Esempio n. 1
0
def crt(a1, a2, m1, m2):
    M = m1 * m2
    M1 = M // m1
    M2 = M // m2
    M1_inv = ext_gcd(M1, m1)[1]
    M2_inv = ext_gcd(M2, m2)[1]

    if (M1_inv < 0): M1_inv = M1_inv + m1
    if (M2_inv < 0): M2_inv = M2_inv + m2

    n = (a1 * M1 * M1_inv + a2 * M2 * M2_inv) % M
    return n
def euler(n):
    φ = 1
    for _ in range(2, n):
        if ext_gcd(_, n)[0] == 1:
            φ = φ + 1
    return φ


# print(euler(15))
def all_primitive_roots(p):
    root = primitive_root(p)
    euler_ = euler(p)
    root_list = []
    for _ in range(2, euler_):
        # 指数与euler(m)互素
        if ext_gcd(_, euler_)[0] == 1:
            root_list.append(_)
            # print(_, end=',')
    return root_list
def ord_of_am(a, m):
    # a,m需互素
    if ext_gcd(a, m)[0] == 1:
        euler_ = euler(m)
        for _ in range(1, euler(m)):
            # 指数整除euler(m)
            if euler_ % _ == 0:
                mod = exp_mod(a, _, m)
                if mod == 1:
                    return _
        return euler(m)
Esempio n. 5
0
def gen_key(p, q):
    n = p * q
    fy = (p - 1) * (q - 1)  # 計算與n互質的整數個數 尤拉函式
    e = 3889  # 選取e   一般選取65537
    # generate d
    a = e
    b = fy
    r, x, y = ext_gcd(a, b)
    #print(x)  # 計算出的x不能是負數,如果是負數,說明p、q、e選取失敗,一般情況下e選取65537
    d = x
    # 返回:   公鑰     私鑰
    return (n, e), (n, d)
Esempio n. 6
0
def gen_key(p, q, e):
    n = p * q
    fy = (p - 1) * (q - 1)  # 计算与n互质的整数个数 欧拉函数
    #e = 3889                    # 选取e   一般选取65537
    # generate d
    a = e
    b = fy
    r, x, y = ext_gcd(a, b)
    print(x)  # 计算出的x不能是负数,如果是负数,说明p、q、e选取失败,一般情况下e选取65537
    d = x
    # 返回:   公钥     私钥
    return (n, e), (n, d)
Esempio n. 7
0
def decrypt(c, prikey):
    d = prikey[0]
    p = prikey[1]
    c1 = c[0]
    c2 = c[1]

    #m = c2*(c1^d)^-1 mod p
    c1_d = exp_mod(c1, d, p)
    if (c1_d < 0): c1_d += p
    c1_dinv = ext_gcd(c1_d, p)[1]
    if (c1_dinv < 0): c1_dinv += p
    m = ((c2 % p) * c1_dinv) % p

    return m
Esempio n. 8
0
def gen_key(p, q):
    n = p * q
    euler = (p - 1) * (q - 1)
    e = random.randint(3, euler)
    a = e
    b = euler
    r, x, y = ext_gcd(a, b)
    while r != 1:
        e = random.randint(3, euler)
        a = e
        b = euler
        r, x, y = ext_gcd(a, b)
    print('r', r)
    print('euler', euler)
    print('x', x)
    if x < 0:
        print("x is negative")
        x = x - (x // (b // r)) * (b // r)
        print('x', x)
    d = x
    # error happens when x is negative
    print('n', n, 'e', e, 'd', d)
    return (n, e), (n, d)
def is_prime_Fermat(n, t=1):
    flag = True
    for _ in range(t):
        b = 2
        while ext_gcd(b, n)[0] != 1:
            b = random.randint(3, n - 1)
        r = exp_mod(b, n - 1, n)
        if r != 1:   
            flag = False
    if flag:
        # print("根据Fermat素性检验,%d为素数"%n)
        return 1
    else:
        # print("根据Fermat素性检验,%d为合数"%n)
        return 0
Esempio n. 10
0
def gen_key(p, q):
    n = p * q
    fy = (p - 1) * (q - 1)  # 计算与n互质的整数个数 欧拉函数
    e = 65537  # 选取e   一般选取65537
    # generate d
    a = e
    b = fy
    r, x, y = ext_gcd(a, b)
    # 计算出的x不能是负数,如果是负数,说明p、q、e选取失败,不过可以把x加上fy,使x为正数,才能计算。
    if x < 0:
        x = x + fy
    d = x
    # 返回:   公钥     私钥
    print("n:", n)
    print("d:", d)
    return (n, e), (n, d)
Esempio n. 11
0
def gen_key(p, q):
    n = p * q
    phi = (p - 1) * (q - 1)  # 算phi(n)

    # 選e

    while (True):
        e = int(input("請輸入e (e與phi(n)必須互質)\n"))
        if (gcd(e, phi) != 1):
            print("e與phi(n)沒有互質,請重新輸入")
            continue
        else:
            break

    r, x, y = ext_gcd(e, phi)  # 用擴展歐幾里得算 d = e^-1 mod phi(n)
    d = x
    if (d < 0): d += phi
    return (n, e), (n, d)  #回傳公鑰<n,e>、私鑰<n,d>
Esempio n. 12
0
d = -1

# do until d is > 0
while (d < 0):
    print('find p')
    p = makePrime(1024)

    print('find q')
    q = makePrime(1024)
    n = p * q
    r = (p - 1) * (q - 1)

    print('find d')
    e = 65537

    a, d, b = ext_gcd(e, r)

# write publicKey(n,e) to text file
with open('./publicKey.txt', 'wb') as f:
    f.write(str(n))
    f.write('\n')
    f.write(str(e))

# write privateKey(n,d) to text file
with open('./privateKey.txt', 'wb') as f:
    f.write(str(n))
    f.write('\n')
    f.write(str(d))

print('finish')