id + ',Class 2') else: sem_part = sem_measurements_generator(GT_objects[j].between(GT_poses[idx + 1]), no_noise=False) sem_measurements[lambda_real].append(sem_part) # GENERATED # -------------------------------### if Lambda_BSP_mode == 1: lambda_belief.add_measurements(geo_measurements, sem_measurements, da_current_step=GT_DA, number_of_samples=num_samp, new_input_object_prior=None, new_input_object_covariance=None) # -------------------------------### if Lambda_BSP_mode == 2: sem_measurements_exp = list() sem_measurements_cov = list() obj_idx_running = 0 # Go over all objects for obj_idx in GT_DA: obj_data = np.zeros((num_samp, len(prior_lambda))) for b_idx in range(num_samp): obj_data[b_idx, :] = sem_measurements[b_idx][obj_idx_running] #obj_data = np.array(sem_measurements[obj_idx - 1]) obj_data_logit = np.array(np.log(obj_data[:, 0] / obj_data[:, 1])) sem_measurements_exp.append([np.sum(obj_data_logit, axis=0) / num_samp]) sem_measurements_cov.append(np.matrix(np.dot(np.transpose(obj_data_logit - sem_measurements_exp[-1]), obj_data_logit - sem_measurements_exp[-1]) / (num_samp - 1))) obj_idx_running += 1 lambda_belief.add_measurements(geo_measurements, sem_measurements_exp, sem_measurements_cov, GT_DA) lambda_belief.print_lambda_lg_params() entropy_collector = 0 sigma_collector = 0 if Lambda_BSP_mode == 1: for belief in lambda_belief.belief_list: object_list = belief.obj_realization break for obj in object_list: entropy_collector -= lambda_belief.entropy(obj) sigma_collector += 2 * np.sqrt(lambda_belief.lambda_covariance(obj)[0, 0]) / len(object_list) if Lambda_BSP_mode == 2: for obj in lambda_belief.object_lambda_dict: entropy_collector -= lambda_belief.\ lambda_entropy_individual_numeric(lambda_belief.object_lambda_dict[obj]) sigma_collector += 2 * np.sqrt(lambda_belief. lambda_covariance_numeric( lambda_belief.object_lambda_dict[obj])[0, 0]) / len(lambda_belief.object_lambda_dict) current_entropy_list.append(entropy_collector) MSDE.append(lambda_belief.MSDE_expectation(class_GT)) sigma_list.append(sigma_collector) time_list.append(time.time() - step_time) print(chosen_action_list) return current_entropy_list, MSDE, sigma_list, time.time() - start_time, time_list
def motion_primitive_planning(seed, Lambda_BSP_mode, reward_mode, cls_model, number_of_beliefs, random_objects=True, use_bounds=False, plt_ax=None, bar_ax=None, initial_image='000510000250101.jpg'): ## --------------- PRLIMINARIES: NETWORK AND SCENARIO SETUP # Find the corresponding depth image to the jpg def depth_image_find(image_address): depth_address = image_address[0:-5] depth_address += '3.png' return depth_address # Load json file actions = [ 'forward', 'rotate_cw', 'rotate_ccw', 'backward', 'left', 'right' ] # action_sequence = ['forward', 'forward', 'forward', 'rotate_cw', 'rotate_cw', 'rotate_cw', 'rotate_cw', # 'rotate_cw', 'rotate_cw', 'forward', 'rotate_cw', 'forward', 'forward', 'forward', 'forward', # 'forward', 'rotate_cw', 'rotate_cw', 'rotate_cw', 'rotate_cw'] scenario_file = open('home_005_data/annotations.json') scenario_data = json.load(scenario_file) classification_file = open('home_005_data/classification_data_vgg.json') classification_data = json.load(classification_file) #------------------------------------- EXTRACT GROUND TRUTH detailed_GT_file = scipy.io.loadmat('home_005_data/image_structs.mat') GT_pose = dict() x_pos = list() y_pos = list() z_pos = list() for location in detailed_GT_file['image_structs']['world_pos'][0]: x_pos.append(float(location[0])) y_pos.append(float(location[2])) z_pos.append(float(location[1])) psi = list() theta = list() for rotation in detailed_GT_file['image_structs']['direction'][0]: psi.append(math.atan2(rotation[2], rotation[0]) * 180 / np.pi) theta.append( math.atan2(rotation[1], np.sqrt(rotation[2]**2 + rotation[0]**2)) * 180 / np.pi) idx = int(0) for name in detailed_GT_file['image_structs']['image_name'][0]: GT_pose[name[0]] = gtsam.Pose3( gtsam.Rot3.Ypr(psi[idx] * np.pi / 180, theta[idx] * np.pi / 180, 0.0), np.array([x_pos[idx], y_pos[idx], z_pos[idx]])) idx += 1 scenario_file.close() classification_file.close() # Initializations ---------------------------------------------------- conf_flag = False sample_use_flag = True ML_planning_flag = True track_length = 20 horizon = 1 ML_update = True MCTS_flag = True MCTS_branches = 3 cls_enable = True display_graphs = True measurement_radius_limit = 10 measurement_radius_minimum = 0 com_radius = 100000 # class_GT = {1: 1, 2: 1, 3: 2, 4: 2, 5: 1, 6: 1, 7: 1, 8: 1, 9: 2}#, 10: 1} # GT_cls_realization = ((1, 1), (2, 2), (3, 1), (4, 1), (5, 1), (6, 2), (7, 1), (8, 1)) np.random.seed(seed) measurements_enabler = True opening_angle = 50 opening_angle_rad = opening_angle * math.pi / 180 num_samp = 50 CVaR_flag = True start_time = time.time() entropy_lower_limit = -500 random_object_location_flag = False # Set models --------------------------------------------------------- np.set_printoptions(precision=3) plt.rcParams.update({'font.size': 16}) prior_lambda = (1, 1, 1, 1, 1) lambda_prior = np.array([ special.digamma(prior_lambda[0]) - special.digamma(prior_lambda[4]), special.digamma(prior_lambda[1]) - special.digamma(prior_lambda[4]), special.digamma(prior_lambda[2]) - special.digamma(prior_lambda[4]), special.digamma(prior_lambda[3]) - special.digamma(prior_lambda[4]) ]) # lambda_prior_noise_diag = np.array([ special.polygamma(1, prior_lambda[0]) + special.polygamma(1, prior_lambda[4]), special.polygamma(1, prior_lambda[1]) + special.polygamma(1, prior_lambda[4]), special.polygamma(1, prior_lambda[2]) + special.polygamma(1, prior_lambda[4]), special.polygamma(1, prior_lambda[3]) + special.polygamma(1, prior_lambda[4]) ]) lambda_prior_noise = gtsam.noiseModel.Diagonal.Variances( lambda_prior_noise_diag) da_model = damodel.DAModel(camera_fov_angle_horizontal=opening_angle_rad, range_limit=measurement_radius_limit, range_minimum=measurement_radius_minimum) geo_model_noise_diag = np.array( [0.00001, 0.00001, 30.001, 0.05, 0.05, 0.05]) geo_model_noise = gtsam.noiseModel.Diagonal.Variances(geo_model_noise_diag) geo_model = geomodel_proj.GeoModel(geo_model_noise) # Robot poses GT current_image = initial_image GT_poses = list() GT_poses.append(GT_pose[initial_image]) #------------------------------------------------ PRIORS prior = GT_poses[0] prior_noise_diag = np.array( [00.000001, 0.000001, 0.0000038, 00.00002, 00.0000202, 0.000001]) prior_noise = gtsam.noiseModel.Diagonal.Variances(prior_noise_diag) prior_noise_cov = np.diag(prior_noise_diag) # Create belief based on the switch if Lambda_BSP_mode == 1: #TODO: complete this side belief_list = list() lambda_planner_list = list() for idx in range(number_of_beliefs): # cls_prior_rand_0 = np.random.dirichlet(prior_lambda) cls_prior_rand_0_lg = np.random.multivariate_normal( lambda_prior, np.diag(lambda_prior_noise_diag)) cls_prior_rand_0_con = np.exp(cls_prior_rand_0_lg) / ( 1 + np.sum(np.exp(cls_prior_rand_0_lg))) cls_prior_rand_0 = np.concatenate( (cls_prior_rand_0_con, 1 / (1 + np.sum(np.exp(cls_prior_rand_0_lg)))), axis=None) cls_prior_rand = cls_prior_rand_0.tolist() belief_list.append( HybridBelief(5, geo_model, da_model, cls_model, cls_prior_rand, GT_poses[0], prior_noise, cls_enable=cls_enable, pruning_threshold=3.5, ML_update=ML_update)) lambda_belief = LambdaBelief(belief_list) lambda_planner = LambdaPlannerPrimitives( lambda_belief, entropy_lower_limit=entropy_lower_limit, AVD_mapping=scenario_data, AVD_poses=GT_pose) if Lambda_BSP_mode == 2: lambda_belief = gaussianb_jlp.JLPBelief( geo_model, da_model, cls_model, GT_poses[0], prior_noise, lambda_prior_mean=lambda_prior, lambda_prior_noise=np.diag(lambda_prior_noise_diag), cls_enable=cls_enable) lambda_planner = JLPPLannerPrimitives( lambda_belief, entropy_lower_limit=entropy_lower_limit, AVD_mapping=scenario_data, AVD_poses=GT_pose) # ACTION GENERATOR def action_generator(action, action_noise_diag, no_noise=False): """ :type action: gtsam.Pose3 """ action_noise = np.diag(action_noise_diag) action_rotation = action.rotation().rpy() action_vector = np.array([ action_rotation[2], action_rotation[1], action_rotation[0], action.x(), action.y(), action.z() ]) generated_action = np.random.multivariate_normal( action_vector, action_noise) generated_action_pose = gtsam.Pose3( gtsam.Rot3.Ypr(generated_action[0], generated_action[1], generated_action[2]), np.array([ generated_action[3], generated_action[4], generated_action[5] ])) if no_noise is False: return generated_action_pose else: return action def lambda_entropy_individual_numeric(exp, covariance, number_of_samples=100): entropy = 0 for idx in range(number_of_samples): sample = np.random.multivariate_normal(exp, covariance) sample_aug = np.concatenate((sample, 0), axis=None) sample_cpv = np.exp(sample_aug) / (np.sum(np.exp(sample_aug))) log_pdf_value = np.log(stats.multivariate_normal.pdf(sample, exp, covariance)) - \ np.sum(np.log(sample_cpv)) entropy -= log_pdf_value / number_of_samples return entropy prior_entropy = lambda_entropy_individual_numeric( lambda_prior, np.diag(lambda_prior_noise_diag)) # INFERENCE action_noise_diag = np.array( [0.0003, 0.0003, 0.0001, 0.0003, 0.00030, 0.001]) action_noise = gtsam.noiseModel.Diagonal.Variances(action_noise_diag) class_GT = { 15: 2, 4: 3, 14: 2, 3: 2, 17: 3, 19: 2, 20: 2, 23: 5, 29: 2, 2: 2, 5: 2 } bars_list_of_objects = [15, 4, 14, 3, 17, 19, 23, 20, 29, 2, 10, 2, 5] reward_collections = list() chosen_action_list = list() current_entropy_list = list() current_entropy_list.append(0) current_R2_list = list() current_R2_list.append(-len(class_GT) * np.log(0.5)) sigma_list = list() sigma_list.append(0) time_list = list() time_list.append(0) MSDE = list() MSDE.append(4 / 25) current_entropy_list_per_object = dict() current_MSDE_list_per_object = dict() for obj in class_GT: current_entropy_list_per_object[obj] = list() current_entropy_list_per_object[obj].append(0) current_MSDE_list_per_object[obj] = list() current_MSDE_list_per_object[obj].append(4 / 25) MSDE_per_object = list() sigma_list = list() #for sequence_idx in range(track_length): for idx in