Esempio n. 1
0
    #data_type = 'random'
    #full_data,Z_gen = generate_data(feature_count,data_count + held_out,T,sig,data_type)
    #Y = full_data[:data_count,:]
    #held_out = full_data[data_count:,:]
    iterate = 5000
    small_x = 3
    small_y = 3
    big_x = 3
    big_y = 3
    data_dim = (small_x,small_y,big_x,big_y)
    feature_count = big_x*big_y
    T = small_x*small_y*big_x*big_y
    data_type = 'corr'
    flag = 'nine'
    #full_data,Z_gen = generate_data(feature_count,data_count + held_out,T,sig,data_type)
    full_data,Z_gen = construct_data(small_x,small_y,big_x,big_y,data_count + held_out,sig,data_type,corr_value=2)
    Y = full_data[:data_count,:]
    held_out = full_data[data_count:,:]
    
    
    K = 1 #start with K features
    ext = 1 #draw one new feature per iteration
#    profile.run('ugibbs_sample(log_res,hold,Y,ext,sig,sig_w,iterate,K,valid)') 
    
    runs = 1
    ll_data = np.zeros((runs,iterate))
    ll_time = np.zeros((runs,iterate))
    feature = np.zeros((runs,iterate))
    lapse_data = np.zeros((runs,iterate))
    #pred_data = np.zeros((runs,iterate))
    valid = 0
Esempio n. 2
0
sig_test = sig
small_x = 3
small_y = 3
big_x = 2
big_y = 2
data_dim = (small_x, small_y, big_x, big_y)
feature_count = big_x * big_y
T = small_x * small_y * big_x * big_y
#data_type = 'random'
#data_type = 'special'
#data_type = 'random'
#data_type = 'debug'
data_type = 'debug-four'
flag = 'four'
#full_data,Z_gen = generate_data(feature_count,data_count + held_out,T,sig,data_type)
full_data, Z_gen = construct_data(data_dim, data_count + held_out, sig,
                                  data_type)
Y = full_data[:data_count, :]
held_out = full_data[data_count:, :]
#we observe half the signal and recover the other half
observe = held_out[:, :T / 2]
trunc = 12  #truncate active features

if algorithm == 'IBP':
    iterate = 200
    alpha = 2.0
    select = 12
    Z, W, ll_set, pred_ll = ugibbs_sampler(Y, held_out, alpha, sig_test, sig_w,
                                           iterate, select, trunc, data_dim)
    Z_trunc, W_trunc = truncate(Z, W, select)
    print_posterior(Z_trunc, W_trunc, data_dim)
    recover_ll = recover_IBP(held_out, observe, Z, W, sig_test)
Esempio n. 3
0
    held_out = 50
    sig = 0.1  #noise
    sig_w = 0.2  #feature deviation
    small_x = 3
    small_y = 3
    big_x = 3
    big_y = 3
    data_dim = (small_x, small_y, big_x, big_y)
    feature_count = big_x * big_y
    T = small_x * small_y * big_x * big_y
    select = 12
    data_type = 'corr'
    #full_data,Z_gen = generate_data(feature_count,data_count + held_out,T,sig,data_type)
    full_data, Z_gen = construct_data(data_dim,
                                      data_count + held_out,
                                      sig,
                                      data_type,
                                      corr_value=2)

    Y = full_data[:data_count, :]
    held_out = full_data[data_count:, :]
    Z, W, ll_set, pred_ll = ugibbs_sampler(Y, held_out, alpha, sig, sig_w,
                                           iterate, select)

    approx = np.dot(Z, W)
    for i in range(10):
        print("sample: " + str(i))
        print("features probability")
        #print(prob_matrix[i,:])
        print("features selected")
        print(Z[i, :])