class DeleteStaleTestBucketsTest(TestCase): @classmethod def setUpClass(cls): print('**************************************************************') print(cls.__name__) print('**************************************************************') def setUp(self): self.project_id = app_identity.get_application_id() self.sc = StorageClient(self.project_id) self.first_n = 3 self.now = datetime.now(timezone.utc) @patch('google.cloud.storage.bucket.Bucket.delete') def test_main(self, mock_delete_bucket): buckets_to_delete = delete_stale_test_buckets.main(self.first_n) for bucket_name in buckets_to_delete: bucket_created = self.sc.get_bucket(bucket_name).time_created # Assert: Bucket is stale (1: 90 days or older) self.assertGreaterEqual((self.now - bucket_created).days, 90) # Assert: Bucket is stale (2: Empty(=no blobs)) self.assertEqual(len(list(self.sc.list_blobs(bucket_name))), 0)
def setUp(self): self.hpo_bucket = gcs_utils.get_hpo_bucket(FAKE_HPO_ID) self.dataset = bq_utils.get_dataset_id() self.project_id = app_identity.get_application_id() self.storage_client = StorageClient(self.project_id) self.storage_client.empty_bucket(self.hpo_bucket) test_util.delete_all_tables(self.dataset)
def setUp(self): self.project_id = app_identity.get_application_id() self.dataset_id = bq_utils.get_dataset_id() self.bucket: str = gcs_utils.get_drc_bucket() self.storage_client = StorageClient(self.project_id) self.storage_client.empty_bucket(self.bucket) test_util.delete_all_tables(self.dataset_id) self.load_test_data(hpo_id=HPO_NYC)
def setUp(self): self.hpo_bucket = gcs_utils.get_hpo_bucket(FAKE_HPO_ID) self.person_table_id = bq_utils.get_table_id(FAKE_HPO_ID, common.PERSON) self.dataset_id = bq_utils.get_dataset_id() test_util.delete_all_tables(self.dataset_id) self.project_id = app_identity.get_application_id() self.TEST_FIELDS = [ { "type": "integer", "name": "integer_field", "mode": "required", "description": "An integer field" }, # DC-586 Import RDR rules should support null fields { "type": "integer", "name": "nullable_integer_field", "mode": "nullable", "description": "A nullable integer field" }, { "type": "string", "name": "string_field", "mode": "required", "description": "A string field" }, { "type": "date", "name": "date_field", "mode": "required", "description": "A date field" }, { "type": "timestamp", "name": "timestamp_field", "mode": "required", "description": "A timestamp field" }, { "type": "boolean", "name": "boolean_field", "mode": "required", "description": "A boolean field" }, { "type": "float", "name": "float_field", "mode": "required", "description": "A float field" } ] self.DT_FORMAT = '%Y-%m-%d %H:%M:%S' self.client = StorageClient(self.project_id) self.client.empty_bucket(self.hpo_bucket)
class AchillesTest(unittest.TestCase): @classmethod def setUpClass(cls): print('**************************************************************') print(cls.__name__) print('**************************************************************') def setUp(self): self.hpo_bucket = gcs_utils.get_hpo_bucket(test_util.FAKE_HPO_ID) self.project_id = app_identity.get_application_id() self.storage_client = StorageClient(self.project_id) self.storage_client.empty_bucket(self.hpo_bucket) test_util.delete_all_tables(bq_utils.get_dataset_id()) def tearDown(self): test_util.delete_all_tables(bq_utils.get_dataset_id()) self.storage_client.empty_bucket(self.hpo_bucket) def _load_dataset(self): for cdm_table in resources.CDM_TABLES: cdm_filename: str = f'{cdm_table}.csv' cdm_filepath: str = os.path.join(test_util.FIVE_PERSONS_PATH, cdm_filename) bucket = self.storage_client.get_bucket(self.hpo_bucket) cdm_blob = bucket.blob(cdm_filename) if os.path.exists(cdm_filepath): cdm_blob.upload_from_filename(cdm_filepath) else: cdm_blob.upload_from_string('dummy\n') bq_utils.load_cdm_csv(test_util.FAKE_HPO_ID, cdm_table) def test_load_analyses(self): achilles.create_tables(test_util.FAKE_HPO_ID, True) achilles.load_analyses(test_util.FAKE_HPO_ID) cmd = sql_wrangle.qualify_tables( 'SELECT DISTINCT(analysis_id) FROM %sachilles_analysis' % sql_wrangle.PREFIX_PLACEHOLDER, test_util.FAKE_HPO_ID) result = bq_utils.query(cmd) self.assertEqual(ACHILLES_LOOKUP_COUNT, int(result['totalRows'])) def test_run_analyses(self): # Long-running test self._load_dataset() achilles.create_tables(test_util.FAKE_HPO_ID, True) achilles.load_analyses(test_util.FAKE_HPO_ID) achilles.run_analyses(hpo_id=test_util.FAKE_HPO_ID) cmd = sql_wrangle.qualify_tables( 'SELECT COUNT(1) FROM %sachilles_results' % sql_wrangle.PREFIX_PLACEHOLDER, test_util.FAKE_HPO_ID) result = bq_utils.query(cmd) self.assertEqual(int(result['rows'][0]['f'][0]['v']), ACHILLES_RESULTS_COUNT)
def bucket_access_configured(bucket_name: str) -> bool: """ Determine if the service account has appropriate permissions on the bucket :param bucket_name: identifies the GCS bucket :return: True if the service account has appropriate permissions, False otherwise """ project_id = app_identity.get_application_id() sc = StorageClient(project_id) bucket = sc.get_bucket(bucket_name) permissions: list = bucket.test_iam_permissions("storage.objects.create") return len(permissions) >= 1
class GcsUtilsTest(unittest.TestCase): @classmethod def setUpClass(cls): print('**************************************************************') print(cls.__name__) print('**************************************************************') def setUp(self): self.hpo_bucket = gcs_utils.get_hpo_bucket(FAKE_HPO_ID) self.gcs_path = '/'.join([self.hpo_bucket, 'dummy']) self.project_id = app_identity.get_application_id() self.storage_client = StorageClient(self.project_id) self.storage_client.empty_bucket(self.hpo_bucket) def test_upload_object(self): bucket_items = gcs_utils.list_bucket(self.hpo_bucket) self.assertEqual(len(bucket_items), 0) with open(FIVE_PERSONS_PERSON_CSV, 'rb') as fp: gcs_utils.upload_object(self.hpo_bucket, 'person.csv', fp) bucket_items = gcs_utils.list_bucket(self.hpo_bucket) self.assertEqual(len(bucket_items), 1) bucket_item = bucket_items[0] self.assertEqual(bucket_item['name'], 'person.csv') def test_get_object(self): with open(FIVE_PERSONS_PERSON_CSV, 'r') as fp: expected = fp.read() with open(FIVE_PERSONS_PERSON_CSV, 'rb') as fp: gcs_utils.upload_object(self.hpo_bucket, 'person.csv', fp) result = gcs_utils.get_object(self.hpo_bucket, 'person.csv') self.assertEqual(expected, result) def test_get_metadata_on_existing_file(self): expected_file_name = 'person.csv' with open(FIVE_PERSONS_PERSON_CSV, 'rb') as fp: gcs_utils.upload_object(self.hpo_bucket, expected_file_name, fp) metadata = gcs_utils.get_metadata(self.hpo_bucket, expected_file_name) self.assertIsNotNone(metadata) self.assertEqual(metadata['name'], expected_file_name) def test_get_metadata_on_not_existing_file(self): expected = 100 actual = gcs_utils.get_metadata(self.hpo_bucket, 'this_file_does_not_exist', expected) self.assertEqual(expected, actual) def test_list_bucket_404_when_bucket_does_not_exist(self): with self.assertRaises(HttpError) as cm: gcs_utils.list_bucket('some-bucket-which-does-not-exist-123') self.assertEqual(cm.exception.resp.status, 404) def tearDown(self): self.storage_client.empty_bucket(self.hpo_bucket)
def setUp(self): self.project_id = app_identity.get_application_id() self.client = StorageClient(self.project_id) self.bucket_name: str = os.environ.get('BUCKET_NAME_FAKE') self.prefix: str = 'prefix' self.data: bytes = b'bytes' # NOTE: this needs to be in sorted order self.sub_prefixes: tuple = (f'{self.prefix}/a', f'{self.prefix}/b', f'{self.prefix}/c', f'{self.prefix}/d') self.client.empty_bucket(self.bucket_name) self._stage_bucket()
def main(first_n): pipeline_logging.configure(logging.INFO, add_console_handler=True) project_id = app_identity.get_application_id() sc = StorageClient(project_id) _check_project(sc) buckets_to_delete = _filter_stale_buckets(sc, first_n) for stale_bucket in buckets_to_delete: LOGGER.info(f"Running - sc.get_bucket({stale_bucket}).delete()") sc.get_bucket(stale_bucket).delete() return buckets_to_delete
def setUp(self): self.project_id = app_identity.get_application_id() self.hpo_id = test_util.FAKE_HPO_ID self.bucket = os.environ.get(f'BUCKET_NAME_FAKE') self.site_bucket = 'test_bucket' self.folder_1 = '2019-01-01-v1/' self.folder_2 = '2019-02-02-v2/' self.client = StorageClient(self.project_id) self.folder_prefix_1 = f'{self.hpo_id}/{self.site_bucket}/{self.folder_1}' self.folder_prefix_2 = f'{self.hpo_id}/{self.site_bucket}/{self.folder_2}' self.pids = [17, 20] self.skip_pids = [10, 25] self.project_id = 'project_id' self.sandbox_dataset_id = os.environ.get('UNIONED_DATASET_ID') self.pid_table_id = 'pid_table' self.gcs_bucket = self.client.bucket(self.bucket) self.client.empty_bucket(self.gcs_bucket)
def setUp(self): self.project_id = bq_utils.app_identity.get_application_id() self.hpo_ids = [PITT_HPO_ID, NYC_HPO_ID, EXCLUDED_HPO_ID] self.input_dataset_id = bq_utils.get_dataset_id() self.output_dataset_id = bq_utils.get_unioned_dataset_id() self.storage_client = StorageClient(self.project_id) self.tearDown() # TODO Generalize to work for all foreign key references # Collect all primary key fields in CDM tables mapped_fields = [] for table in cdm.tables_to_map(): field = table + '_id' mapped_fields.append(field) self.mapped_fields = mapped_fields self.implemented_foreign_keys = [ eu_constants.VISIT_OCCURRENCE_ID, eu_constants.VISIT_DETAIL_ID, eu_constants.CARE_SITE_ID, eu_constants.LOCATION_ID ]
def setUp(self): self.hpo_id = test_util.FAKE_HPO_ID self.hpo_bucket = gcs_utils.get_hpo_bucket(self.hpo_id) self.project_id = app_identity.get_application_id() self.rdr_dataset_id = bq_utils.get_rdr_dataset_id() mock_get_hpo_name = mock.patch('validation.main.get_hpo_name') self.mock_get_hpo_name = mock_get_hpo_name.start() self.mock_get_hpo_name.return_value = 'Fake HPO' self.addCleanup(mock_get_hpo_name.stop) self.bigquery_dataset_id = bq_utils.get_dataset_id() self.folder_prefix = '2019-01-01-v1/' self.storage_client = StorageClient(self.project_id) self.storage_bucket = self.storage_client.get_bucket(self.hpo_bucket) self.storage_client.empty_bucket(self.hpo_bucket) test_util.delete_all_tables(self.bigquery_dataset_id) self._create_drug_class_table(self.bigquery_dataset_id)
def setUp(self): self.hpo_bucket = gcs_utils.get_hpo_bucket(FAKE_HPO_ID) self.project_id = app_identity.get_application_id() self.dataset_id = bq_utils.get_dataset_id() self.rdr_dataset_id = bq_utils.get_rdr_dataset_id() self.folder_prefix = '2019-01-01/' test_util.delete_all_tables(self.dataset_id) self.storage_client = StorageClient(self.project_id) self.storage_client.empty_bucket(self.hpo_bucket) self.client = bq.get_client(self.project_id) mock_get_hpo_name = mock.patch('validation.main.get_hpo_name') self.mock_get_hpo_name = mock_get_hpo_name.start() self.mock_get_hpo_name.return_value = 'Fake HPO' self.addCleanup(mock_get_hpo_name.stop) self._load_data()
