def main(data_set_name): dimensions = 4 input_file = './graph/' + data_set_name + '.tsv' output_file = './emb/' + data_set_name + '.emb' # Instatiate the embedding method with hyperparameters sdne = SDNE(dimensions) # Load graph graph = graph_util.loadGraphFromEdgeListTxt(input_file) # Learn embedding - accepts a networkx graph or file with edge list embeddings_array, t = sdne.learn_embedding(graph, edge_f=None, is_weighted=True, no_python=True) embeddings = pandas.DataFrame(embeddings_array) embeddings.to_csv(output_file, sep=' ', na_rep=0.1)
nu2=1e-6, K=3, n_units=[ 50, 15, ], rho=0.3, n_iter=50, xeta=0.01, n_batch=500, modelfile=[ './outdata/intermediate/enc_model.json', './outdata/intermediate/dec_model.json' ], weightfile=[ './outdata/intermediate/enc_weights.hdf5', './outdata/intermediate/dec_weights.hdf5' ]) # Learn embedding - accepts a networkx graph or file with edge list Y, t = embedding.learn_embedding(graph=G, is_weighted=True) # ev.evaluateNodeClassification() # print(Y) viz.plot_embedding2D(embedding.get_embedding(), di_graph=G, node_colors=None) plt.show() # print(Y) # # Evaluate on graph reconstruction # MAP, prec_curv, err, err_baseline = gr.evaluateStaticGraphReconstruction(G, embedding, Y, None)