Esempio n. 1
0
def changeTableFormat(hist_table, table_name):
    fields = [f.name for f in arcpy.ListFields(hist_table)]

    # converts a table to NumPy structured array.
    arr = arcpy.da.TableToNumPyArray(hist_table, fields)

    # convert numpy array to pandas dataframe
    df = pd.DataFrame(data=arr)
    #r## remove column
    del df['OBJECTID']
    print df

    ##perform a psuedo pivot table
    df = pd.melt(df,
                 id_vars=["LABEL"],
                 var_name="atlas_stco",
                 value_name="count")

    ##convert all column values to lowercase
    df.columns = map(str.lower, df.columns)

    #### format column in df #########################
    ## strip character string off all cells in column
    df['atlas_stco'] = df['atlas_stco'].map(lambda x: x.strip('atlas_'))
    ## add zero infront of string if length is less than 2
    df['atlas_stco'] = df['atlas_stco'].apply(lambda x: '{0:0>2}'.format(x))

    #### add columns to table ########################
    # df['yxc'] = yxc
    df['acres'] = gen.getAcres(df['count'], 30)
    # df['year'] = year

    #### join tables to aquire the state abreviation #########
    df = pd.merge(
        df,
        pd.read_sql_query(
            'SELECT atlas_stco,atlas_name,acres_calc FROM spatial.counties;',
            con=engine),
        on='atlas_stco')

    df['percent'] = (df.acres / df.acres_calc) * 100
    print df

    df.to_sql(table_name, engine, schema='counts', if_exists='replace')
Esempio n. 2
0
def dmlPGtable(data, yxc):
    #this is a sub function for addGDBTable2postgres()

    value = data['global']['years_conv']
    print value
    count = getDF(data, yxc)
    print count
    acres = gen.getAcres(count, int(data['global']['res']))
    print acres
    series = data['global']['instance'] + '_seperate'
    print series

    cur = conn.cursor()

    query = "INSERT INTO counts.{0}_{5}30_2008to2017_mmu5_separate (value, count, acres, series, yxc) VALUES ({1},{2},{3},'{4}','{5}')".format(
        data['global']['instance'], value, count, acres, series, yxc)

    print query
    cur.execute(query)

    conn.commit()
Esempio n. 3
0
def changeTableFormat(data, yxc, year, table):
	print('inside new', table)

	# arr = arcpy.da.TableToNumPyArray(table, '*')

	fields = [f.name for f in arcpy.ListFields(table)]

	# converts a table to NumPy structured array.
	arr = arcpy.da.TableToNumPyArray(table,fields)
	# print arr

	# convert numpy array to pandas dataframe
	df = pd.DataFrame(data=arr)
	#r## remove column
	del df['OBJECTID']
	print df

	##perform a psuedo pivot table
	df=pd.melt(df, id_vars=["LABEL"],var_name="atlas_st", value_name="count")


	df.columns = map(str.lower, df.columns)
    
    #### format column in df #########################
	## strip character string off all cells in column
	df['atlas_st'] = df['atlas_st'].map(lambda x: x.strip('Value_'))
	## add zero infront of string if length is less than 2
	df['atlas_st'] = df['atlas_st'].apply(lambda x: '{0:0>2}'.format(x))

	#### add columns to table ########################
	df['series'] = data['global']['instance']
	df['yxc'] = yxc
	df['acres'] = gen.getAcres(df['count'], 30)
	df['year'] = year

	#### join tables to get the state abreviation #########
	df = pd.merge(df, pd.read_sql_query('SELECT atlas_st,st_abbrev FROM spatial.states;',con=engine), on='atlas_st')
	print df

	return df
Esempio n. 4
0
def addGDBTable2postgresyo(raster, cy):
    print 'raster:', raster
    print 'cy:', cy

    tablename = raster

    # Execute AddField twice for two new fields
    fields = [f.name for f in arcpy.ListFields(tablename)]

    # converts a table to NumPy structured array.
    arr = arcpy.da.TableToNumPyArray(tablename, fields)
    print arr

    # # convert numpy array to pandas dataframe
    df = pd.DataFrame(data=arr)
    df.columns = map(str.lower, df.columns)
    print df

    df['year'] = cy
    df['acres'] = gen.getAcres(df['count'], 30)

    print df
    return df
Esempio n. 5
0
def main():
    arcpy.env.workspace = "C:\\Users\\Bougie\\Desktop\\Gibbs\\data\\usxp\\sa\\r2\\s21\\core\\core_s21.gdb"
    engine = create_engine(
        'postgresql://*****:*****@144.92.235.105:5432/usxp')

    df_list = []
    rasters = arcpy.ListRasters("*", "GRID")
    for raster in rasters:
        print(raster)
        print raster.split('_')[5]
        cy_dict = {
            '2008to2010': 2009,
            '2008to2011': 2010,
            '2009to2012': 2011,
            '2010to2013': 2012,
            '2011to2014': 2013,
            '2012to2015': 2014,
            '2013to2016': 2015,
            '2014to2017': 2016
        }
        cy = cy_dict.get(raster.split('_')[5])
        print 'cy-----------------', cy
        # df=addGDBTable2postgresyo(raster, cy)

        tablename = raster

        # Execute AddField twice for two new fields
        fields = [f.name for f in arcpy.ListFields(tablename)]

        # converts a table to NumPy structured array.
        arr = arcpy.da.TableToNumPyArray(tablename, fields)
        print arr

        # # convert numpy array to pandas dataframe
        df = pd.DataFrame(data=arr)
        df.columns = map(str.lower, df.columns)
        print df

        df = df.rename(columns={'value': 'mtr'})

        df['year'] = cy
        print df

        df['acres'] = gen.getAcres(df['count'], 30)

        print df

        df.to_sql('imw_{}'.format(str(cy)),
                  engine,
                  schema='counts_imw',
                  if_exists='replace')

        df_list.append(createDFfromQuery(cy))

    # ## MERGE all dataframes in list into one postgres table
    df_final = pd.concat(df_list)

    print 'df_final:', df_final

    df_final.to_sql('merged_imw',
                    engine,
                    schema='counts_imw',
                    if_exists='replace')

    pivotTableFromPostGres()
Esempio n. 6
0
def getAcres(group_counts):
    for key, value in group_counts.iteritems():
        print key, gen.getAcres(pixel_count=value, resolution=30)