def process_hpo_copy(hpo_id): """copies over files from hpo bucket to drc bucket :hpo_id: hpo from which to copy """ try: project_id = app_identity.get_application_id() storage_client = StorageClient(project_id) hpo_bucket = storage_client.get_hpo_bucket(hpo_id) drc_private_bucket = storage_client.get_drc_bucket() source_bucket = storage_client.bucket(hpo_bucket) destination_bucket = storage_client.bucket(drc_private_bucket) bucket_items = list_bucket(hpo_bucket) ignored_items = 0 filtered_bucket_items = [] for item in bucket_items: item_root = item['name'].split('/')[0] + '/' if item_root.lower() in common.IGNORE_DIRECTORIES: ignored_items += 1 else: filtered_bucket_items.append(item) logging.info(f"Ignoring {ignored_items} items in {hpo_bucket}") prefix = f'{hpo_id}/{hpo_bucket}/' for item in filtered_bucket_items: item_name = item['name'] source_blob = source_bucket.get_blob(item_name) destination_blob_name = f'{prefix}{item_name}' source_bucket.copy_blob(source_blob, destination_bucket, destination_blob_name) except BucketDoesNotExistError as bucket_error: bucket = bucket_error.bucket # App engine converts an env var set but left empty to be the string 'None' if bucket and bucket.lower() != 'none': logging.warning( f"Bucket '{bucket}' configured for hpo_id '{hpo_id}' does not exist" ) else: logging.info( f"Bucket '{bucket}' configured for hpo_id '{hpo_id}' is empty/unset" ) except HttpError as http_error: message = ( f"Failed to copy files for hpo_id '{hpo_id}' due to the following " f"HTTP error: {http_error.content.decode()}") logging.exception(message)
def setUp(self): self.hpo_bucket = gcs_utils.get_hpo_bucket(FAKE_HPO_ID) self.project_id = app_identity.get_application_id() self.storage_client = StorageClient(self.project_id)
class EhrUnionTest(unittest.TestCase): @classmethod def setUpClass(cls): print('**************************************************************') print(cls.__name__) print('**************************************************************') def setUp(self): self.project_id = bq_utils.app_identity.get_application_id() self.hpo_ids = [PITT_HPO_ID, NYC_HPO_ID, EXCLUDED_HPO_ID] self.input_dataset_id = bq_utils.get_dataset_id() self.output_dataset_id = bq_utils.get_unioned_dataset_id() self.storage_client = StorageClient(self.project_id) self.tearDown() # TODO Generalize to work for all foreign key references # Collect all primary key fields in CDM tables mapped_fields = [] for table in cdm.tables_to_map(): field = table + '_id' mapped_fields.append(field) self.mapped_fields = mapped_fields self.implemented_foreign_keys = [ eu_constants.VISIT_OCCURRENCE_ID, eu_constants.VISIT_DETAIL_ID, eu_constants.CARE_SITE_ID, eu_constants.LOCATION_ID ] def _empty_hpo_buckets(self): for hpo_id in self.hpo_ids: bucket = gcs_utils.get_hpo_bucket(hpo_id) self.storage_client.empty_bucket(bucket) def _create_hpo_table(self, hpo_id, table, dataset_id): table_id = bq_utils.get_table_id(hpo_id, table) bq_utils.create_table(table_id, resources.fields_for(table), dataset_id=dataset_id) return table_id def _load_datasets(self): """ Load five persons data for nyc and pitt test hpo and rdr data for the excluded_hpo # expected_tables is for testing output # it maps table name to list of expected records ex: "unioned_ehr_visit_occurrence" -> [{}, {}, ...] """ expected_tables: dict = {} running_jobs: list = [] for cdm_table in resources.CDM_TABLES: output_table: str = ehr_union.output_table_for(cdm_table) expected_tables[output_table] = [] for hpo_id in self.hpo_ids: # upload csv into hpo bucket cdm_filename: str = f'{cdm_table}.csv' if hpo_id == NYC_HPO_ID: cdm_filepath: str = os.path.join( test_util.FIVE_PERSONS_PATH, cdm_filename) elif hpo_id == PITT_HPO_ID: cdm_filepath: str = os.path.join( test_util.PITT_FIVE_PERSONS_PATH, cdm_filename) elif hpo_id == EXCLUDED_HPO_ID: if cdm_table in [ 'observation', 'person', 'visit_occurrence' ]: cdm_filepath: str = os.path.join( test_util.RDR_PATH, cdm_filename) bucket: str = gcs_utils.get_hpo_bucket(hpo_id) gcs_bucket = self.storage_client.get_bucket(bucket) if os.path.exists(cdm_filepath): csv_rows = resources.csv_to_list(cdm_filepath) cdm_blob = gcs_bucket.blob(cdm_filename) cdm_blob.upload_from_filename(cdm_filepath) else: # results in empty table cdm_blob = gcs_bucket.blob(cdm_filename) cdm_blob.upload_from_string('dummy\n') csv_rows: list = [] # load table from csv result = bq_utils.load_cdm_csv(hpo_id, cdm_table) running_jobs.append(result['jobReference']['jobId']) if hpo_id != EXCLUDED_HPO_ID: expected_tables[output_table] += list(csv_rows) # ensure person to observation output is as expected output_table_person: str = ehr_union.output_table_for(common.PERSON) output_table_observation: str = ehr_union.output_table_for( common.OBSERVATION) expected_tables[output_table_observation] += 4 * expected_tables[ output_table_person] incomplete_jobs: list = bq_utils.wait_on_jobs(running_jobs) if len(incomplete_jobs) > 0: message: str = "Job id(s) %s failed to complete" % incomplete_jobs raise RuntimeError(message) self.expected_tables = expected_tables def _table_has_clustering(self, table_info): clustering = table_info.get('clustering') self.assertIsNotNone(clustering) fields = clustering.get('fields') self.assertSetEqual(set(fields), {'person_id'}) time_partitioning = table_info.get('timePartitioning') self.assertIsNotNone(time_partitioning) tpe = time_partitioning.get('type') self.assertEqual(tpe, 'DAY') def _dataset_tables(self, dataset_id): """ Get names of existing tables in specified dataset :param dataset_id: identifies the dataset :return: list of table_ids """ tables = bq_utils.list_tables(dataset_id) return [table['tableReference']['tableId'] for table in tables] @mock.patch('bq_utils.get_hpo_info') def test_union_ehr(self, mock_hpo_info): self._load_datasets() input_tables_before = set(self._dataset_tables(self.input_dataset_id)) # output should be mapping tables and cdm tables output_tables_before = self._dataset_tables(self.output_dataset_id) mapping_tables = [ ehr_union.mapping_table_for(table) for table in cdm.tables_to_map() + [combine_ehr_rdr.PERSON_TABLE] ] output_cdm_tables = [ ehr_union.output_table_for(table) for table in resources.CDM_TABLES ] expected_output = set(output_tables_before + mapping_tables + output_cdm_tables) mock_hpo_info.return_value = [{ 'hpo_id': hpo_id } for hpo_id in self.hpo_ids] # perform ehr union ehr_union.main(self.input_dataset_id, self.output_dataset_id, self.project_id, [EXCLUDED_HPO_ID]) # input dataset should be unchanged input_tables_after = set(self._dataset_tables(self.input_dataset_id)) self.assertSetEqual(input_tables_before, input_tables_after) # fact_relationship from pitt hpo_unique_identifiers = ehr_union.get_hpo_offsets(self.hpo_ids) pitt_offset = hpo_unique_identifiers[PITT_HPO_ID] q = '''SELECT fact_id_1, fact_id_2 FROM `{input_dataset}.{hpo_id}_fact_relationship` where domain_concept_id_1 = 21 and domain_concept_id_2 = 21'''.format( input_dataset=self.input_dataset_id, hpo_id=PITT_HPO_ID) response = bq_utils.query(q) result = bq_utils.response2rows(response) expected_fact_id_1 = result[0]["fact_id_1"] + pitt_offset expected_fact_id_2 = result[0]["fact_id_2"] + pitt_offset q = '''SELECT fr.fact_id_1, fr.fact_id_2 FROM `{dataset_id}.unioned_ehr_fact_relationship` fr join `{dataset_id}._mapping_measurement` mm on fr.fact_id_1 = mm.measurement_id and mm.src_hpo_id = "{hpo_id}"'''.format( dataset_id=self.output_dataset_id, hpo_id=PITT_HPO_ID) response = bq_utils.query(q) result = bq_utils.response2rows(response) actual_fact_id_1, actual_fact_id_2 = result[0]["fact_id_1"], result[0][ "fact_id_2"] self.assertEqual(expected_fact_id_1, actual_fact_id_1) self.assertEqual(expected_fact_id_2, actual_fact_id_2) # mapping tables tables_to_map = cdm.tables_to_map() for table_to_map in tables_to_map: mapping_table = ehr_union.mapping_table_for(table_to_map) expected_fields = { 'src_table_id', 'src_%s_id' % table_to_map, '%s_id' % table_to_map, 'src_hpo_id', 'src_dataset_id' } mapping_table_info = bq_utils.get_table_info( mapping_table, dataset_id=self.output_dataset_id) mapping_table_fields = mapping_table_info.get('schema', dict()).get( 'fields', []) actual_fields = set([f['name'] for f in mapping_table_fields]) message = 'Table %s has fields %s when %s expected' % ( mapping_table, actual_fields, expected_fields) self.assertSetEqual(expected_fields, actual_fields, message) result_table = ehr_union.output_table_for(table_to_map) expected_num_rows = len(self.expected_tables[result_table]) actual_num_rows = int(mapping_table_info.get('numRows', -1)) message = 'Table %s has %s rows when %s expected' % ( mapping_table, actual_num_rows, expected_num_rows) self.assertEqual(expected_num_rows, actual_num_rows, message) # check for each output table for table_name in resources.CDM_TABLES: # output table exists and row count is sum of those submitted by hpos result_table = ehr_union.output_table_for(table_name) expected_rows = self.expected_tables[result_table] expected_count = len(expected_rows) table_info = bq_utils.get_table_info( result_table, dataset_id=self.output_dataset_id) actual_count = int(table_info.get('numRows')) msg = 'Unexpected row count in table {result_table} after ehr union'.format( result_table=result_table) self.assertEqual(expected_count, actual_count, msg) # TODO Compare table rows to expected accounting for the new ids and ignoring field types # q = 'SELECT * FROM {dataset}.{table}'.format(dataset=self.output_dataset_id, table=result_table) # query_response = bq_utils.query(q) # actual_rows = bq_utils.response2rows(query_response) # output table has clustering on person_id where applicable fields = resources.fields_for(table_name) field_names = [field['name'] for field in fields] if 'person_id' in field_names: self._table_has_clustering(table_info) actual_output = set(self._dataset_tables(self.output_dataset_id)) self.assertSetEqual(expected_output, actual_output) # explicit check that output person_ids are same as input nyc_person_table_id = bq_utils.get_table_id(NYC_HPO_ID, 'person') pitt_person_table_id = bq_utils.get_table_id(PITT_HPO_ID, 'person') q = '''SELECT DISTINCT person_id FROM ( SELECT person_id FROM {dataset_id}.{nyc_person_table_id} UNION ALL SELECT person_id FROM {dataset_id}.{pitt_person_table_id} ) ORDER BY person_id ASC'''.format( dataset_id=self.input_dataset_id, nyc_person_table_id=nyc_person_table_id, pitt_person_table_id=pitt_person_table_id) response = bq_utils.query(q) expected_rows = bq_utils.response2rows(response) person_table_id = ehr_union.output_table_for('person') q = '''SELECT DISTINCT person_id FROM {dataset_id}.