Esempio n. 1
0
def render_all():
	G, dG = gds.square_lattice(14, 28, with_boundaries=True)
	v1, p1 = poiseuille(G, dG)
	G, dG = gds.triangular_lattice(14, 58, with_boundaries=True)
	v2, p2 = poiseuille(G, dG)
	G, dG = gds.hexagonal_lattice(14, 29, with_boundaries=True)
	v3, p3 = poiseuille(G, dG)
	G, dG = gds.voronoi_lattice(10, 100, with_boundaries=True, eps=0.07)
	v4, p4 = poiseuille(G, dG)

	sys = gds.couple({
		'velocity (sq)': v1,
		'velocity (tri)': v2,
		'velocity (hex)': v3,
		'velocity (voronoi)': v4,
		'pressure (sq)': p1,
		'pressure (tri)': p2,
		'pressure (hex)': p3,
		'pressure (voronoi)': p4,
		'vorticity (sq)': v1.project(gds.GraphDomain.faces, lambda v: v.curl()),
		'vorticity (tri)': v2.project(gds.GraphDomain.faces, lambda v: v.curl()),
		'vorticity (hex)': v3.project(gds.GraphDomain.faces, lambda v: v.curl()),
		'vorticity (voronoi)': v4.project(gds.GraphDomain.faces, lambda v: v.curl()),
	})
	gds.render(sys, canvas=gds.grid_canvas(sys.observables.values(), 4), edge_max=0.6, dynamic_ranges=True, plot_width=900, node_size=0.04)
Esempio n. 2
0
def square_edge_diffusion():
    m, n = 10, 10
    G, (l, r, t, b) = gds.square_lattice(n, m, with_boundaries=True)
    faces, outer_face = gds.embedded_faces(G)
    for j in range(m):
        G.add_edge((n - 1, j), (0, j))
    aux_faces = [((n - 1, j), (0, j), (0, j + 1), (n - 1, j + 1))
                 for j in range(m - 1)]
    G.faces = faces + aux_faces  # Hacky
    G.rendered_faces = np.array(range(len(faces)), dtype=np.intp)  # Hacky
    v = gds.edge_gds(G)
    v.set_evolution(dydt=lambda t, y: v.laplacian(y))
    velocity = 1.0

    def boundary(e):
        if e in b.edges:
            return velocity
        elif e == ((0, 0), (m - 1, 0)):
            return -velocity
        elif e in t.edges or e == ((0, n - 1), (m - 1, n - 1)):
            return 0.0
        return None

    v.set_constraints(dirichlet=boundary)
    return v
Esempio n. 3
0
def grid_tv_boundary():
    G = gds.square_lattice(10, 10)
    temperature = gds.node_gds(G)
    temperature.set_evolution(dydt=lambda t, y: temperature.laplacian())
    temperature.set_constraints(dirichlet=gds.combine_bcs(
        lambda x: 0 if x[0] == 9 else None,
        lambda t, x: np.sin(t + x[1] / 4)**2 if x[0] == 0 else None))
    gds.render(temperature, title='Heat equation with time-varying boundary')
Esempio n. 4
0
def euler_vortex_street():
    '''
	Vortex street translation in the inviscid model.
	x-periodic hexagonal lattice.
	'''
    # m, n = 4, 20
    # G = gds.hexagonal_lattice(m, n)
    # speed = 1
    # # G = gds.contract_pairs(G, [((0, j), (n, j)) for j in range(1, 2*m)])
    # # G = gds.remove_pos(G)

    # velocity, pressure = fluid_projected.euler(G)
    # y0 = np.zeros(velocity.ndim)
    # for j in range(n-1):
    # 	if j == 5:
    # 		e = ((j, m), (j, m+1))
    # 		y_e = np.zeros(velocity.ndim)
    # 		y_e[velocity.X[e]] = 1
    # 		y_f = speed * velocity.curl_face@y_e
    # 		y_e = velocity.curl_face.T@y_f
    # 		y0 += y_e

    m, n = 3, 20
    G = gds.square_lattice(m, n)
    speed = 1

    velocity, pressure = fluid_projected.euler(G)
    y0 = np.zeros(velocity.ndim)

    for j in [m // 2]:
        i = 5
        e = ((i, j), (i + 1, j))
        y_e = np.zeros(velocity.ndim)
        y_e[velocity.X[e]] = 1
        y_f = speed * velocity.curl_face @ y_e
        y0 += velocity.curl_face.T @ y_f

    velocity.set_initial(y0=lambda x: y0[velocity.X[x]])
    velocity.advect()