range(track_length): step_time = time.time() # action_name, reward = lambda_planner.planning_session(action_noise, np.diag(geo_model_noise_diag), horizon=horizon, # reward_print=True, # enable_MCTS=MCTS_flag, MCTS_braches_per_action=MCTS_branches, # ML_planning=ML_planning_flag, sample_use_flag=sample_use_flag, # reward_mode=reward_mode, return_index_flag=True, # number_of_samples=number_of_beliefs, # use_lower_bound=use_bounds, # current_location_name=current_image) #action_name = action_sequence[idx] if scenario_data[current_image]['forward'] != '': action_name = 'forward' else: action_name = 'rotate_ccw' action = GT_pose[current_image].between( GT_pose[scenario_data[current_image][action_name]]) action = action_generator(action, action_noise_diag, no_noise=True) # action = motion_primitives[0] print( '----------------------------------------------------------------------------' ) print('Action:\n' + action_name) print('idx ' + str(idx)) GT_poses.append(GT_poses[idx].compose(action)) lambda_belief.action_step(action, action_noise) current_image = scenario_data[current_image][action_name] # Create the ground truth data association GT_DA = list() geo_measurements = list() sem_measurements = list() sem_measurements_exp = list() sem_measurements_cov = list() idx_range = 0 for angle in classification_data[current_image]['Angles']: if classification_data[current_image]['Range'][ idx_range] != 0 and classification_data[current_image][ 'DA'][idx_range][ 0] != 10: #TODO:SECOND TEMPORARY CONDITION GT_DA.append( classification_data[current_image]['DA'][idx_range][0]) # geo_measurements.append([angle[0], angle[1], classification_data[current_image]['Range'][idx_range]]) geo_measurements.append([ angle[0], -0.0, classification_data[current_image]['Range'][idx_range] ]) if Lambda_BSP_mode == 1: sem_measurements.append( classification_data[current_image]['CPV'][idx_range] ) #TODO: If MH needs more than 1 measurement change it if Lambda_BSP_mode == 2: sem_measurements_exp.append( np.array(classification_data[current_image] ['LG expectation'][idx_range])) sem_measurements_cov.append( cls_model.unflatten_cov( np.array(classification_data[current_image] ['LG covariance'][idx_range]))) idx_range += 1 sem_measurements = [sem_measurements] if Lambda_BSP_mode == 1: lambda_belief.add_measurements(geo_measurements, sem_measurements, da_current_step=GT_DA, number_of_samples=num_samp, new_input_object_prior=None, new_input_object_covariance=None) if Lambda_BSP_mode == 2: lambda_belief.add_measurements(geo_measurements, sem_measurements_exp, sem_measurements_cov, GT_DA) lambda_belief.print_lambda_lg_params() for obj in class_GT: current_entropy_list_per_object[obj].append(0) current_MSDE_list_per_object[obj].append(4 / 25) entropy_collector = 0 sigma_collector = 0 if Lambda_BSP_mode == 1: for belief in lambda_belief.belief_list: object_list = belief.obj_realization break for obj in object_list: current_entropy_list_per_object[obj][ -1] = lambda_belief.entropy( obj, entropy_lower_limit=entropy_lower_limit) current_MSDE_list_per_object[obj][-1] = lambda_belief.MSDE_obj( obj, class_GT[obj]) entropy_collector += current_entropy_list_per_object[obj][-1] sigma_collector += 2 * np.sqrt( lambda_belief.lambda_covariance(obj)[0, 0]) / len(object_list) if Lambda_BSP_mode == 2: for obj in lambda_belief.object_lambda_dict: if use_bounds is False: current_entropy_list_per_object[obj][ -1] = lambda_belief.lambda_entropy_individual_numeric( lambda_belief.object_lambda_dict[obj], entropy_lower_limit=entropy_lower_limit) else: current_entropy_list_per_object[obj][ -1], _ = lambda_belief.lambda_entropy_individual_bounds( lambda_belief.object_lambda_dict[obj], entropy_lower_limit=entropy_lower_limit) current_MSDE_list_per_object[obj][-1] = lambda_belief.MSDE_obj( obj, class_GT[obj]) entropy_collector += current_entropy_list_per_object[obj][-1] sigma_collector += 2 * np.sqrt( lambda_belief.lambda_covariance_numeric( lambda_belief.object_lambda_dict[obj])[0, 0]) / len( lambda_belief.object_lambda_dict) current_entropy_list.append(entropy_collector) MSDE.append(lambda_belief.MSDE_expectation(class_GT)) sigma_list.append(sigma_collector) time_list.append(time.time() - step_time) print(chosen_action_list) # if Lambda_BSP_mode == 1: # ax = lambda_belief.belief_list[0].graph_realizations_in_one(idx + 1, fig_num=0, show_obj=True, # show_weights=False, show_plot=False, # show_elipses=False) # if Lambda_BSP_mode == 2: # ax = lambda_belief.display_graph(plot_line=True, display_title=False, show_plot=False) width_offset = -0.36 if reward_mode == 1: width_offset = -0.36 color_bar = 'red' elif reward_mode == 2: width_offset = 0.0 color_bar = 'red' if Lambda_BSP_mode == 2: if reward_mode == 1: width_offset = -0.09 color_bar = 'blue' elif reward_mode == 2: width_offset = 0.0 color_bar = 'blue' elif Lambda_BSP_mode == 1 and number_of_beliefs == 1: width_offset = 0.09 color_bar = 'green' # if reward_mode == 1: # color = 'r' # elif reward_mode == 2 and number_of_beliefs == 1: # color = 'g' # elif reward_mode == 2 and number_of_beliefs != 1: # color = 'b' # plotterdaac2d.GT_plotter_line(GT_poses, [], fig_num=0, show_plot=False, # plt_save_name=None, pause_time=None, # jpg_save=False, alpha=0.75, color=color_bar, ax=plt_ax) if Lambda_BSP_mode == 1: plt_ax = lambda_belief.belief_list[0].graph_realizations_in_one( idx + 1, fig_num=0, show_obj=True, show_weights=False, show_plot=False, show_elipses=True, plot_line=True, color=color_bar, single_plot=True, show_robot_pose=False, ax=plt_ax, enlarge=3) if Lambda_BSP_mode == 2: plt_ax = lambda_belief.display_graph(plot_line=True, display_title=False, show_plot=False, color=color_bar, ax=plt_ax, enlarge=3) # plt_ax.set_xlim(-8, 15) # plt_ax.set_ylim(-10, 10) lambda_belief.lambda_bar_error_graph_multi(show_plt=False, ax=bar_ax, color=color_bar, width_offset=width_offset, GT_bar=True, GT_classes=class_GT) plt.tight_layout() return current_entropy_list, MSDE, sigma_list, time.time( ) - start_time, time_list, current_R2_list
ax.set_ylabel('Y axis [m]') plt.tight_layout() plt.show() # Belief initialization -------------------------------------------------- prior_noise_diag = np.array( [00.000001, 0.000001, 0.0000038, 00.00002, 00.0000202, 0.000001]) prior_noise = gtsam.noiseModel.Diagonal.Variances(prior_noise_diag) prior_noise_cov = np.diag(prior_noise_diag) JLP_belief = gaussianb_jlp.JLPBelief( geo_model, da_model, cls_model, GT_poses[0], prior_noise, lambda_prior_mean=lambda_prior, lambda_prior_noise=lambda_prior_noise_matrix, cls_enable=cls_enable) # ACTION GENERATOR def action_generator(action, action_noise_diag, no_noise=False): """ :type action: gtsam.Pose3 """ action_noise = np.diag(action_noise_diag) action_rotation = action.rotation().rpy()