{table_id} ORDER BY person_id ASC'''.format( dataset_id=self.output_dataset_id, table_id=person_table_id) response = bq_utils.query(q) actual_rows = bq_utils.response2rows(response) self.assertCountEqual(expected_rows, actual_rows) # TODO Figure out a good way to test query structure # One option may be for each query under test to generate an abstract syntax tree # (using e.g. https://github.com/andialbrecht/sqlparse) and compare it to an expected tree fragment. # Functions below are for reference def convert_ehr_person_to_observation(self, person_row): obs_rows = [] dob_row = { 'observation_concept_id': eu_constants.DOB_CONCEPT_ID, 'observation_source_value': None, 'value_as_string': person_row['birth_datetime'], 'person_id': person_row['person_id'], 'observation_date': person_row['birth_date'], 'value_as_concept_id': None } gender_row = { 'observation_concept_id': eu_constants.GENDER_CONCEPT_ID, 'observation_source_value': person_row['gender_source_value'], 'value_as_string': None, 'person_id': person_row['person_id'], 'observation_date': person_row['birth_date'], 'value_as_concept_id': person_row['gender_concept_id'] } race_row = { 'observation_concept_id': eu_constants.RACE_CONCEPT_ID, 'observation_source_value': person_row['race_source_value'], 'value_as_string': None, 'person_id': person_row['person_id'], 'observation_date': person_row['birth_date'], 'value_as_concept_id': person_row['race_concept_id'] } ethnicity_row = { 'observation_concept_id': eu_constants.ETHNICITY_CONCEPT_ID, 'observation_source_value': person_row['ethnicity_source_value'], 'value_as_string': None, 'person_id': person_row['person_id'], 'observation_date': person_row['birth_date'], 'value_as_concept_id': person_row['ethnicity_concept_id'] } obs_rows.extend([dob_row, gender_row, race_row, ethnicity_row]) return obs_rows @mock.patch('bq_utils.get_hpo_info') @mock.patch('resources.CDM_TABLES', [ common.PERSON, common.OBSERVATION, common.LOCATION, common.CARE_SITE, common.VISIT_OCCURRENCE, common.VISIT_DETAIL ]) @mock.patch('cdm.tables_to_map') def test_ehr_person_to_observation(self, mock_tables_map, mock_hpo_info): # ehr person table converts to observation records self._load_datasets() mock_tables_map.return_value = [ common.OBSERVATION, common.LOCATION, common.CARE_SITE, common.VISIT_OCCURRENCE, common.VISIT_DETAIL ] mock_hpo_info.return_value = [{ 'hpo_id': hpo_id } for hpo_id in self.hpo_ids] # perform ehr union ehr_union.main(self.input_dataset_id, self.output_dataset_id, self.project_id) person_query = ''' SELECT p.person_id, gender_concept_id, gender_source_value, race_concept_id, race_source_value, CAST(birth_datetime AS STRING) AS birth_datetime, ethnicity_concept_id, ethnicity_source_value, EXTRACT(DATE FROM birth_datetime) AS birth_date FROM {output_dataset_id}.unioned_ehr_person p JOIN {output_dataset_id}._mapping_person AS mp ON mp.person_id = p.person_id '''.format(output_dataset_id=self.output_dataset_id) person_response = bq_utils.query(person_query) person_rows = bq_utils.response2rows(person_response) # construct dicts of expected values expected = [] for person_row in person_rows: expected.extend(self.convert_ehr_person_to_observation(person_row)) # query for observation table records query = ''' SELECT person_id, observation_concept_id, value_as_concept_id, value_as_string, observation_source_value, observation_date FROM {output_dataset_id}.unioned_ehr_observation AS obs WHERE obs.observation_concept_id IN ({gender_concept_id},{race_concept_id},{dob_concept_id}, {ethnicity_concept_id}) ''' obs_query = query.format( output_dataset_id=self.output_dataset_id, gender_concept_id=eu_constants.GENDER_CONCEPT_ID, race_concept_id=eu_constants.RACE_CONCEPT_ID, dob_concept_id=eu_constants.DOB_CONCEPT_ID, ethnicity_concept_id=eu_constants.ETHNICITY_CONCEPT_ID) obs_response = bq_utils.query(obs_query) obs_rows = bq_utils.response2rows(obs_response) actual = obs_rows self.assertCountEqual(expected, actual) @mock.patch('bq_utils.get_hpo_info') @mock.patch('resources.CDM_TABLES', [ common.PERSON, common.OBSERVATION, common.LOCATION, common.CARE_SITE, common.VISIT_OCCURRENCE, common.VISIT_DETAIL ]) @mock.patch('cdm.tables_to_map') def test_ehr_person_to_observation_counts(self, mock_tables_map, mock_hpo_info): self._load_datasets() mock_tables_map.return_value = [ common.OBSERVATION, common.LOCATION, common.CARE_SITE, common.VISIT_OCCURRENCE, common.VISIT_DETAIL ] mock_hpo_info.return_value = [{ 'hpo_id': hpo_id } for hpo_id in self.hpo_ids] # perform ehr union ehr_union.main(self.input_dataset_id, self.output_dataset_id, self.project_id) q_person = ''' SELECT p.* FROM {output_dataset_id}.unioned_ehr_person AS p JOIN {output_dataset_id}._mapping_person AS mp ON mp.person_id = p.person_id '''.format(output_dataset_id=self.output_dataset_id) person_response = bq_utils.query(q_person) person_rows = bq_utils.response2rows(person_response) q_observation = ''' SELECT * FROM {output_dataset_id}.unioned_ehr_observation WHERE observation_type_concept_id = 38000280 '''.format(output_dataset_id=self.output_dataset_id) # observation should contain 4 records of type EHR per person per hpo expected = len(person_rows) * 4 observation_response = bq_utils.query(q_observation) observation_rows = bq_utils.response2rows(observation_response) actual = len(observation_rows) self.assertEqual( actual, expected, 'Expected %s EHR person records in observation but found %s' % (expected, actual)) def _test_table_hpo_subquery(self): # person is a simple select, no ids should be mapped person = ehr_union.table_hpo_subquery('person', hpo_id=NYC_HPO_ID, input_dataset_id='input', output_dataset_id='output') # _mapping_visit_occurrence(src_table_id, src_visit_occurrence_id, visit_occurrence_id) # visit_occurrence_id should be mapped visit_occurrence = ehr_union.table_hpo_subquery( 'visit_occurrence', hpo_id=NYC_HPO_ID, input_dataset_id='input', output_dataset_id='output') # visit_occurrence_id and condition_occurrence_id should be mapped condition_occurrence = ehr_union.table_hpo_subquery( 'condition_occurrence', hpo_id=NYC_HPO_ID, input_dataset_id='input', output_dataset_id='output') def get_table_hpo_subquery_error(self, table, dataset_in, dataset_out): subquery = ehr_union.table_hpo_subquery(table, NYC_HPO_ID, dataset_in, dataset_out) # moz-sql-parser doesn't support the ROW_NUMBER() OVER() a analytical function of sql we are removing # that statement from the returned query for the parser be able to parse out the query without erroring out. subquery = re.sub( r",\s+ROW_NUMBER\(\) OVER \(PARTITION BY nm\..+?_id\) AS row_num", " ", subquery) # offset is being used as a column-name in note_nlp table. # Although, BigQuery does not throw any errors for this, moz_sql_parser indentifies as a SQL Keyword. # So, change required only in Test Script as a workaround. if 'offset,' in subquery: subquery = subquery.replace('offset,', '"offset",') stmt = moz_sql_parser.parse(subquery) # Sanity check it is a select statement if 'select' not in stmt: return SUBQUERY_FAIL_MSG.format(expr='query type', table=table, expected='select', actual=str(stmt), subquery=subquery) # Input table should be first in FROM expression actual_from = first_or_none( dpath.util.values(stmt, 'from/0/value/from/value') or dpath.util.values(stmt, 'from')) expected_from = dataset_in + '.' + bq_utils.get_table_id( NYC_HPO_ID, table) if expected_from != actual_from: return SUBQUERY_FAIL_MSG.format(expr='first object in FROM', table=table, expected=expected_from, actual=actual_from, subquery=subquery) # Ensure all key fields (primary or foreign) yield joins with their associated mapping tables # Note: ordering of joins in the subquery is assumed to be consistent with field order in the json file fields = resources.fields_for(table) id_field = table + '_id' key_ind = 0 expected_join = None actual_join = None for field in fields: if field['name'] in self.mapped_fields: # key_ind += 1 # TODO use this increment when we generalize solution for all foreign keys if field['name'] == id_field: # Primary key, mapping table associated with this one should be INNER joined key_ind += 1 expr = 'inner join on primary key' actual_join = first_or_none( dpath.util.values(stmt, 'from/%s/join/value' % key_ind)) expected_join = dataset_out + '.' + ehr_union.mapping_table_for( table) elif field['name'] in self.implemented_foreign_keys: # Foreign key, mapping table associated with the referenced table should be LEFT joined key_ind += 1 expr = 'left join on foreign key' # Visit_detail table has 'visit_occurrence' column after 'care_site', which is different from # other cdm tables, where 'visit_occurrence' comes before other foreign_keys. # The test expects the same order as other cmd tables, so the expected-query has # 'visit_occurrence' before 'care_site'. The following reorder is required to match the sequence # to the actual-query. if table == 'visit_detail' and key_ind == 2: stmt['from'][2], stmt['from'][3] = stmt['from'][ 3], stmt['from'][2] actual_join = first_or_none( dpath.util.values(stmt, 'from/%s/left join/value' % key_ind)) joined_table = field['name'].replace('_id', '') expected_join = dataset_out + '.' + ehr_union.mapping_table_for( joined_table) if expected_join != actual_join: return SUBQUERY_FAIL_MSG.format(expr=expr, table=table, expected=expected_join, actual=actual_join, subquery=subquery) def test_hpo_subquery(self): input_dataset_id = 'input' output_dataset_id = 'output' subquery_fails = [] # Key fields should be populated using associated mapping tables for table in resources.CDM_TABLES: # This condition is to exempt person table from table hpo sub query if table != common.PERSON: subquery_fail = self.get_table_hpo_subquery_error( table, input_dataset_id, output_dataset_id) if subquery_fail is not None: subquery_fails.append(subquery_fail) if len(subquery_fails) > 0: self.fail('\n\n'.join(subquery_fails)) def tearDown(self): self._empty_hpo_buckets() test_util.delete_all_tables(self.input_dataset_id) test_util.delete_all_tables(self.output_dataset_id)
def _validation_done(bucket, folder): project_id = app_identity.get_application_id() storage_client = StorageClient(project_id) bucket = storage_client.bucket(bucket) return Blob(bucket=bucket, name=f'{folder}{common.PROCESSED_TXT}').exists(storage_client)
class GcsClientTest(unittest.TestCase): @classmethod def setUpClass(cls): print('**************************************************************') print(cls.__name__) print('**************************************************************') def setUp(self): self.project_id = app_identity.get_application_id() self.client = StorageClient(self.project_id) self.bucket_name: str = os.environ.get('BUCKET_NAME_FAKE') self.prefix: str = 'prefix' self.data: bytes = b'bytes' # NOTE: this needs to be in sorted order self.sub_prefixes: tuple = (f'{self.prefix}/a', f'{self.prefix}/b', f'{self.prefix}/c', f'{self.prefix}/d') self.client.empty_bucket(self.bucket_name) self._stage_bucket() def test_get_bucket_items_metadata(self): items_metadata: list = self.client.get_bucket_items_metadata( self.bucket_name) actual_metadata: list = [item['name'] for item in items_metadata] expected_metadata: list = [ f'{prefix}/obj.txt' for prefix in self.sub_prefixes ] self.assertCountEqual(actual_metadata, expected_metadata) self.assertIsNotNone(items_metadata[0]['id']) def test_get_blob_metadata(self): bucket = self.client.get_bucket(self.bucket_name) blob_name: str = f'{self.sub_prefixes[0]}/obj.txt' blob = bucket.blob(blob_name) metadata: dict = self.client.get_blob_metadata(blob) self.assertIsNotNone(metadata['id']) self.assertIsNotNone(metadata['name']) self.assertIsNotNone(metadata['bucket']) self.assertIsNotNone(metadata['generation']) self.assertIsNotNone(metadata['metageneration']) self.assertIsNotNone(metadata['contentType']) self.assertIsNotNone(metadata['storageClass']) self.assertIsNotNone(metadata['size']) self.assertIsNotNone(metadata['md5Hash']) self.assertIsNotNone(metadata['crc32c']) self.assertIsNotNone(metadata['etag']) self.assertIsNotNone(metadata['updated']) self.assertIsNotNone(metadata['timeCreated']) self.assertEqual(metadata['name'], blob_name) self.assertEqual(metadata['size'], len(self.data)) def test_empty_bucket(self): self.client.empty_bucket(self.bucket_name) items: list = self.client.list_blobs(self.bucket_name) # check that bucket is empty self.assertCountEqual(items, []) def test_list_sub_prefixes(self): items: list = self.client.list_sub_prefixes(self.bucket_name, self.prefix) # Check same number of elements self.assertEqual(len(self.sub_prefixes), len(items)) # Check same prefix for index, item in enumerate(items): self.assertEqual(item[:-1], self.sub_prefixes[index]) def _stage_bucket(self): bucket = self.client.bucket(self.bucket_name) for sub_prefix in self.sub_prefixes: blob = bucket.blob(f'{sub_prefix}/obj.txt') blob.upload_from_string(self.data) def tearDown(self): self.client.empty_bucket(self.bucket_name)
def setUp(self): self.project_id = app_identity.get_application_id() self.sc = StorageClient(self.project_id) self.first_n = 3 self.now = datetime.now(timezone.utc)