    sys = gds.couple({
        'velocity':
        velocity,
        'vorticity':
        velocity.project(gds.GraphDomain.faces, lambda v: v.curl()),
        'advective':
        velocity.project(gds.GraphDomain.edges, lambda v: -v.advect()),
        'pressure':
        pressure,
        # 'divergence': velocity.project(gds.GraphDomain.nodes, lambda v: v.div()),
    })
    gds.render(sys,
               canvas=gds.grid_canvas(sys.observables.values(), 3),
               edge_max=0.6,
               dynamic_ranges=True,
               edge_colors=True,
               edge_palette=cc.bgy,
               n_spring_iters=2000)
Esempio n. 5
0
File: fluid.py Progetto: asrvsn/gds
def fluid_on_grid():
    G = gds.square_lattice(10, 10)
    i, o = (3, 3), (6, 6)
    dG = nx.Graph()
    dG.add_nodes_from([i, o])
    velocity, pressure = navier_stokes(G, dG)
    pressure.set_constraints(dirichlet={i: 10.0, o: -10.0})
    tracer = lagrangian_tracer(velocity, [i])
    return velocity, pressure, tracer
Esempio n. 6
0
def heat_grid(n=10, steady_state=False) -> gds.node_gds:
    G = gds.square_lattice(n, n)
    temp = gds.node_gds(G)
    if steady_state:
        ''' Steady-state version (for comparison) '''
        temp.set_evolution(cost=lambda t, y: temp.laplacian(y))
    else:
        temp.set_evolution(dydt=lambda t, y: temp.laplacian(y))
    return temp
Esempio n. 7
0
def advection_on_grid():
	n = 5
	G = gds.square_lattice(n, n)
	def v_field(e):
		if e[1][0] >= e[0][0] and e[1][1] >= e[0][1]:
			return 1
		else:
			return -1
	conc, flow = advection(G, v_field)
	conc.set_initial(y0 = lambda x: 1.0 if x == (0, 0) else 0.) # delta initial condition
	return conc, flow
Esempio n. 8
0
def sq_poiseuille():
    m = 14
    n = 28
    gradP = 6.0

    G, (l, r, t, b) = gds.square_lattice(m, n, with_boundaries=True)
    v_free_l = set(l.nodes()) - (set(t.nodes()) | set(b.nodes()))
    v_free_r = set(r.nodes()) - (set(t.nodes()) | set(b.nodes()))
    v_free = v_free_l | v_free_r

    pressure, velocity = navier_stokes(G,
                                       viscosity=1.,
                                       density=1e-2,
                                       v_free=v_free)

    e_free = np.array([velocity.X[(n, (n[0] + 1, n[1]))] for n in v_free_l] +
                      [velocity.X[((n[0] - 1, n[1]), n)] for n in v_free_r],
                      dtype=np.intp)
    e_free_mask = np.ones(velocity.ndim)
    e_free_mask[e_free] = 0

    pressure, velocity = navier_stokes(G,
                                       viscosity=1.,
                                       density=1e-2,
                                       v_free=v_free)
    pressure.set_constraints(dirichlet=gds.combine_bcs(
        {n: gradP / 2
         for n in l.nodes},
        {(n[0] + 1, n[1]): gradP / 2
         for n in l.nodes},
        {n: -gradP / 2
         for n in r.nodes},
        {(n[0] - 1, n[1]): -gradP / 2
         for n in r.nodes},
    ))
    local_state = {'t': None, 'div': None}

    def free_boundaries(t, e):
        if local_state['t'] != t:
            local_state['div'] = velocity.div(velocity.y * e_free_mask)
        if e[0][1] == e[1][1] and e[0][0] + 1 == e[1][0]:
            if e[0] in v_free:
                return local_state['div'][pressure.X[e[1]]]
            elif e[1] in v_free:
                return -local_state['div'][pressure.X[e[0]]]

    velocity.set_constraints(dirichlet=gds.combine_bcs(gds.zero_edge_bc(
        t), gds.zero_edge_bc(b), free_boundaries))
    return pressure, velocity
Esempio n. 9
0
def poiseuille():
	m, n = 8, 10
	G = gds.square_lattice(n, m)
	velocity, pressure = fluid_projected.navier_stokes(G)
	def pressure_values(x):
		if x[0] == 0: return 0.2
		if x[0] == n-1: return -0.2
		return None
	pressure.set_constraints(dirichlet=pressure_values)
	def no_slip(x):
		if x[0][1] == x[1][1] == 0 or x[0][1] == x[1][1] == m-1:
			return 0.
		return None
	velocity.set_constraints(dirichlet=no_slip)
	return velocity, pressure
Esempio n. 10
0
def sq_poiseuille_projected(viscosity, density):
	m=14 
	n=28 
	gradP=6.0

	G, (l, r, t, b) = gds.square_lattice(m, n, with_boundaries=True)
	v_free_l = set(l.nodes()) - (set(t.nodes()) | set(b.nodes()))
	v_free_r = set(r.nodes()) - (set(t.nodes()) | set(b.nodes()))
	v_free = v_free_l | v_free_r

	velocity = navier_stokes_projected(G, viscosity=viscosity, density=density, body_force=lambda t, y: gradP*np.ones_like(y), v_free=v_free)
	velocity.set_constraints(dirichlet=gds.combine_bcs(
		gds.zero_edge_bc(t),
		gds.zero_edge_bc(b),
	))
	return velocity
Esempio n. 11
0
def sq_lid_driven_cavity_ivp():
    m = 18
    n = 21
    v = 1.0
    G, (l, r, t, b) = gds.square_lattice(m, n, with_boundaries=True)
    velocity, pressure = navier_stokes(G, viscosity=200., density=0.1)

