Esempio n. 1
0
    def on_status(self, status):
        text = get_status_text(status, self.screen_name)

        if text is None:
            logging.info("Status %d is not relevant", status.id)
            return

        fp = io.BytesIO()

        generate_image(text, fp)

        self.api.update_with_media(
            "filename.png",
            file=fp,
            in_reply_to_status_id=status.id,
            auto_populate_reply_metadata=True,
        )
def shengcheng_image():
    strr = request.values.get('message')
    print strr
    url = generate_image(strr)
    return json.dumps({
        "code": 0,
        "images": url,
    })
Esempio n. 3
0
def find_points(width, height, min_x, max_x, min_y, max_y):
    """
	Calls the calculate() function on each point.

	Paramters:
	width, height: dimensions of the image/complex plane
	min_x, min_y: the minimum x and yi values for the plane
	max_x, max_y: the maximum x and yi values for the plane
	"""

    num = 0  # TODO: Fix arduino job status indicator
    print("True total points: ",
          width * height)  # TODO: Remove unnecessary prints
    results_txt = open('results.txt', 'w+')

    write_serial(b'1')
    totalJobs = width * height
    write_serial(bytes(str(totalJobs), encoding="utf-8"))

    x_step = (max_x - min_x) / width
    y_step = (max_y - min_y) / height

    current_point = [min_x, min_y]
    x_point = 1
    y_point = 1
    while y_point <= height:  # TODO: Fix precision issues (Perturbation or store in array)
        row = []
        while x_point <= width:
            point_result = calculate(*current_point)
            row.append(f"{point_result},{current_point[0]},{current_point[1]}")
            current_point[0] += x_step
            x_point += 1
            num += 1
        # TODO: Rewrite arduino progress indicator
        for point in row:
            results_txt.write(f"{point}\n")
        current_point[1] += y_step
        current_point[0] = min_x
        y_point += 1
        x_point = 1

    print("Total calculated points: ", num)
    results_txt.close()
    write_serial(b'9')
    write_serial(b'x')
    generate.generate_image(int(width), int(height))
Esempio n. 4
0
def generate_all_images():
    global IMAGES

    last_progress = time.time()

    print("Generating")
    words = [x.strip() for x in open("frees.txt", "r").readlines()]
    for i, word in enumerate(words):
        if time.time() - last_progress > 5:
            last_progress = time.time()
            print(i, "/", len(words))

        png_data = generate.image_to_png(generate.generate_image(word))

        IMAGES.append(png_data)

    print("Generated all images")
Esempio n. 5
0
#coding:utf-8

from generate import generate_image

a = generate_image(100)
a.check_font()
a.generate()
a.reset_config(text_mode='chinese',
               picnum=100,
               is_sample_from_corpus=False,
               dict_path='dic_num.txt')
a.generate()

#a=generate_image(0)
#a.check_font()
Esempio n. 6
0
            # divide by 2 or else loss is weighted 2x towards disc vs gen
            disc_loss = (real_loss + fake_loss) / 2
            total_disc_loss += disc_loss.data

            optimizer_d.zero_grad()
            disc_loss.backward()
            optimizer_d.step()

            progress_bar.set_description(
                f"epoch: {epoch} || disc loss: {total_disc_loss/batch_num} || gen loss: {total_gen_loss/batch_num}"
            )

        denom = opts.numImages // opts.batchSize

        avg_gen_loss = total_gen_loss / denom
        avg_disc_loss = total_disc_loss / denom
        losses[0].append(avg_gen_loss)
        losses[1].append(avg_disc_loss)

        torch.save(gen.state_dict(), './generator.pt')
        torch.save(disc.state_dict(), './discriminator.pt')
        generate_image(fixed_noise, epoch=epoch)

    # display loss graph
    plt.plot(losses[0], label="gen")
    plt.plot(losses[1], label="disc")
    plt.xlabel('epochs')
    plt.ylabel('loss')
    plt.legend(loc='upper left')
    plt.show()