class TopHeelErrorsTest(TestCase): @classmethod def setUpClass(cls): print('**************************************************************') print(cls.__name__) print('**************************************************************') def setUp(self): self.project_id = app_identity.get_application_id() self.dataset_id = bq_utils.get_dataset_id() self.bucket: str = gcs_utils.get_drc_bucket() self.storage_client = StorageClient(self.project_id) self.storage_client.empty_bucket(self.bucket) test_util.delete_all_tables(self.dataset_id) self.load_test_data(hpo_id=HPO_NYC) def load_test_data(self, hpo_id: str = None): """ Load to bq test achilles heel results data from csv file :param hpo_id: if specified, prefix to use on csv test file and bq table, otherwise no prefix is used :return: contents of the file as list of objects """ table_name: str = common.ACHILLES_HEEL_RESULTS if hpo_id is not None: table_id: str = bq_utils.get_table_id(hpo_id, table_name) else: table_id: str = table_name test_file_name: str = f'{table_id}.csv' test_file_path: str = os.path.join(test_util.TEST_DATA_PATH, test_file_name) target_bucket = self.storage_client.get_bucket(self.bucket) test_blob = target_bucket.blob(test_file_name) test_blob.upload_from_filename(test_file_path) gcs_path: str = f'gs://{self.bucket}/{test_file_name}' load_results = bq_utils.load_csv(table_name, gcs_path, self.project_id, self.dataset_id, table_id) job_id = load_results['jobReference']['jobId'] bq_utils.wait_on_jobs([job_id]) return resources.csv_to_list(test_file_path) def test_top_heel_errors_no_hpo_prefix(self): rows = self.load_test_data() for row in rows: row[FIELD_DATASET_NAME] = self.dataset_id errors = top_n_errors(rows) expected_results = comparison_view(errors) dataset_errors = top_heel_errors(self.project_id, self.dataset_id) actual_results = comparison_view(dataset_errors) self.assertCountEqual(actual_results, expected_results) @mock.patch('tools.top_heel_errors.get_hpo_ids') def test_top_heel_errors_all_hpo(self, mock_hpo_ids): hpo_ids = [HPO_NYC, HPO_PITT] mock_hpo_ids.return_value = hpo_ids expected_results = [] for hpo_id in [HPO_NYC, HPO_PITT]: rows = self.load_test_data(hpo_id) for row in rows: row[FIELD_DATASET_NAME] = hpo_id errors = top_n_errors(rows) expected_results += comparison_view(errors) dataset_errors = top_heel_errors(self.project_id, self.dataset_id, all_hpo=True) actual_results = comparison_view(dataset_errors) self.assertCountEqual(actual_results, expected_results) def tearDown(self): self.storage_client.empty_bucket(self.bucket) test_util.delete_all_tables(self.dataset_id)
def setUp(self): self.hpo_bucket = gcs_utils.get_hpo_bucket(FAKE_HPO_ID) self.gcs_path = '/'.join([self.hpo_bucket, 'dummy']) self.project_id = app_identity.get_application_id() self.storage_client = StorageClient(self.project_id) self.storage_client.empty_bucket(self.hpo_bucket)
class ValidationMainTest(unittest.TestCase): @classmethod def setUpClass(cls): print('**************************************************************') print(cls.__name__) print('**************************************************************') def setUp(self): self.hpo_id = test_util.FAKE_HPO_ID self.hpo_bucket = gcs_utils.get_hpo_bucket(self.hpo_id) self.project_id = app_identity.get_application_id() self.rdr_dataset_id = bq_utils.get_rdr_dataset_id() mock_get_hpo_name = mock.patch('validation.main.get_hpo_name') self.mock_get_hpo_name = mock_get_hpo_name.start() self.mock_get_hpo_name.return_value = 'Fake HPO' self.addCleanup(mock_get_hpo_name.stop) self.bigquery_dataset_id = bq_utils.get_dataset_id() self.folder_prefix = '2019-01-01-v1/' self.storage_client = StorageClient(self.project_id) self.storage_bucket = self.storage_client.get_bucket(self.hpo_bucket) self.storage_client.empty_bucket(self.hpo_bucket) test_util.delete_all_tables(self.bigquery_dataset_id) self._create_drug_class_table(self.bigquery_dataset_id) @staticmethod def _create_drug_class_table(bigquery_dataset_id): table_name = 'drug_class' fields = [{ "type": "integer", "name": "concept_id", "mode": "required" }, { "type": "string", "name": "concept_name", "mode": "required" }, { "type": "string", "name": "drug_class_name", "mode": "required" }] bq_utils.create_table(table_id=table_name, fields=fields, drop_existing=True, dataset_id=bigquery_dataset_id) bq_utils.query(q=main_consts.DRUG_CLASS_QUERY.format( dataset_id=bigquery_dataset_id), use_legacy_sql=False, destination_table_id='drug_class', retry_count=bq_consts.BQ_DEFAULT_RETRY_COUNT, write_disposition='WRITE_TRUNCATE', destination_dataset_id=bigquery_dataset_id) # ensure concept ancestor table exists if not bq_utils.table_exists(common.CONCEPT_ANCESTOR): bq_utils.create_standard_table(common.CONCEPT_ANCESTOR, common.CONCEPT_ANCESTOR) q = """INSERT INTO {dataset}.concept_ancestor SELECT * FROM {vocab}.concept_ancestor""".format( dataset=bigquery_dataset_id, vocab=common.VOCABULARY_DATASET) bq_utils.query(q) def table_has_clustering(self, table_info): clustering = table_info.get('clustering') self.assertIsNotNone(clustering) fields = clustering.get('fields') self.assertSetEqual(set(fields), {'person_id'}) time_partitioning = table_info.get('timePartitioning') self.assertIsNotNone(time_partitioning) tpe = time_partitioning.get('type') self.assertEqual(tpe, 'DAY') def test_all_files_unparseable_output(self): # TODO possible bug: if no pre-existing table, results in bq table not found error for cdm_table in common.SUBMISSION_FILES: cdm_blob = self.storage_bucket.blob( f'{self.folder_prefix}{cdm_table}') cdm_blob.upload_from_string('.\n .') bucket_items = gcs_utils.list_bucket(self.hpo_bucket) folder_items = main.get_folder_items(bucket_items, self.folder_prefix) expected_results = [(f, 1, 0, 0) for f in common.SUBMISSION_FILES] r = main.validate_submission(self.hpo_id, self.hpo_bucket, folder_items, self.folder_prefix) self.assertSetEqual(set(expected_results), set(r['results'])) def test_bad_file_names(self): bad_file_names: list = [ "avisit_occurrence.csv", "condition_occurence.csv", # misspelled "person_final.csv", "procedure_occurrence.tsv" ] # unsupported file extension expected_warnings: list = [] for file_name in bad_file_names: bad_blob = self.storage_bucket.blob( f'{self.folder_prefix}{file_name}') bad_blob.upload_from_string('.') expected_item: tuple = (file_name, common.UNKNOWN_FILE) expected_warnings.append(expected_item) bucket_items = gcs_utils.list_bucket(self.hpo_bucket) folder_items = main.get_folder_items(bucket_items, self.folder_prefix) r = main.validate_submission(self.hpo_id, self.hpo_bucket, folder_items, self.folder_prefix) self.assertCountEqual(expected_warnings, r['warnings']) @mock.patch('api_util.check_cron') def test_validate_five_persons_success(self, mock_check_cron): expected_results: list = [] test_file_names: list = [ os.path.basename(f) for f in test_util.FIVE_PERSONS_FILES ] for cdm_filename in common.SUBMISSION_FILES: if cdm_filename in test_file_names: expected_result: tuple = (cdm_filename, 1, 1, 1) test_filepath: str = os.path.join(test_util.FIVE_PERSONS_PATH, cdm_filename) test_blob = self.storage_bucket.blob( f'{self.folder_prefix}{cdm_filename}') test_blob.upload_from_filename(test_filepath) else: expected_result: tuple = (cdm_filename, 0, 0, 0) expected_results.append(expected_result) bucket_items = gcs_utils.list_bucket(self.hpo_bucket) folder_items = main.get_folder_items(bucket_items, self.folder_prefix) r = main.validate_submission(self.hpo_id, self.hpo_bucket, folder_items, self.folder_prefix) self.assertSetEqual(set(r['results']), set(expected_results)) # check tables exist and are clustered as expected for table in resources.CDM_TABLES + common.PII_TABLES: table_id = bq_utils.get_table_id(test_util.FAKE_HPO_ID, table) table_info = bq_utils.get_table_info(table_id) fields = resources.fields_for(table) field_names = [field['name'] for field in fields] if 'person_id' in field_names: self.table_has_clustering(table_info) @mock.patch('validation.main.updated_datetime_object') def test_check_processed(self, mock_updated_datetime_object): mock_updated_datetime_object.return_value = datetime.datetime.today( ) - datetime.timedelta(minutes=7) for fname in common.AOU_REQUIRED_FILES: blob_name: str = f'{self.folder_prefix}{fname}' test_blob = self.storage_bucket.blob(blob_name) test_blob.upload_from_string('\n') sleep(1) blob_name: str = f'{self.folder_prefix}{common.PROCESSED_TXT}' test_blob = self.storage_bucket.blob(blob_name) test_blob.upload_from_string('\n') bucket_items = gcs_utils.list_bucket(self.hpo_bucket) result = main._get_submission_folder(self.hpo_bucket, bucket_items, force_process=False) self.assertIsNone(result) result = main._get_submission_folder(self.hpo_bucket, bucket_items, force_process=True) self.assertEqual(result, self.folder_prefix) @mock.patch('api_util.check_cron') def test_copy_five_persons(self, mock_check_cron): # upload all five_persons files for cdm_pathfile in test_util.FIVE_PERSONS_FILES: test_filename: str = os.path.basename(cdm_pathfile) blob_name: str = f'{self.folder_prefix}{test_filename}' test_blob = self.storage_bucket.blob(blob_name) test_blob.upload_from_filename(cdm_pathfile) blob_name: str = f'{self.folder_prefix}{self.folder_prefix}{test_filename}' test_blob = self.storage_bucket.blob(blob_name) test_blob.upload_from_filename(cdm_pathfile) main.app.testing = True with main.app.test_client() as c: c.get(test_util.COPY_HPO_FILES_URL) prefix = test_util.FAKE_HPO_ID + '/' + self.hpo_bucket + '/' + self.folder_prefix expected_bucket_items = [ prefix + item.split(os.sep)[-1] for item in test_util.FIVE_PERSONS_FILES ] expected_bucket_items.extend([ prefix + self.folder_prefix + item.split(os.sep)[-1] for item in test_util.FIVE_PERSONS_FILES ]) list_bucket_result = gcs_utils.list_bucket( gcs_utils.get_drc_bucket()) actual_bucket_items = [item['name'] for item in list_bucket_result] self.assertSetEqual(set(expected_bucket_items), set(actual_bucket_items)) def test_target_bucket_upload(self): bucket_nyc = gcs_utils.get_hpo_bucket('nyc') folder_prefix = 'test-folder-fake/' self.storage_client.empty_bucket(bucket_nyc) main._upload_achilles_files(hpo_id=None, folder_prefix=folder_prefix, target_bucket=bucket_nyc) actual_bucket_files = set( [item['name'] for item in gcs_utils.list_bucket(bucket_nyc)]) expected_bucket_files = set([ 'test-folder-fake/' + item for item in resources.ALL_ACHILLES_INDEX_FILES ]) self.assertSetEqual(expected_bucket_files, actual_bucket_files) @mock.patch('api_util.check_cron') def test_pii_files_loaded(self, mock_check_cron): # tests if pii files are loaded test_file_paths: list = [ test_util.PII_NAME_FILE, test_util.PII_MRN_BAD_PERSON_ID_FILE ] test_file_names: list = [os.path.basename(f) for f in test_file_paths] blob_name: str = f'{self.folder_prefix}{os.path.basename(test_util.PII_NAME_FILE)}' test_blob = self.storage_bucket.blob(blob_name) test_blob.upload_from_filename(test_util.PII_NAME_FILE) blob_name: str = f'{self.folder_prefix}{os.path.basename(test_util.PII_MRN_BAD_PERSON_ID_FILE)}' test_blob = self.storage_bucket.blob(blob_name) test_blob.upload_from_filename(test_util.PII_MRN_BAD_PERSON_ID_FILE) rs = resources.csv_to_list(test_util.PII_FILE_LOAD_RESULT_CSV) expected_results = [(r['file_name'], int(r['found']), int(r['parsed']), int(r['loaded'])) for r in rs] for f in common.SUBMISSION_FILES: if f not in test_file_names: expected_result = (f, 0, 0, 0) expected_results.append(expected_result) bucket_items = gcs_utils.list_bucket(self.hpo_bucket) folder_items = main.get_folder_items(bucket_items, self.folder_prefix) r = main.validate_submission(self.hpo_id, self.hpo_bucket, folder_items, self.folder_prefix) self.assertSetEqual(set(expected_results), set(r['results'])) @mock.patch('validation.main.updated_datetime_object') @mock.patch('validation.main._has_all_required_files') @mock.patch('validation.main.all_required_files_loaded') @mock.patch('validation.main.is_first_validation_run') @mock.patch('api_util.check_cron') def test_html_report_five_person(self, mock_check_cron, mock_first_run, mock_required_files_loaded, mock_has_all_required_files, mock_updated_datetime_object): mock_required_files_loaded.return_value = False mock_first_run.return_value = False mock_has_all_required_files.return_value = True mock_updated_datetime_object.return_value = datetime.datetime.today( ) - datetime.timedelta(minutes=7) for cdm_file in test_util.FIVE_PERSONS_FILES: blob_name = f'{self.folder_prefix}{os.path.basename(cdm_file)}' test_blob = self.storage_bucket.blob(blob_name) test_blob.upload_from_filename(cdm_file) # load person table in RDR bq_utils.load_table_from_csv(self.project_id, self.rdr_dataset_id, common.PERSON, test_util.FIVE_PERSONS_PERSON_CSV) # Load measurement_concept_sets required_labs.load_measurement_concept_sets_table( project_id=self.project_id, dataset_id=self.bigquery_dataset_id) # Load measurement_concept_sets_descendants required_labs.load_measurement_concept_sets_descendants_table( project_id=self.project_id, dataset_id=self.bigquery_dataset_id) main.app.testing = True with main.app.test_client() as c: c.get(test_util.VALIDATE_HPO_FILES_URL) actual_result = test_util.read_cloud_file( self.hpo_bucket, self.folder_prefix + common.RESULTS_HTML) # ensure emails are not sent bucket_items = gcs_utils.list_bucket(self.hpo_bucket) folder_items = main.get_folder_items(bucket_items, self.folder_prefix) self.assertFalse(main.is_first_validation_run(folder_items)) # parse html soup = bs(actual_result, parser="lxml", features="lxml") missing_pii_html_table = soup.find('table', id='missing_pii') table_headers = missing_pii_html_table.find_all('th') self.assertEqual('Missing Participant Record Type', table_headers[0].get_text()) self.assertEqual('Count', table_headers[1].get_text()) table_rows = missing_pii_html_table.find_next('tbody').find_all('tr') missing_record_types = [ table_row.find('td').text for table_row in table_rows ] self.assertIn(main_consts.EHR_NO_PII, missing_record_types) self.assertIn(main_consts.PII_NO_EHR, missing_record_types) # the missing from RDR component is obsolete (see DC-1932) # this is to confirm it was removed successfully from the report rdr_date = '2020-01-01' self.assertNotIn(main_consts.EHR_NO_RDR.format(date=rdr_date), missing_record_types) self.assertIn(main_consts.EHR_NO_PARTICIPANT_MATCH, missing_record_types) required_lab_html_table = soup.find('table', id='required-lab') table_headers = required_lab_html_table.find_all('th') self.assertEqual(3, len(table_headers)) self.assertEqual('Ancestor Concept ID', table_headers[0].get_text()) self.assertEqual('Ancestor Concept Name', table_headers[1].get_text()) self.assertEqual('Found', table_headers[2].get_text()) table_rows = required_lab_html_table.find_next('tbody').find_all('tr') table_rows_last_column = [ table_row.find_all('td')[-1] for table_row in table_rows ] submitted_labs = [ row for row in table_rows_last_column if 'result-1' in row.attrs['class'] ] missing_labs = [ row for row in table_rows_last_column if 'result-0' in row.attrs['class'] ] self.assertTrue(len(table_rows) > 0) self.assertTrue(len(submitted_labs) > 0) self.assertTrue(len(missing_labs) > 0) def tearDown(self): self.storage_client.empty_bucket(self.hpo_bucket) bucket_nyc = gcs_utils.get_hpo_bucket('nyc') self.storage_client.empty_bucket(bucket_nyc) self.storage_client.empty_bucket(gcs_utils.get_drc_bucket()) test_util.delete_all_tables(self.bigquery_dataset_id)
class ExportTest(unittest.TestCase): @classmethod def setUpClass(cls): print( '\n**************************************************************') print(cls.__name__) print('**************************************************************') dataset_id = bq_utils.get_dataset_id() test_util.delete_all_tables(dataset_id) test_util.populate_achilles() def setUp(self): self.hpo_bucket = gcs_utils.get_hpo_bucket(FAKE_HPO_ID) self.project_id = app_identity.get_application_id() self.storage_client = StorageClient(self.project_id) def _test_report_export(self, report): data_density_path = os.path.join(export.EXPORT_PATH, report) result = export.export_from_path(data_density_path, FAKE_HPO_ID) return result # TODO more strict testing of result payload. The following doesn't work because field order is random. # actual_payload = json.dumps(result, sort_keys=True, indent=4, separators=(',', ': ')) # expected_path = os.path.join(test_util.TEST_DATA_EXPORT_SYNPUF_PATH, report + '.json') # with open(expected_path, 'r') as f: # expected_payload = f.read() # self.assertEqual(actual_payload, expected_payload) # return result @mock.patch('validation.export.is_hpo_id') def test_export_data_density(self, mock_is_hpo_id): # INTEGRATION TEST mock_is_hpo_id.return_value = True export_result = self._test_report_export('datadensity') expected_keys = [ 'CONCEPTS_PER_PERSON', 'RECORDS_PER_PERSON', 'TOTAL_RECORDS' ] for expected_key in expected_keys: self.assertTrue(expected_key in export_result) self.assertEqual( len(export_result['TOTAL_RECORDS']['X_CALENDAR_MONTH']), 283) @mock.patch('validation.export.is_hpo_id') def test_export_person(self, mock_is_hpo_id): # INTEGRATION TEST mock_is_hpo_id.return_value = True export_result = self._test_report_export('person') expected_keys = [ 'BIRTH_YEAR_HISTOGRAM', 'ETHNICITY_DATA', 'GENDER_DATA', 'RACE_DATA', 'SUMMARY' ] for expected_key in expected_keys: self.assertTrue(expected_key in export_result) self.assertEqual( len(export_result['BIRTH_YEAR_HISTOGRAM']['DATA']['COUNT_VALUE']), 72) @mock.patch('validation.export.is_hpo_id') def test_export_achillesheel(self, mock_is_hpo_id): # INTEGRATION TEST mock_is_hpo_id.return_value = True export_result = self._test_report_export('achillesheel') self.assertTrue('MESSAGES' in export_result) self.assertEqual(len(export_result['MESSAGES']['ATTRIBUTENAME']), 14) @mock.patch('validation.export.is_hpo_id') def test_run_export(self, mock_is_hpo_id): # validation/main.py INTEGRATION TEST mock_is_hpo_id.return_value = True folder_prefix: str = 'dummy-prefix-2018-03-24/' main._upload_achilles_files(FAKE_HPO_ID, folder_prefix) main.run_export(datasource_id=FAKE_HPO_ID, folder_prefix=folder_prefix) storage_bucket = self.storage_client.get_bucket(self.hpo_bucket) bucket_objects = storage_bucket.list_blobs() actual_object_names: list = [obj.name for obj in bucket_objects] for report in common.ALL_REPORT_FILES: prefix: str = f'{folder_prefix}{common.ACHILLES_EXPORT_PREFIX_STRING}{FAKE_HPO_ID}/' expected_object_name: str = f'{prefix}{report}' self.assertIn(expected_object_name, actual_object_names) datasources_json_path: str = folder_prefix + common.ACHILLES_EXPORT_DATASOURCES_JSON self.assertIn(datasources_json_path, actual_object_names) datasources_blob = storage_bucket.blob(datasources_json_path) datasources_json: str = datasources_blob.download_as_bytes().decode() datasources_actual: dict = json.loads(datasources_json) datasources_expected: dict = { 'datasources': [{ 'name': FAKE_HPO_ID, 'folder': FAKE_HPO_ID, 'cdmVersion': 5 }] } self.assertDictEqual(datasources_expected, datasources_actual) def test_run_export_without_datasource_id(self): # validation/main.py INTEGRATION TEST with self.assertRaises(RuntimeError): main.run_export(datasource_id=None, target_bucket=None) @mock.patch('validation.export.is_hpo_id') def test_run_export_with_target_bucket_and_datasource_id( self, mock_is_hpo_id): # validation/main.py INTEGRATION TEST mock_is_hpo_id.return_value = True folder_prefix: str = 'dummy-prefix-2018-03-24/' bucket_nyc: str = gcs_utils.get_hpo_bucket('nyc') main.run_export(datasource_id=FAKE_HPO_ID, folder_prefix=folder_prefix, target_bucket=bucket_nyc) storage_bucket = self.storage_client.get_bucket(bucket_nyc) bucket_objects = storage_bucket.list_blobs() actual_object_names: list = [obj.name for obj in bucket_objects] for report in common.ALL_REPORT_FILES: prefix: str = f'{folder_prefix}{common.ACHILLES_EXPORT_PREFIX_STRING}{FAKE_HPO_ID}/' expected_object_name: str = f'{prefix}{report}' self.assertIn(expected_object_name, actual_object_names) datasources_json_path: str = f'{folder_prefix}{common.ACHILLES_EXPORT_DATASOURCES_JSON}' self.assertIn(datasources_json_path, actual_object_names) datasources_blob = storage_bucket.blob(datasources_json_path) datasources_json: str = datasources_blob.download_as_bytes().decode() datasources_actual: dict = json.loads(datasources_json) datasources_expected: dict = { 'datasources': [{ 'name': FAKE_HPO_ID, 'folder': FAKE_HPO_ID, 'cdmVersion': 5 }] } self.assertDictEqual(datasources_expected, datasources_actual) def tearDown(self): self.storage_client.empty_bucket(self.hpo_bucket) bucket_nyc: str = gcs_utils.get_hpo_bucket('nyc') self.storage_client.empty_bucket(bucket_nyc) @classmethod def tearDownClass(cls): dataset_id = bq_utils.get_dataset_id() test_util.delete_all_tables(dataset_id)
class AchillesHeelTest(unittest.TestCase): @classmethod def setUpClass(cls): print('**************************************************************') print(cls.__name__) print('**************************************************************') def setUp(self): self.hpo_bucket = gcs_utils.get_hpo_bucket(FAKE_HPO_ID) self.dataset = bq_utils.get_dataset_id() self.project_id = app_identity.get_application_id() self.storage_client = StorageClient(self.project_id) self.storage_client.empty_bucket(self.hpo_bucket) test_util.delete_all_tables(self.dataset) def tearDown(self): test_util.delete_all_tables(bq_utils.get_dataset_id()) self.storage_client.empty_bucket(self.hpo_bucket) def _load_dataset(self, hpo_id): for cdm_table in resources.CDM_TABLES: cdm_filename: str = f'{cdm_table}.csv' cdm_filepath: str = os.path.join(test_util.FIVE_PERSONS_PATH, cdm_filename) bucket = self.storage_client.get_bucket(self.hpo_bucket) cdm_blob = bucket.blob(cdm_filename) if os.path.exists(cdm_filepath): cdm_blob.upload_from_filename(cdm_filepath) else: cdm_blob.upload_from_string('dummy\n') bq_utils.load_cdm_csv(hpo_id, cdm_table) # ensure concept table exists if not bq_utils.table_exists(common.CONCEPT): bq_utils.create_standard_table(common.CONCEPT, common.CONCEPT) q = """INSERT INTO {dataset}.concept SELECT * FROM {vocab}.concept""".format( dataset=self.dataset, vocab=common.VOCABULARY_DATASET) bq_utils.query(q) @staticmethod def get_mock_hpo_bucket(): bucket_env = 'BUCKET_NAME_' + FAKE_HPO_ID.upper() hpo_bucket_name = os.getenv(bucket_env) if hpo_bucket_name is None: raise EnvironmentError() return hpo_bucket_name @mock.patch('gcs_utils.get_hpo_bucket') def test_heel_analyses(self, mock_hpo_bucket): # Long-running test mock_hpo_bucket.return_value = self.get_mock_hpo_bucket() # create randomized tables to bypass BQ rate limits random_string = str(randint(10000, 99999)) randomized_hpo_id = FAKE_HPO_ID + '_' + random_string # prepare self._load_dataset(randomized_hpo_id) test_util.populate_achilles(hpo_id=randomized_hpo_id, include_heel=False) # define tables achilles_heel_results = randomized_hpo_id + '_' + achilles_heel.ACHILLES_HEEL_RESULTS achilles_results_derived = randomized_hpo_id + '_' + achilles_heel.ACHILLES_RESULTS_DERIVED # run achilles heel achilles_heel.create_tables(randomized_hpo_id, True) achilles_heel.run_heel(hpo_id=randomized_hpo_id) # validate query = sql_wrangle.qualify_tables( 'SELECT COUNT(1) as num_rows FROM %s' % achilles_heel_results) response = bq_utils.query(query) rows = bq_utils.response2rows(response) self.assertEqual(ACHILLES_HEEL_RESULTS_COUNT, rows[0]['num_rows']) query = sql_wrangle.qualify_tables( 'SELECT COUNT(1) as num_rows FROM %s' % achilles_results_derived) response = bq_utils.query(query) rows = bq_utils.response2rows(response) self.assertEqual(ACHILLES_RESULTS_DERIVED_COUNT, rows[0]['num_rows']) # test new heel re-categorization errors = [ 2, 4, 5, 101, 200, 206, 207, 209, 400, 405, 406, 409, 411, 413, 500, 505, 506, 509, 600, 605, 606, 609, 613, 700, 705, 706, 709, 711, 713, 715, 716, 717, 800, 805, 806, 809, 813, 814, 906, 1006, 1609, 1805 ] query = sql_wrangle.qualify_tables( """SELECT analysis_id FROM {table_id} WHERE achilles_heel_warning LIKE 'ERROR:%' GROUP BY analysis_id""".format(table_id=achilles_heel_results)) response = bq_utils.query(query) rows = bq_utils.response2rows(response) actual_result = [row["analysis_id"] for row in rows] for analysis_id in actual_result: self.assertIn(analysis_id, errors) warnings = [ 4, 5, 7, 8, 9, 200, 210, 302, 400, 402, 412, 420, 500, 511, 512, 513, 514, 515, 602, 612, 620, 702, 712, 720, 802, 812, 820 ] query = sql_wrangle.qualify_tables( """SELECT analysis_id FROM {table_id} WHERE achilles_heel_warning LIKE 'WARNING:%' GROUP BY analysis_id""".format(table_id=achilles_heel_results)) response = bq_utils.query(query) rows = bq_utils.response2rows(response) actual_result = [row["analysis_id"] for row in rows] for analysis_id in actual_result: self.assertIn(analysis_id, warnings) notifications = [ 101, 103, 105, 114, 115, 118, 208, 301, 410, 610, 710, 810, 900, 907, 1000, 1800, 1807 ] query = sql_wrangle.qualify_tables( """SELECT analysis_id FROM {table_id} WHERE achilles_heel_warning LIKE 'NOTIFICATION:%' and analysis_id is not null GROUP BY analysis_id""".format(table_id=achilles_heel_results)) response = bq_utils.query(query) rows = bq_utils.response2rows(response) actual_result = [row["analysis_id"] for row in rows] for analysis_id in actual_result: self.assertIn(analysis_id, notifications)
class BqUtilsTest(unittest.TestCase): @classmethod def setUpClass(cls): print('**************************************************************') print(cls.__name__) print('**************************************************************') def setUp(self): self.hpo_bucket = gcs_utils.get_hpo_bucket(FAKE_HPO_ID) self.person_table_id = bq_utils.get_table_id(FAKE_HPO_ID, common.PERSON) self.dataset_id = bq_utils.get_dataset_id() test_util.delete_all_tables(self.dataset_id) self.project_id = app_identity.get_application_id() self.TEST_FIELDS = [ { "type": "integer", "name": "integer_field", "mode": "required", "description": "An integer field" }, # DC-586 Import RDR rules should support null fields { "type": "integer", "name": "nullable_integer_field", "mode": "nullable", "description": "A nullable integer field" }, { "type": "string", "name": "string_field", "mode": "required", "description": "A string field" }, { "type": "date", "name": "date_field", "mode": "required", "description": "A date field" }, { "type": "timestamp", "name": "timestamp_field", "mode": "required", "description": "A timestamp field" }, { "type": "boolean", "name": "boolean_field", "mode": "required", "description": "A boolean field" }, { "type": "float", "name": "float_field", "mode": "required", "description": "A float field" } ] self.DT_FORMAT = '%Y-%m-%d %H:%M:%S' self.client = StorageClient(self.project_id) self.client.empty_bucket(self.hpo_bucket) def _drop_tables(self): tables = bq_utils.list_tables() for table in tables: table_id = table['tableReference']['tableId'] if table_id not in common.VOCABULARY_TABLES: bq_utils.delete_table(table_id) def _table_has_clustering(self, table_info): clustering = table_info.get('clustering') self.assertIsNotNone(clustering) fields = clustering.get('fields') self.assertSetEqual(set(fields), {'person_id'}) time_partitioning = table_info.get('timePartitioning') self.assertIsNotNone(time_partitioning) tpe = time_partitioning.get('type') self.assertEqual(tpe, 'DAY') def test_load_csv(self): app_id = app_identity.get_application_id() table_name = 'achilles_analysis' csv_file_name = table_name + '.csv' local_csv_path = os.path.join(test_util.TEST_DATA_EXPORT_PATH, csv_file_name) sc_bucket = self.client.get_bucket(self.hpo_bucket) bucket_blob = sc_bucket.blob(csv_file_name) with open(local_csv_path, 'rb') as fp: bucket_blob.upload_from_file(fp) hpo_bucket = self.hpo_bucket gcs_object_path = 'gs://%(hpo_bucket)s/%(csv_file_name)s' % locals() dataset_id = self.dataset_id load_results = bq_utils.load_csv(table_name, gcs_object_path, app_id, dataset_id, table_name) load_job_id = load_results['jobReference']['jobId'] incomplete_jobs = bq_utils.wait_on_jobs([load_job_id]) self.assertEqual(len(incomplete_jobs), 0, 'loading table {} timed out'.format(table_name)) query_response = bq_utils.query('SELECT COUNT(1) FROM %(table_name)s' % locals()) self.assertEqual(query_response['kind'], 'bigquery#queryResponse') def test_load_cdm_csv(self): sc_bucket = self.client.get_bucket(self.hpo_bucket) bucket_blob = sc_bucket.blob('person.csv') with open(FIVE_PERSONS_PERSON_CSV, 'rb') as fp: bucket_blob.upload_from_file(fp) result = bq_utils.load_cdm_csv(FAKE_HPO_ID, common.PERSON) self.assertEqual(result['status']['state'], 'RUNNING') load_job_id = result['jobReference']['jobId'] table_id = result['configuration']['load']['destinationTable'][ 'tableId'] incomplete_jobs = bq_utils.wait_on_jobs([load_job_id]) self.assertEqual(len(incomplete_jobs), 0, 'loading table {} timed out'.format(table_id)) table_info = bq_utils.get_table_info(table_id) num_rows = table_info.get('numRows') self.assertEqual(num_rows, '5') def test_query_result(self): sc_bucket = self.client.get_bucket(self.hpo_bucket) bucket_blob = sc_bucket.blob('person.csv') with open(FIVE_PERSONS_PERSON_CSV, 'rb') as fp: bucket_blob.upload_from_file(fp) result = bq_utils.load_cdm_csv(FAKE_HPO_ID, common.PERSON) load_job_id = result['jobReference']['jobId'] incomplete_jobs = bq_utils.wait_on_jobs([load_job_id]) self.assertEqual(len(incomplete_jobs), 0, 'loading table {} timed out'.format(common.PERSON)) table_id = bq_utils.get_table_id(FAKE_HPO_ID, common.PERSON) q = 'SELECT person_id FROM %s' % table_id result = bq_utils.query(q) self.assertEqual(5, int(result['totalRows'])) def test_create_table(self): table_id = 'some_random_table_id' fields = [ dict(name='person_id', type='integer', mode='required'), dict(name='name', type='string', mode='nullable') ] result = bq_utils.create_table(table_id, fields) self.assertTrue('kind' in result) self.assertEqual(result['kind'], 'bigquery#table') table_info = bq_utils.get_table_info(table_id) self._table_has_clustering(table_info) def test_create_existing_table_without_drop_raises_error(self): table_id = 'some_random_table_id' fields = [ dict(name='id', type='integer', mode='required'), dict(name='name', type='string', mode='nullable') ] bq_utils.create_table(table_id, fields) with self.assertRaises(bq_utils.InvalidOperationError): bq_utils.create_table(table_id, fields, drop_existing=False) def test_create_table_drop_existing_success(self): table_id = 'some_random_table_id' fields = [ dict(name='id', type='integer', mode='required'), dict(name='name', type='string', mode='nullable') ] result_1 = bq_utils.create_table(table_id, fields) # sanity check table_id = result_1['tableReference']['tableId'] self.assertTrue(bq_utils.table_exists(table_id)) result_2 = bq_utils.create_table(table_id, fields, drop_existing=True) # same id and second one created after first one self.assertEqual(result_1['id'], result_2['id']) self.assertTrue(result_2['creationTime'] > result_1['creationTime']) def test_create_standard_table(self): standard_tables = list(resources.CDM_TABLES) + ACHILLES_TABLES for standard_table in standard_tables: table_id = f'prefix_for_test_{standard_table}' result = bq_utils.create_standard_table(standard_table, table_id) self.assertTrue('kind' in result) self.assertEqual(result['kind'], 'bigquery#table') # sanity check self.assertTrue(bq_utils.table_exists(table_id)) def test_load_ehr_observation(self): hpo_id = 'pitt' dataset_id = self.dataset_id table_id = bq_utils.get_table_id(hpo_id, table_name='observation') q = 'SELECT observation_id FROM {dataset_id}.{table_id} ORDER BY observation_id'.format( dataset_id=dataset_id, table_id=table_id) expected_observation_ids = [ int(row['observation_id']) for row in resources.csv_to_list(PITT_FIVE_PERSONS_OBSERVATION_CSV) ] sc_bucket = self.client.get_bucket(gcs_utils.get_hpo_bucket(hpo_id)) bucket_blob = sc_bucket.blob('observation.csv') with open(PITT_FIVE_PERSONS_OBSERVATION_CSV, 'rb') as fp: bucket_blob.upload_from_file(fp) result = bq_utils.load_cdm_csv(hpo_id, 'observation') job_id = result['jobReference']['jobId'] incomplete_jobs = bq_utils.wait_on_jobs([job_id]) self.assertEqual(len(incomplete_jobs), 0, 'pitt_observation load job did not complete') load_job_result = bq_utils.get_job_details(job_id) load_job_result_status = load_job_result['status'] load_job_errors = load_job_result_status.get('errors') self.assertIsNone(load_job_errors, msg='pitt_observation load job failed: ' + str(load_job_errors)) query_results_response = bq_utils.query(q) query_job_errors = query_results_response.get('errors') self.assertIsNone(query_job_errors) actual_result = [ int(row['f'][0]['v']) for row in query_results_response['rows'] ] self.assertCountEqual(actual_result, expected_observation_ids) def test_load_table_from_csv(self): table_id = 'test_csv_table' csv_file = 'load_csv_test_data.csv' csv_path = os.path.join(test_util.TEST_DATA_PATH, csv_file) with open(csv_path, 'r') as f: expected = list(csv.DictReader(f)) bq_utils.load_table_from_csv(self.project_id, self.dataset_id, table_id, csv_path, self.TEST_FIELDS) q = """ SELECT * FROM `{project_id}.{dataset_id}.