Esempio n. 1
0
def plot_prediction_fixed_hparams(s, mus, alpha, beta):
    # generating design matrix
    Phi = gen_desmat_gaussian(X, params={'s': s, 'mus': mus})
    Phi_test = gen_desmat_gaussian(Xcont, params={'s': s, 'mus': mus})

    est = BayesianRidgeRegression(alpha=alpha, beta=beta)
    est.fit(Phi, t, optimize_hyperparams=False)
    pred_mean, pred_std = est.predict(Phi_test, return_std=True)
    print(est.m)
    plot_result(pred_mean, pred_std)
Esempio n. 2
0
def crossval_test_nll(s_u):
    nlls = []
    for i in range(num_splits):
        # make design matrices for training data for this fold
        Phi_tr = gen_desmat_gaussian(X_tr_kf[i],
                                     params={
                                         's': s_w,
                                         'mus': mus_w
                                     })
        Psi_tr = gen_desmat_gaussian(X_tr_kf[i],
                                     params={
                                         's': s_u,
                                         'mus': mus_u
                                     })

        # train on this fold
        print('minimizing s_u = %s, fold %s' % (s_u, i))
        est.fit(Phi_tr,
                Psi_tr,
                t_tr_kf[i],
                method='nelder-mead',
                logging=False)

        # make design matrices for test data for this fold
        Phi_ts = gen_desmat_gaussian(X_ts_kf[i],
                                     params={
                                         's': s_w,
                                         'mus': mus_w
                                     })
        Psi_ts = gen_desmat_gaussian(X_ts_kf[i],
                                     params={
                                         's': s_u,
                                         'mus': mus_u
                                     })

        # Predict at test points
        t_pred, loginvvar_pred = est.predict(Phi_ts, Psi_ts, noise_est=True)
        # inverse variance beta at test points
        beta_pred = np.exp(loginvvar_pred)

        # neg log-likelihood of test data for this fold
        nlls.append(neg_log_like(t_pred, t_ts_kf[i], beta_pred))

    nll_av = np.mean(nlls)
    print('nll_av = %s\n' % nll_av)
    return nll_av
Esempio n. 3
0
#%% setup Gaussian basis function params
# number of basis function for y(x), log inv var
M_w, M_u = 4, 4

# mus are centers of gbfs, s is spacing between gbfs
# 4 w gbfs, w/ edge gbfs at s_w/2 from boundary of data.
mus_w = np.array([-2.25, -0.75, 0.75, 2.25])
s_w = 1.5

# 4 u gbfs, w/ edge gbfs at s_u/2 from boundary of data.
mus_u = np.array([-2.25, -0.75, 0.75, 2.25])
s_u = 2.25

#%%
# generate y(x) gbf design matrix Phi from input data X
Phi = gen_desmat_gaussian(X, params={'s': s_w, 'mus': mus_w})
# generate log(beta) gbf design matrix Psi from input data X
Psi = gen_desmat_gaussian(X, params={'s': s_u, 'mus': mus_u})

#%% init estimator
est = BayesianHetRegression()

#%% use fit and predict methods
est.fit(Phi, Psi, t, method='sgd', logging=True)
u_weights, w_weights = est.u_fit, est.w_fit

t_gbfs = gen_desmat_gaussian(Xcont, params={'s': s_w, 'mus': mus_w})
loginvvar_gbfs = gen_desmat_gaussian(Xcont, params={'s': s_u, 'mus': mus_u})

t_gbfs_total, loginvvar_gbfs_total = est.predict(t_gbfs,
                                                 loginvvar_gbfs,
def make_Phi_Psi(X, s, mus):
  Phi_mat = np.vstack((np.ones(len(X)), X)).T
  Psi_mat = gen_desmat_gaussian(X, params={'s': s, 'mus': mus})
  return Phi_mat, Psi_mat
Esempio n. 5
0
def plot_prediction_fixed_hparams(s, mus, alpha, beta):
    # generating design matrix
    Phi = gen_desmat_gaussian(X, params={'s': s, 'mus': mus})
    Phi_test = gen_desmat_gaussian(Xcont, params={'s': s, 'mus': mus})

    est = BayesianRidgeRegression(alpha=alpha, beta=beta)
    est.fit(Phi, t, optimize_hyperparams=False)
    pred_mean, pred_std = est.predict(Phi_test, return_std=True)
    print(est.m)
    plot_result(pred_mean, pred_std)


plot_prediction_fixed_hparams(s, mus, alpha=1.0, beta=1.0)

#%%
Phi = gen_desmat_gaussian(X, params={'s': s, 'mus': mus})
Phi_test = gen_desmat_gaussian(Xcont, params={'s': s, 'mus': mus})
est = BayesianRidgeRegression(alpha=1.0, beta=1.0)
est.fit(Phi, t, optimize_hyperparams=False)
pred_mean, pred_std = est.predict(Phi_test, return_std=True)
w_means = est.m

#%%
# NEW
t_gbfs = gen_desmat_gaussian(Xcont, params={'s': s, 'mus': mus})
# weighted sum of gbfs. should equal predictive mean
t_gbfs_total = t_gbfs @ w_means


# plot the gbfs
def plot_result_with_gbf(pred_mean, pred_std):