def testCommunity_leading_eigenvector(self): 
     alg = community_leading_eigenvector()
     print(sys._getframe().f_code.co_name) 
     print (alg.run(self.graph_unweighted_undirect).get_result())
     print (clustering.load_result(self.graph_unweighted_undirect.name, alg.name))
     
     alg = community_leading_eigenvector()
     print (alg.run(self.graph_weighted_undirect).get_result())
     print (clustering.load_result(self.graph_unweighted_undirect.name, alg.name))
 def test_community_multilevel(self):
     alg = community_multilevel()
     print(sys._getframe().f_code.co_name) 
     print (alg.run(self.graph_unweighted_undirect).get_result())
     print (clustering.load_result(self.graph_unweighted_undirect.name, alg.name))
     
     alg = community_multilevel()
     print (alg.run(self.graph_weighted_undirect).get_result())
     print (clustering.load_result(self.graph_unweighted_undirect.name, alg.name))
 def testMCL(self):
     alg = MCL()
     print("testMCL")
     print(alg.run(self.graph_unweighted_undirect, I=2).get_result())
     print(
         clustering.load_result(self.graph_unweighted_undirect.name,
                                alg.name))
 def test_dlplm(self):
     alg = dlslm()
     for data in self.graphs:
         alg = dlplm()
         print(sys._getframe().f_code.co_name)
         print(alg.run(data).get_result())
         print(clustering.load_result(data.name, alg.name))
Esempio n. 5
0
 def testCGGC(self):
     alg = CGGC()
     print("testCGGC")
     print(alg.run(self.graph_unweighted_undirect).get_result())
     print(
         clustering.load_result(self.graph_unweighted_undirect.name,
                                alg.name))
 def testBug6(self):
     alg = 'oslom_Infohiermap'
     dataname = 'EVAL2_LFR_ud_wu_N1024_mu0.3'
     clu = clustering.load_result(dataname, alg)
     data = dataset.load_local(dataname)
     a = calc_clu_metrics(data, clu)
     print(a)
     self.assertTrue(not np.isnan(a['cluster_clustering_coefficient']))
 def testBug5(self):
     alg = 'cdc_MSCD_LFK2'
     dataname = 'EVAL2_LFR_ud_wu_N1024_mu0.3'
     clu = clustering.load_result(dataname, alg)
     data = dataset.load_local(dataname)
     calc_clu_metrics(data, clu)
     gt = list(data.get_ground_truth().values())[0]
     a = calc_clu_gt_attrib(gt, clu)
     print(a)
    def test_copra(self):  
        print(sys._getframe().f_code.co_name) 
        
        alg = copra()
        print (alg.run(self.graph_weighted_direct).get_result())
        print (clustering.load_result(self.graph_weighted_direct.name, alg.name))

        alg = copra()
        print (alg.run(self.graph_unweighted_direct).get_result())
        print (clustering.load_result(self.graph_unweighted_direct.name, alg.name)) 

        alg = copra()
        print (alg.run(self.graph_unweighted_undirect).get_result())
        print (clustering.load_result(self.graph_unweighted_undirect.name, alg.name))

        alg = copra()
        print (alg.run(self.graph_weighted_undirect).get_result())
        print (clustering.load_result(self.graph_weighted_undirect.name, alg.name))
    def test_oslom_with_louvain(self):  
        print(sys._getframe().f_code.co_name) 
        
        alg = OSLOM()
        print (alg.run(self.graph_weighted_direct, fast=True, louvain=True).get_result())
        print (clustering.load_result(self.graph_weighted_direct.name, alg.name))

        alg = OSLOM()
        print (alg.run(self.graph_unweighted_direct, fast=True, louvain=True).get_result())
        print (clustering.load_result(self.graph_unweighted_direct.name, alg.name)) 

        alg = OSLOM()
        print (alg.run(self.graph_unweighted_undirect, fast=True, louvain=True).get_result())
        print (clustering.load_result(self.graph_unweighted_undirect.name, alg.name))