{table_id}`""".format( project_id=self.project_id, dataset_id=self.dataset_id, table_id=table_id) r = bq_utils.query(q) actual = bq_utils.response2rows(r) # Convert the epoch times to datetime with time zone for row in actual: row['timestamp_field'] = time.strftime( self.DT_FORMAT + ' UTC', time.gmtime(row['timestamp_field'])) expected.sort(key=lambda row: row['integer_field']) actual.sort(key=lambda row: row['integer_field']) for i, _ in enumerate(expected): self.assertCountEqual(expected[i], actual[i]) def test_get_hpo_info(self): hpo_info = bq_utils.get_hpo_info() self.assertGreater(len(hpo_info), 0) def test_csv_line_to_sql_row_expr(self): fields = [{ 'name': 'nullable_date_col', 'type': 'date', 'mode': 'nullable', 'description': '' }, { 'name': 'nullable_float_col', 'type': 'float', 'mode': 'nullable', 'description': '' }, { 'name': 'nullable_integer_col', 'type': 'integer', 'mode': 'nullable', 'description': '' }, { 'name': 'nullable_string_col', 'type': 'string', 'mode': 'nullable', 'description': '' }, { 'name': 'nullable_timestamp_col', 'type': 'timestamp', 'mode': 'nullable', 'description': '' }, { 'name': 'required_date_col', 'type': 'date', 'mode': 'required', 'description': '' }, { 'name': 'required_float_col', 'type': 'float', 'mode': 'required', 'description': '' }, { 'name': 'required_integer_col', 'type': 'integer', 'mode': 'required', 'description': '' }, { 'name': 'required_string_col', 'type': 'string', 'mode': 'required', 'description': '' }, { 'name': 'required_timestamp_col', 'type': 'timestamp', 'mode': 'required', 'description': '' }] # dummy values for each type flt_str = "3.14" int_str = "1234" str_str = "abc" dt_str = "2019-01-01" ts_str = "2019-01-01 14:00:00.0" row = { 'nullable_date_col': dt_str, 'nullable_float_col': flt_str, 'nullable_integer_col': int_str, 'nullable_string_col': str_str, 'nullable_timestamp_col': ts_str, 'required_date_col': dt_str, 'required_float_col': flt_str, 'required_integer_col': int_str, 'required_string_col': str_str, 'required_timestamp_col': ts_str } # all fields populated expected_expr = f"('{dt_str}',{flt_str},{int_str},'{str_str}','{ts_str}','{dt_str}',{flt_str},{int_str},'{str_str}','{ts_str}')" actual_expr = bq_utils.csv_line_to_sql_row_expr(row, fields) self.assertEqual(expected_expr, actual_expr) # nullable int zero is converted row['nullable_integer_col'] = '0' expected_expr = f"('{dt_str}',{flt_str},0,'{str_str}','{ts_str}','{dt_str}',{flt_str},{int_str},'{str_str}','{ts_str}')" actual_expr = bq_utils.csv_line_to_sql_row_expr(row, fields) self.assertEqual(expected_expr, actual_expr) # empty nullable is converted null row['nullable_date_col'] = '' row['nullable_float_col'] = '' row['nullable_integer_col'] = '' row['nullable_string_col'] = '' row['nullable_timestamp_col'] = '' expected_expr = f"(NULL,NULL,NULL,NULL,NULL,'{dt_str}',{flt_str},{int_str},'{str_str}','{ts_str}')" actual_expr = bq_utils.csv_line_to_sql_row_expr(row, fields) self.assertEqual(expected_expr, actual_expr) # empty required string converted to empty string value row['required_string_col'] = '' actual_expr = bq_utils.csv_line_to_sql_row_expr(row, fields) expected_expr = f"(NULL,NULL,NULL,NULL,NULL,'{dt_str}',{flt_str},{int_str},'','{ts_str}')" self.assertEqual(expected_expr, actual_expr) # empty required field raises error row['required_integer_col'] = '' with self.assertRaises(bq_utils.InvalidOperationError) as c: bq_utils.csv_line_to_sql_row_expr(row, fields) self.assertEqual( c.exception.msg, f'Value not provided for required field required_integer_col') def tearDown(self): test_util.delete_all_tables(self.dataset_id) self.client.empty_bucket(self.hpo_bucket)
class RequiredLabsTest(unittest.TestCase): @classmethod def setUpClass(cls): print('**************************************************************') print(cls.__name__) print('**************************************************************') def setUp(self): self.hpo_bucket = gcs_utils.get_hpo_bucket(FAKE_HPO_ID) self.project_id = app_identity.get_application_id() self.dataset_id = bq_utils.get_dataset_id() self.rdr_dataset_id = bq_utils.get_rdr_dataset_id() self.folder_prefix = '2019-01-01/' test_util.delete_all_tables(self.dataset_id) self.storage_client = StorageClient(self.project_id) self.storage_client.empty_bucket(self.hpo_bucket) self.client = bq.get_client(self.project_id) mock_get_hpo_name = mock.patch('validation.main.get_hpo_name') self.mock_get_hpo_name = mock_get_hpo_name.start() self.mock_get_hpo_name.return_value = 'Fake HPO' self.addCleanup(mock_get_hpo_name.stop) self._load_data() def tearDown(self): test_util.delete_all_tables(bq_utils.get_dataset_id()) self.storage_client.empty_bucket(self.hpo_bucket) def _load_data(self): # Load measurement_concept_sets required_labs.load_measurement_concept_sets_table( project_id=self.project_id, dataset_id=self.dataset_id) # Load measurement_concept_sets_descendants required_labs.load_measurement_concept_sets_descendants_table( project_id=self.project_id, dataset_id=self.dataset_id) # we need to load measurement.csv into bigquery_dataset_id in advance for the other integration tests ehr_measurement_result = bq_utils.load_table_from_csv( project_id=self.project_id, dataset_id=self.dataset_id, table_name=bq_utils.get_table_id(FAKE_HPO_ID, common.MEASUREMENT), csv_path=test_util.FIVE_PERSONS_MEASUREMENT_CSV, fields=resources.fields_for(common.MEASUREMENT)) bq_utils.wait_on_jobs( [ehr_measurement_result['jobReference']['jobId']]) def test_check_and_copy_tables(self): """ Test to ensure all the necessary tables for required_labs.py are copied and or created """ # Preconditions descendants_table_name = f'{self.project_id}.{self.dataset_id}.{MEASUREMENT_CONCEPT_SETS_DESCENDANTS_TABLE}' concept_sets_table_name = f'{self.project_id}.{self.dataset_id}.{MEASUREMENT_CONCEPT_SETS_TABLE}' concept_table_name = f'{self.project_id}.{self.dataset_id}.{common.CONCEPT}' concept_ancestor_table_name = f'{self.project_id}.{self.dataset_id}.{common.CONCEPT_ANCESTOR}' actual_descendants_table = self.client.get_table( descendants_table_name) actual_concept_sets_table = self.client.get_table( concept_sets_table_name) actual_concept_table = self.client.get_table(concept_table_name) actual_concept_ancestor_table = self.client.get_table( concept_ancestor_table_name) # Test required_labs.check_and_copy_tables(self.project_id, self.dataset_id) # Post conditions self.assertIsNotNone(actual_descendants_table.created) self.assertIsNotNone(actual_concept_sets_table.created) self.assertIsNotNone(actual_concept_table.created) self.assertIsNotNone(actual_concept_ancestor_table.created) def test_measurement_concept_sets_table(self): query = sql_wrangle.qualify_tables( '''SELECT * FROM {dataset_id}.{table_id}'''.format( dataset_id=self.dataset_id, table_id=MEASUREMENT_CONCEPT_SETS_TABLE)) response = bq_utils.query(query) actual_fields = [{ 'name': field['name'].lower(), 'type': field['type'].lower() } for field in response['schema']['fields']] expected_fields = [{ 'name': field['name'].lower(), 'type': field['type'].lower() } for field in resources.fields_for(MEASUREMENT_CONCEPT_SETS_TABLE)] self.assertListEqual(expected_fields, actual_fields) measurement_concept_sets_table_path = os.path.join( resources.resource_files_path, MEASUREMENT_CONCEPT_SETS_TABLE + '.csv') expected_total_rows = len( resources.csv_to_list(measurement_concept_sets_table_path)) self.assertEqual(expected_total_rows, int(response['totalRows'])) def test_load_measurement_concept_sets_descendants_table(self): query = sql_wrangle.qualify_tables( """SELECT * FROM {dataset_id}.{table_id}""".format( dataset_id=self.dataset_id, table_id=MEASUREMENT_CONCEPT_SETS_DESCENDANTS_TABLE)) response = bq_utils.query(query) actual_fields = [{ 'name': field['name'].lower(), 'type': field['type'].lower() } for field in response['schema']['fields']] expected_fields = [{ 'name': field['name'].lower(), 'type': field['type'].lower() } for field in resources.fields_for( MEASUREMENT_CONCEPT_SETS_DESCENDANTS_TABLE)] self.assertListEqual(expected_fields, actual_fields) def test_get_lab_concept_summary_query(self): summary_query = required_labs.get_lab_concept_summary_query( FAKE_HPO_ID) summary_response = bq_utils.query(summary_query) summary_rows = bq_utils.response2rows(summary_response) submitted_labs = [ row for row in summary_rows if row['measurement_concept_id_exists'] == 1 ] actual_total_labs = summary_response['totalRows'] # Count the total number of labs required, this number should be equal to the total number of rows in the # results generated by get_lab_concept_summary_query including the submitted and missing labs. unique_ancestor_concept_query = sql_wrangle.qualify_tables( """SELECT DISTINCT ancestor_concept_id FROM `{project_id}.{dataset_id}.{table_id}`""" .format(project_id=self.project_id, dataset_id=self.dataset_id, table_id=MEASUREMENT_CONCEPT_SETS_DESCENDANTS_TABLE)) unique_ancestor_cocnept_response = bq_utils.query( unique_ancestor_concept_query) expected_total_labs = unique_ancestor_cocnept_response['totalRows'] # Count the number of labs in the measurement table, this number should be equal to the number of labs # submitted by the fake site unique_measurement_concept_id_query = ''' SELECT DISTINCT c.ancestor_concept_id FROM `{project_id}.{dataset_id}.{measurement_concept_sets_descendants}` AS c JOIN `{project_id}.{dataset_id}.{measurement}` AS m ON c.descendant_concept_id = m.measurement_concept_id '''.format(project_id=self.project_id, dataset_id=self.dataset_id, measurement_concept_sets_descendants= MEASUREMENT_CONCEPT_SETS_DESCENDANTS_TABLE, measurement=bq_utils.get_table_id( FAKE_HPO_ID, common.MEASUREMENT)) unique_measurement_concept_id_response = bq_utils.query( unique_measurement_concept_id_query) unique_measurement_concept_id_total_labs = unique_measurement_concept_id_response[ 'totalRows'] self.assertEqual(int(expected_total_labs), int(actual_total_labs), msg='Compare the total number of labs') self.assertEqual(int(unique_measurement_concept_id_total_labs), len(submitted_labs), msg='Compare the number ' 'of labs submitted ' 'in the measurement')
class RetractDataGcsTest(TestCase): @classmethod def setUpClass(cls): print('**************************************************************') print(cls.__name__) print('**************************************************************') def setUp(self): self.project_id = app_identity.get_application_id() self.hpo_id = test_util.FAKE_HPO_ID self.bucket = os.environ.get(f'BUCKET_NAME_FAKE') self.site_bucket = 'test_bucket' self.folder_1 = '2019-01-01-v1/' self.folder_2 = '2019-02-02-v2/' self.client = StorageClient(self.project_id) self.folder_prefix_1 = f'{self.hpo_id}/{self.site_bucket}/{self.folder_1}' self.folder_prefix_2 = f'{self.hpo_id}/{self.site_bucket}/{self.folder_2}' self.pids = [17, 20] self.skip_pids = [10, 25] self.project_id = 'project_id' self.sandbox_dataset_id = os.environ.get('UNIONED_DATASET_ID') self.pid_table_id = 'pid_table' self.gcs_bucket = self.client.bucket(self.bucket) self.client.empty_bucket(self.gcs_bucket) @patch('retraction.retract_data_gcs.extract_pids_from_table') @patch('gcs_utils.get_drc_bucket') @patch('gcs_utils.get_hpo_bucket') def test_integration_five_person_data_retraction_skip( self, mock_hpo_bucket, mock_bucket, mock_extract_pids): mock_hpo_bucket.return_value = self.site_bucket mock_bucket.return_value = self.bucket mock_extract_pids.return_value = self.skip_pids lines_to_remove = {} expected_lines_post = {} for file_path in test_util.FIVE_PERSONS_FILES: # generate results files file_name = file_path.split('/')[-1] lines_to_remove[file_name] = 0 with open(file_path, 'rb') as f: # skip header next(f) expected_lines_post[file_name] = [] for line in f: line = line.strip() if line != b'': expected_lines_post[file_name].append(line) # write file to cloud for testing blob = self.gcs_bucket.blob(self.folder_prefix_1 + file_name) blob.upload_from_file(f, rewind=True, content_type='text/csv') blob = self.gcs_bucket.blob(self.folder_prefix_2 + file_name) blob.upload_from_file(f, rewind=True, content_type='text/csv') rd.run_gcs_retraction(self.project_id, self.sandbox_dataset_id, self.pid_table_id, self.hpo_id, folder='all_folders', force_flag=True, bucket=self.bucket, site_bucket=self.site_bucket) total_lines_post = {} for file_path in test_util.FIVE_PERSONS_FILES: file_name = file_path.split('/')[-1] blob = self.gcs_bucket.blob(self.folder_prefix_1 + file_name) actual_result_contents = blob.download_as_string().split(b'\n') # convert to list and remove header and last list item since it is a newline total_lines_post[file_name] = actual_result_contents[1:-1] for key in expected_lines_post: self.assertEqual(lines_to_remove[key], 0) self.assertListEqual(expected_lines_post[key], total_lines_post[key]) @patch('retraction.retract_data_gcs.extract_pids_from_table') @patch('gcs_utils.get_drc_bucket') @patch('gcs_utils.get_hpo_bucket') def test_integration_five_person_data_retraction(self, mock_hpo_bucket, mock_bucket, mock_extract_pids): mock_hpo_bucket.return_value = self.site_bucket mock_bucket.return_value = self.bucket mock_extract_pids.return_value = self.pids expected_lines_post = {} for file_path in test_util.FIVE_PERSONS_FILES: # generate results files file_name = file_path.split('/')[-1] table_name = file_name.split('.')