args.num_bits_per_vector + 1)) eval_outputs = tf.placeholder(tf.float32, shape=(args.batch_size, None, args.num_bits_per_vector)) eval_model = BuildEvalModel(eval_max_seq_len, eval_inputs, eval_outputs) # training convergence_on_target_task = None convergence_on_multi_task = None performance_on_target_task = None performance_on_multi_task = None generalization_from_target_task = None generalization_from_multi_task = None if args.task == 'copy': data_generator = CopyTaskData() target_point = args.max_seq_len curriculum_point = 1 if args.curriculum not in ('prediction_gain', 'none') else target_point progress_error = 1.0 convergence_error = 0.1 if args.curriculum == 'prediction_gain': exp3s = Exp3S(args.max_seq_len, 0.001, 0, 0.05) elif args.task == 'associative_recall': data_generator = AssociativeRecallData() target_point = args.max_seq_len curriculum_point = 2 if args.curriculum not in ('prediction_gain', 'none') else target_point progress_error = 1.0 convergence_error = 0.1
print "# parameters", np.sum([ np.product([xi.value for xi in x.get_shape()]) for x in tf.all_variables() ]) # training convergence_on_target_task = None convergence_on_multi_task = None performance_on_target_task = None performance_on_multi_task = None generalization_from_target_task = None generalization_from_multi_task = None if args.task == 'copy': data_generator = CopyTaskData() target_point = args.max_seq_len curriculum_point = 1 if args.curriculum not in ('prediction_gain_bandit', 'prediction_gain_teacher', 'none') else target_point progress_error = 2.0 convergence_error = 0.4 if args.curriculum == 'prediction_gain_bandit': exp3s = Exp3S(args.max_seq_len, 0.001, 0, 0.05) if args.curriculum == 'prediction_gain_teacher': teacher = Teacher([i + 1 for i in range(args.max_seq_len)], 1, 2, 10) elif args.task == 'repeat_copy': data_generator = RepeatCopyTaskData(args.max_seq_len, args.max_repeats) target_point = (args.max_seq_len, args.max_repeats) curriculum_point = (1, 1) if args.curriculum not in (
performance_on_target_task = None performance_on_multi_task = None generalization_from_target_task = None generalization_from_multi_task = None multi_task_error = None target_task_error = None progress_error = None convergence_error = None target_point = None exp3s = None data_generator = None curriculum_point = None task = None if args.task == CopyTask.name: data_generator = CopyTaskData() target_point = args.max_seq_len curriculum_point = 1 if args.curriculum not in ( 'prediction_gain', 'none') else target_point progress_error = 1.0 convergence_error = 0.1 if args.curriculum == 'prediction_gain': exp3s = Exp3S(args.max_seq_len, 0.001, 0, 0.05) elif args.task == AssociativeRecallTask.name: data_generator = AssociativeRecallData() target_point = args.max_seq_len curriculum_point = 2 if args.curriculum not in ( 'prediction_gain', 'none') else target_point progress_error = 1.0 convergence_error = 0.1