    def walls(e):
        if e in t.edges(): return v
        elif e in b.edges(): return -v
        elif e in r.edges(): return -v
        elif (e[1], e[0]) in r.edges(): return v
        elif e in l.edges(): return v
        elif (e[1], e[0]) in l.edges(): return -v
        return 0

    velocity.set_initial(y0=walls)
    pressure.set_constraints(dirichlet={(0, 0): 0.})  # Pressure reference
    return velocity, pressure
Esempio n. 12
0
def poiseuille_flow():
    ''' API example '''
    G, (G_L, G_R, G_T, G_B) = gds.square_lattice(m, n, with_boundaries=True)

    velocity = Field(GraphDomain.Edges, G)
    velocity.set_dirichlet_boundary(set(G_T.edges()) | set(G_B.edges()), 0.)
    velocity.set_free_boundary(set(G_L.edges()) | set(G_R.edges()))

    pressure = Field(GraphDomain.Nodes, G)
    pressure.set_dirichlet_boundary(set(G_L.edges()), 1.)
    pressure.set_dirichlet_boundary(set(G_R.edges()), -1.)
    pressure.set_free_boundary(set(G_T.edges()) | set(G_B.edges()))

    dt = 1e-3
    velocity.set_evolution(dydt=-advect(velocity, velocity) -
                           grad(pressure) / density +
                           laplacian(velocity) * viscosity / density)
    pressure.set_evolution(
        lhs=div(velocity / dt - advect(velocity, velocity)) -
        laplacian(pressure) / density +
        laplacian(div(velocity)) * viscosity / density)
Esempio n. 13
0
def sq_couette():
	m, n = 11, 10
	G, (l, r, t, b) = gds.square_lattice(m, n, with_boundaries=True)
	faces, outer_face = gds.embedded_faces(G)
	for j in range(m):
		G.add_edge((n-1, j), (0, j))
	aux_faces = [((n-1, j), (0, j), (0, j+1), (n-1, j+1)) for j in range(m-1)]
	G.faces = faces + aux_faces # Hacky
	G.rendered_faces = np.array(range(len(faces)), dtype=np.intp) # Hacky

	pressure, velocity = navier_stokes(G, viscosity=1., density=1e-2)
	vel = 1.0
	def walls(e):
		if e in t.edges or e == ((0, m-1), (n-1, m-1)):
			return 0
		elif e in b.edges: 
			return vel
		elif e == ((0, 0), (n-1, 0)):
			return -vel
		return None
	velocity.set_constraints(dirichlet=walls)
	return pressure, velocity
Esempio n. 14
0
def sq_couette_ivp(viscosity, density):
	m, n = 11, 10
	G, (l, r, t, b) = gds.square_lattice(m, n, with_boundaries=True, with_lattice_components=True)
	faces, outer_face = gds.embedded_faces(G)
	for j in range(m):
		G.add_edge((n-1, j), (0, j))
	# for i in range(n):
	# 	G.add_edge((i, 0), (i, m-1))
	aux_faces = [((n-1, j), (0, j), (0, j+1), (n-1, j+1)) for j in range(m-1)]
	# aux_faces += [((i, 0), (i, m-1), (i+1, m-1), (i+1, 0)) for i in range(n-1)]
	G.faces = faces + aux_faces # Hacky
	G.rendered_faces = np.array(range(len(faces)), dtype=np.intp) # Hacky

	pressure, velocity = navier_stokes(G, viscosity=viscosity, density=density)
	vel = 1.0
	def walls(e):
		if e[0][1] == e[1][1] == m//2:
			if e[0][0] == 0 and e[1][0] == n-1:
				return -vel
			return vel
		return 0
	velocity.set_initial(y0=walls)
	return pressure, velocity
Esempio n. 15
0
        'diffusion_tri':
        v2.project(gds.GraphDomain.edges, lambda v: v.laplacian()),
        'diffusion_hex':
        v3.project(gds.GraphDomain.edges, lambda v: v.laplacian()),
        'advection_square':
        v1.project(gds.GraphDomain.edges, lambda v: -v.advect()),
        'advection_tri':
        v2.project(gds.GraphDomain.edges, lambda v: -v.advect()),
        'advection_hex':
        v3.project(gds.GraphDomain.edges, lambda v: -v.advect()),
        'divergence_square':
        v1.project(gds.GraphDomain.nodes, lambda v: v.div()),
        'divergence_tri':
        v2.project(gds.GraphDomain.nodes, lambda v: v.div()),
        'divergence_hex':
        v3.project(gds.GraphDomain.nodes, lambda v: v.div()),
    })

    sys.solve_to_disk(5.0, 0.01, 'lid_driven_cavity')


if __name__ == '__main__':
    # render()

    # G, dG = gds.triangular_lattice(18, 42, with_boundaries=True)
    G, dG = gds.square_lattice(16, 30, with_boundaries=True)
    # G, dG = gds.hexagonal_lattice(18, 21, with_boundaries=True)

    v, p = lid_driven_cavity(G, dG, viscosity=200)
    fluid_test(v, p, columns=3, edge_palette=cc.bgy)