[0] expected_lines_post[file_name] = [] with open(file_path, 'rb') as f: # skip header next(f) expected_lines_post[file_name] = [] for line in f: line = line.strip() if line != b'': if not ((table_name in rd.PID_IN_COL1 and int(line.split(b",")[0]) in self.pids) or (table_name in rd.PID_IN_COL2 and int(line.split(b",")[1]) in self.pids)): expected_lines_post[file_name].append(line) # write file to cloud for testing blob = self.gcs_bucket.blob(self.folder_prefix_1 + file_name) blob.upload_from_file(f, rewind=True, content_type='text/csv') blob = self.gcs_bucket.blob(self.folder_prefix_2 + file_name) blob.upload_from_file(f, rewind=True, content_type='text/csv') rd.run_gcs_retraction(self.project_id, self.sandbox_dataset_id, self.pid_table_id, self.hpo_id, folder='all_folders', force_flag=True, bucket=self.bucket, site_bucket=self.site_bucket) total_lines_post = {} for file_path in test_util.FIVE_PERSONS_FILES: file_name = file_path.split('/')[-1] blob = self.gcs_bucket.blob(self.folder_prefix_1 + file_name) actual_result_contents = blob.download_as_string().split(b'\n') # convert to list and remove header and last list item since it is a newline total_lines_post[file_name] = actual_result_contents[1:-1] for key in expected_lines_post: self.assertListEqual(expected_lines_post[key], total_lines_post[key]) def tearDown(self): self.client.empty_bucket(self.gcs_bucket)
class CombineEhrRdrTest(unittest.TestCase): project_id = app_identity.get_application_id() storage_client = StorageClient(project_id) @classmethod def setUpClass(cls): print('**************************************************************') print(cls.__name__) print('**************************************************************') # TODO base class this ehr_dataset_id = bq_utils.get_dataset_id() rdr_dataset_id = bq_utils.get_rdr_dataset_id() test_util.delete_all_tables(ehr_dataset_id) test_util.delete_all_tables(rdr_dataset_id) cls.load_dataset_from_files(ehr_dataset_id, test_util.NYC_FIVE_PERSONS_PATH, True) cls.load_dataset_from_files(rdr_dataset_id, test_util.RDR_PATH) @classmethod def load_dataset_from_files(cls, dataset_id, path, mappings=False): bucket = gcs_utils.get_hpo_bucket(test_util.FAKE_HPO_ID) cls.storage_client.empty_bucket(bucket) job_ids = [] for table in resources.CDM_TABLES: job_ids.append( cls._upload_file_to_bucket(bucket, dataset_id, path, table)) if mappings and table in DOMAIN_TABLES: mapping_table = '_mapping_{table}'.format(table=table) job_ids.append( cls._upload_file_to_bucket(bucket, dataset_id, path, mapping_table)) incomplete_jobs = bq_utils.wait_on_jobs(job_ids) if len(incomplete_jobs) > 0: message = "Job id(s) %s failed to complete" % incomplete_jobs raise RuntimeError(message) cls.storage_client.empty_bucket(bucket) @classmethod def _upload_file_to_bucket(cls, bucket: str, dataset_id: str, path: str, table: str): app_id: str = bq_utils.app_identity.get_application_id() filename: str = f'{table}.csv' file_path: str = os.path.join(path, filename) target_bucket = cls.storage_client.get_bucket(bucket) blob = target_bucket.blob(filename) try: with open(file_path, 'rb') as filepath: blob.upload_from_file(filepath) except OSError as exc: blob.upload_from_string('\n') gcs_path: str = 'gs://{bucket}/{filename}'.format(bucket=bucket, filename=filename) load_results = bq_utils.load_csv(table, gcs_path, app_id, dataset_id, table, allow_jagged_rows=True) load_job_id = load_results['jobReference']['jobId'] return load_job_id def setUp(self): self.ehr_dataset_id = bq_utils.get_dataset_id() self.rdr_dataset_id = bq_utils.get_rdr_dataset_id() self.combined_dataset_id = bq_utils.get_combined_dataset_id() self.drc_bucket = gcs_utils.get_drc_bucket() test_util.delete_all_tables(self.combined_dataset_id) def test_consented_person_id(self): """ Test observation data has seven (7) persons with consent records as described below 1: No 2: Yes 3: NULL 4: No followed by Yes 5: Yes followed by No 6: Yes followed by NULL 7: NULL and Yes with same date/time """ # sanity check # pre-conditions self.assertFalse( bq_utils.table_exists(EHR_CONSENT_TABLE_ID, self.combined_dataset_id)) # test ehr_consent() # post conditions self.assertTrue( bq_utils.table_exists(EHR_CONSENT_TABLE_ID, self.combined_dataset_id), 'Table {dataset}.{table} created by consented_person'.format( dataset=self.combined_dataset_id, table=EHR_CONSENT_TABLE_ID)) response = bq_utils.query('SELECT * FROM {dataset}.{table}'.format( dataset=self.combined_dataset_id, table=EHR_CONSENT_TABLE_ID)) rows = bq_utils.response2rows(response) expected = {2, 4} actual = set(row['person_id'] for row in rows) self.assertSetEqual( expected, actual, 'Records in {dataset}.{table}'.format( dataset=self.combined_dataset_id, table=EHR_CONSENT_TABLE_ID)) def test_copy_rdr_tables(self): for table in RDR_TABLES_TO_COPY: self.assertFalse( bq_utils.table_exists(table, self.combined_dataset_id)) # sanity check copy_rdr_table(table) actual = bq_utils.table_exists(table, self.combined_dataset_id) self.assertTrue( actual, msg='RDR table {table} should be copied'.format(table=table)) # Check that row count in combined is same as rdr query = ( 'WITH rdr AS ' ' (SELECT COUNT(1) n FROM `{rdr_dataset_id}.{table}`), ' 'combined AS ' ' (SELECT COUNT(1) n FROM `{combined_dataset_id}.{table}`) ' 'SELECT ' 'rdr.n AS rdr_count, ' 'combined.n AS combined_count ' 'FROM rdr, combined ').format( rdr_dataset_id=self.rdr_dataset_id, combined_dataset_id=self.combined_dataset_id, table=table) response = bq_utils.query(query) rows = bq_utils.response2rows(response) self.assertTrue(len(rows) == 1) # sanity check row = rows[0] rdr_count, combined_count = row['rdr_count'], row['combined_count'] msg_fmt = 'Table {table} has {rdr_count} in rdr and {combined_count} in combined (expected to be equal)' self.assertEqual( rdr_count, combined_count, msg_fmt.format(table=table, rdr_count=rdr_count, combined_count=combined_count)) def _ehr_only_records_excluded(self): """ EHR person records which are missing from RDR are excluded from combined """ query = ('WITH ehr_only AS ' ' (SELECT person_id ' ' FROM `{ehr_dataset_id}.person` AS ep ' ' WHERE NOT EXISTS ' ' (SELECT 1 ' ' FROM `{rdr_dataset_id}.person` AS rp ' ' WHERE rp.person_id = ep.person_id) ' ' ) ' 'SELECT ' 'ehr_only.person_id AS ehr_person_id, ' 'p.person_id AS combined_person_id ' 'FROM ehr_only ' 'LEFT JOIN `{combined_dataset_id}.person` AS p ' 'ON ehr_only.person_id = p.person_id').format( ehr_dataset_id=self.ehr_dataset_id, rdr_dataset_id=self.rdr_dataset_id, combined_dataset_id=self.combined_dataset_id) response = bq_utils.query(query) rows = bq_utils.response2rows(response) self.assertGreater(len(rows), 0, 'Test data is missing EHR-only records') for row in rows: combined_person_id = row['combined_person_id'] self.assertIsNone( combined_person_id, 'EHR-only person_id `{ehr_person_id}` found in combined when it should be excluded' ) def get_unconsented_ehr_records_count(self, table_name): query = UNCONSENTED_EHR_COUNTS_QUERY.format( rdr_dataset_id=bq_utils.get_rdr_dataset_id(), ehr_dataset_id=bq_utils.get_dataset_id(), combined_dataset_id=self.combined_dataset_id, domain_table=table_name, ehr_consent_table_id='_ehr_consent') response = bq_utils.query(query) rows = bq_utils.response2rows(response) return rows[0]['n'] def _mapping_table_checks(self): """ Check mapping tables exist, have correct schema, have expected number of records """ where = ( 'WHERE EXISTS ' ' (SELECT 1 FROM `{combined_dataset_id}.{ehr_consent_table_id}` AS c ' ' WHERE t.person_id = c.person_id)').format( combined_dataset_id=self.combined_dataset_id, ehr_consent_table_id=EHR_CONSENT_TABLE_ID) ehr_counts = test_util.get_table_counts(self.ehr_dataset_id, DOMAIN_TABLES, where) rdr_counts = test_util.get_table_counts(self.rdr_dataset_id) combined_counts = test_util.get_table_counts(self.combined_dataset_id) output_tables = combined_counts.keys() expected_counts = dict() expected_diffs = ['observation'] for table in DOMAIN_TABLES: expected_mapping_table = mapping_table_for(table) self.assertIn(expected_mapping_table, output_tables) expected_fields = resources.fields_for(expected_mapping_table) actual_table_info = bq_utils.get_table_info( expected_mapping_table, self.combined_dataset_id) actual_fields = actual_table_info.get('schema', dict()).get('fields', []) actual_fields_norm = map(test_util.normalize_field_payload, actual_fields) self.assertCountEqual(expected_fields, actual_fields_norm) # Count should be sum of EHR and RDR # (except for tables like observation where extra records are created for demographics) if 'person_id' in [ field.get('name', '') for field in resources.fields_for(table) ]: unconsented_ehr_records = self.get_unconsented_ehr_records_count( table) else: unconsented_ehr_records = 0 actual_count = combined_counts[expected_mapping_table] if table in expected_diffs: expected_count = actual_count else: expected_count = (ehr_counts[table] - unconsented_ehr_records) + rdr_counts[table] expected_counts[expected_mapping_table] = expected_count self.assertDictContainsSubset(expected_counts, combined_counts) def _all_rdr_records_included(self): """ All rdr records are included whether or not there is corresponding ehr record """ for domain_table in DOMAIN_TABLES: mapping_table = mapping_table_for(domain_table) query = ( 'SELECT rt.{domain_table}_id as id ' 'FROM `{rdr_dataset_id}.{domain_table}` AS rt ' 'LEFT JOIN `{combined_dataset_id}.{mapping_table}` AS m ' 'ON rt.{domain_table}_id = m.src_{domain_table}_id ' 'WHERE ' ' m.{domain_table}_id IS NULL ' 'OR NOT EXISTS ' ' (SELECT 1 FROM `{combined_dataset_id}.{domain_table}` AS t ' ' WHERE t.{domain_table}_id = m.{domain_table}_id)').format( domain_table=domain_table, rdr_dataset_id=bq_utils.get_rdr_dataset_id(), combined_dataset_id=bq_utils.get_combined_dataset_id(), mapping_table=mapping_table) response = bq_utils.query(query) rows = bq_utils.response2rows(response) self.assertEqual( 0, len(rows), "RDR records should map to records in mapping and combined tables" ) def test_create_cdm_tables(self): # pre-conditions # Sanity check tables_before = bq_utils.list_tables(self.combined_dataset_id) table_names_before = [ t['tableReference']['tableId'] for t in tables_before ] for table in resources.CDM_TABLES: self.assertNotIn(table, table_names_before) # test create_cdm_tables() # post conditions tables_after = bq_utils.list_tables(self.combined_dataset_id) table_names_after = [ t['tableReference']['tableId'] for t in tables_after ] for table in resources.CDM_TABLES: self.assertIn(table, table_names_after) def _fact_relationship_loaded(self): # TODO # All fact_id_1 where domain_concept_id_1==21 map to measurement # All fact_id_2 where domain_concept_id_2==27 map to observation pass def test_main(self): # test main() # post conditions self._mapping_table_checks() self._ehr_only_records_excluded() self._all_rdr_records_included() def tearDown(self): test_util.delete_all_tables(self.combined_dataset_id) @classmethod def tearDownClass(cls): ehr_dataset_id = bq_utils.get_dataset_id() rdr_dataset_id = bq_utils.get_rdr_dataset_id() test_util.delete_all_tables(ehr_dataset_id) test_util.delete_all_tables(rdr_dataset_id)