        alg = OSLOM()
        print (alg.run(self.graph_weighted_undirect, fast=True, louvain=True).get_result())
        print (clustering.load_result(self.graph_weighted_undirect.name, alg.name))
 def testScanpp(self):
     for data in self.graphs:
         alg = Scanpp()
         print(sys._getframe().f_code.co_name)
         if data.is_weighted():
             with self.assertRaises(Exception) as context:
                 print(alg.run(data).get_result())
         else:
             print(alg.run(data).get_result())
             print(clustering.load_result(data.name, alg.name))
Esempio n. 11
0
 def testGirvan_Newman(self):
     for data in self.graphs:
         alg = Girvan_Newman()
         print(sys._getframe().f_code.co_name, data.name)
         if data.is_directed():
             with self.assertRaises(UnsupportedException) as context:
                 print(alg.run(data).get_result())
         else:
             print(alg.run(data).get_result())
             print(clustering.load_result(data.name, alg.name))
 def testSCD(self):
     for data in self.graphs:
         if data.is_directed():
             continue
         try:
             alg = SCD()
             print(sys._getframe().f_code.co_name, data.name)
             print(alg.run(data).get_result())
             print(clustering.load_result(data.name, alg.name))
         except:
             traceback.print_exc()
 def testPPScanSSE(self):
     alg = pScan()
     print(sys._getframe().f_code.co_name)
     print(
         alg.run(self.graph_unweighted_undirect,
                 mu=3,
                 epsilon=0.5,
                 prog='ppScanSSE').get_result())
     print(
         clustering.load_result(self.graph_unweighted_undirect.name,
                                alg.name))
 def testCommunity_fastgreedy(self):
     for data in  self.graphs: 
         print("Testing", sys._getframe().f_code.co_name, data.name)
         if data.is_directed():
             with self.assertRaises(UnsupportedException):
                 alg = community_fastgreedy()
                 print (alg.run(data).get_result())
         else:
             alg = community_fastgreedy()
             print (alg.run(data).get_result())
             print (clustering.load_result(self.graph_unweighted_undirect.name, alg.name))
 def testBug4(self):
     alg = 'scan_pScan'
     dataname = 'SIMPLE_ud_wu_nc128_cz8_in7_it4'
     clu = clustering.load_result(dataname, alg)
     data = dataset.load_local(dataname)
     gt = list(data.get_ground_truth().values())[0]
     a = calc_clu_metrics(data, gt)
     print(a)
     a = calc_clu_metrics(data, clu)
     print(a)
     a = calc_clu_gt_attrib(gt, clu)
     print(a)
 def testAnyScan(self):
     alg = _AnyScan()
     for i in range(1, 5):
         print(sys._getframe().f_code.co_name, i)
         print(
             alg.run(self.graph_unweighted_undirect,
                     algorithm=i,
                     minpts=3,
                     epsilon=0.5).get_result())
         print(
             clustering.load_result(self.graph_unweighted_undirect.name,
                                    alg.name))
 def testPScan(self):
     for data in self.graphs:
         alg = pScan()
         print("Testing", sys._getframe().f_code.co_name, data.name)
         print(
             alg.run(self.graph_unweighted_undirect,
                     mu=3,
                     epsilon=0.5,
                     prog='pScan').get_result())
         print(
             clustering.load_result(self.graph_unweighted_undirect.name,
                                    alg.name))
 def testPScan2(self):
     name = sys._getframe().f_code.co_name
     data = random_dataset.generate_undirected_unweighted_random_graph_LFR(name=name, \
                                    N=128, k=16, maxk=32, mu=0.2, minc=32)
     alg = pScan()
     print("Testing", name, data.name)
     print(
         alg.run(self.graph_unweighted_undirect,
                 mu=3,
                 epsilon=0.5,
                 prog='pScan').get_result())
     print(
         clustering.load_result(self.graph_unweighted_undirect.name,
                                alg.name))
Esempio n. 19
0
 def test_label_propagation(self):
     for data in  self.graphs: 
         alg = pg_label_propagation()
         print(sys._getframe().f_code.co_name) 
         print (alg.run(data,execution='sync',ncpus=4).get_result())
         print (clustering.load_result(data.name, alg.name))
Esempio n. 20
0
 def make_cluter_if_not_exists():
     alg = CGGC()
     if not clustering.has_result(g.name, alg.name):
         alg.run(g).get_result()
     return clustering.load_result(g.name, alg.name)
 def testLPDegreeOrdered(self):
     for data in self.graphs:
         alg = LPDegreeOrdered()
         print(sys._getframe().f_code.co_name)
         print(alg.run(data).get_result())
         print(clustering.load_result(data.name, alg.name))
 def testCutClustering(self):
     for data in self.graphs:
         alg = CutClustering()
         print(sys._getframe().f_code.co_name)
         print(alg.run(data, alpha=0.15).get_result())
         print(clustering.load_result(data.name, alg.name))
Esempio n. 23
0
 def test_GANXiSw(self):
     for data in self.graphs:
         alg = GANXiSw()
         print(sys._getframe().f_code.co_name)
         print(alg.run(data).get_result())
         print(clustering.load_result(data.name, alg.name))
 def testLSOCluster_pmod(self):
     for data in self.graphs:
         alg = lso_cluster()
         print(sys._getframe().f_code.co_name)
         print(alg.run(data, loss='pmod', pmod=3).get_result())
         print(clustering.load_result(data.name, alg.name))
 def testBug2(self):
     alg = 'cdc_MSCD_LFK2'
     dataname = 'EVAL2_LFR_ud_wu_N1024_mu0.3'
     clu = clustering.load_result(dataname, alg)
     data = dataset.load_local(dataname)
     calc_clu_metrics(data, clu)
 def testBug3(self):
     alg = 'karateclub_SCD'
     dataname = 'EVAL2_LFR_ud_wu_N1024_mu0.3'
     clu = clustering.load_result(dataname, alg)
     data = dataset.load_local(dataname)
     calc_clu_metrics(data, clu)