Esempio n. 1
0
def test_LM_model(ndims, data_t, data_v):
    """
        Example that demonstrates how to call the model.
    """
    # get hyperparameters for model
    hyperp = get_hyperp()
    # generate 50 training data and 20 validation data locations of dim=1
    ndata = data_t  # Training Data
    ndata_v = data_v  # Validation Data
    pdata = ndims  # K
    X = generate_X(ndata, pdata)
    X_v = generate_X(ndata_v, pdata)
    # intialie true model randomly and draw observations from it
    true_model = EM_algo_LM(hyperp, ndata=ndata, pdata=pdata)
    Y, Z = generate_YZ(
        X, true_model
    )  # TODO : change distribution.draw to draw samples from the mixture model
    Y_v, Z_v = generate_YZ(X_v, true_model)
    print("Generated %d training data and %d validation data from true model:" % \
            (ndata, ndata_v))
    true_model.print_p()
    print("")

    # generate a model for estimating the parameters of the
    # true model based on the observations (X, Y) we just made
    model = EM_algo_LM(hyperp, X, Y)
    i, logl, r = model.EM_fit()
    print("Model fit (logl %.2f) after %d iterations (%s reached)" % \
            (logl, i, r))
    print("")
    print("MAP estimate of true model parameters:")
    model.print_p()
    print("")

    # crossvalidate the estimated model with the validation data
    fit_params = model.get_p()
    model_v = EM_algo_LM(hyperp, X_v, Y_v)
    model_v.set_p(fit_params)
    logl, ll = model_v.logl()
    print("Crossvalidated logl: %.2f" % (logl))

    # if possible, plot samples, true model and estimated model
    if pdata != 1:
        return
    plt.scatter(X, Y, s=20, c='black', label="Training data")
    plt.scatter(X_v, Y_v, s=20, c='orange', label="Validation data")
    x = arange(min(X) - 0.1, max(X) + 0.1, 0.1)
    print_linear_model(x, true_model.get_p()["phi"], \
            true_model.get_p()["sigma2"], 'red', "True model")
    print_linear_model(x, model.get_p()["phi"], \
            model.get_p()["sigma2"], 'blue', "Predicted model")
    plt.legend(loc=1)
    plt.xlim(min(x), max(x))
    plt.xlabel("x")
    plt.ylabel("y")
    plt.show()
Esempio n. 2
0
from em_algo_mm import EM_algo_MM
from em_algo_lm import EM_algo_LM
from generator import get_hyperp

from numpy import arange, min, max, sqrt, mean, std, hstack, vstack, shape, load, empty, save
from numpy.random import shuffle
import pandas as pd

NUM_EXP = 10

# get hyperparameters for model
hyperp = get_hyperp()
# load generated GMM model Data
path = "/Users/lixinyue/Documents/Machine_Learning_Advanced_Probabilistic_Methods/example_code_python_change/"
X = load(path + 'X.npy')
Y = load(path + 'Y.npy')
Z = load(path + 'Z.npy')
X_v = load(path + 'X_v.npy')
Y_v = load(path + 'Y_v.npy')
Z_v = load(path + 'Z_v.npy')

# generate a model for estimating the parameters of the
# true model based on the observations (X, Y) we just made
def GMM_fit(X,Y,X_v,Y_v):
    model = EM_algo_MM(hyperp, X, Y)
    i, logl_train, r = model.EM_fit()
    print("Model fit (logl %.2f) after %d iterations (%s reached)" % \
            (logl_train, i, r))
    print("")
    print("MAP estimate of true model parameters:")
    model.print_map()
Esempio n. 3
0
from em_algo_mm import EM_algo_MM
from em_algo_lm import EM_algo_LM
from generator import get_hyperp

from numpy import arange, min, max, sqrt, mean, std, hstack, vstack, shape, load, empty, save
from numpy.random import shuffle
import pandas as pd

NUM_EXP = 10

# get hyperparameters for model
hyperp = get_hyperp()
# load generated GMM model Data
path = "/Users/lixinyue/Documents/Machine_Learning_Advanced_Probabilistic_Methods/example_code_python_change/"
X = load(path + 'X.npy')
Y = load(path + 'Y.npy')
Z = load(path + 'Z.npy')
X_v = load(path + 'X_v.npy')
Y_v = load(path + 'Y_v.npy')
Z_v = load(path + 'Z_v.npy')


# generate a model for estimating the parameters of the
# true model based on the observations (X, Y) we just made
def GMM_fit(X, Y, X_v, Y_v):
    model = EM_algo_MM(hyperp, X, Y)
    i, logl_train, r = model.EM_fit()
    print("Model fit (logl %.2f) after %d iterations (%s reached)" % \
            (logl_train, i, r))
    print("")
    print("MAP estimate of true model parameters:")
Esempio n. 4
0
def test_MM_model(ndims, data_t, data_v, iters):
    """
        Example that demonstrates how to call the model.
    """
    # get hyperparameters for model
    hyperp = get_hyperp()
    # generate 50 training data and 20 validation data locations of dim=1
    ndata = data_t  # Training Data
    ndata_v = data_v  # Validation Data
    pdata = ndims  # K
    X = generate_X(ndata, pdata)
    X_v = generate_X(ndata_v, pdata)
    # intialize true model randomly and draw observations from it
    true_model = EM_algo_MM(hyperp, ndata=ndata, pdata=pdata)
    # true_model.print_p()
    Y, Z = generate_YZ(
        X, true_model
    )  # TODO : change distribution.draw to draw samples from the mixture model
    Y_v, Z_v = generate_YZ(X_v, true_model)
    print("Generated %d training data and %d validation data from true model:" % \
            (ndata, ndata_v))
    true_model.print_p()
    print("")

    lowest_mse = 999
    params = None
    for i in xrange(iters):
        # generate a model for estimating the parameters of the
        # true model based on the observations (X, Y) we just made
        model = EM_algo_MM(hyperp, X, Y)
        # model.print_p()
        i, logl, r = model.EM_fit()

        # plt.plot(model.get_loglVals())
        # plt.show()

        # plt.plot(vals)
        # plt.show()
        print("Model fit (logl %.2f) after %d iterations (%s reached)" % \
                (logl, i, r))
        print("")
        print("MAP estimate of true model parameters:")
        model.print_p()
        print("")

        # crossvalidate the estimated model with the validation data
        fit_params = model.get_p()
        model_v = EM_algo_MM(hyperp, X_v, Y_v)
        model_v.set_p(fit_params)
        logl, ll = model_v.logl()
        print("Crossvalidated logl: %.2f" % (logl))
        # print("DEBUG MSE")
        # print zip((Z_v*(X_v.dot(fit_params["phi_1"]))),((1-Z_v)*(X_v.dot(fit_params["phi_2"]))))
        error = mse((Z_v * X_v.dot(model_v.get_p()["phi_1"])) +
                    ((1 - Z_v) * X_v.dot(model_v.get_p()["phi_2"])), Y_v)
        if error < lowest_mse:
            lowest_mse = error
            params = fit_params
    print("LOWEST MSE = %.3f" % lowest_mse)
    print("lowest MSE model Params :")

    testmodel = EM_algo_MM(hyperp, ndata=ndata, pdata=pdata)
    testmodel.set_p(params)
    testmodel.print_p()
    testmodel = None

    print("TRUE Model MSE :")
    mse((Z_v * X_v.dot(true_model.get_p()["phi_1"])) +
        ((1 - Z_v) * X_v.dot(true_model.get_p()["phi_2"])), Y_v)
    # if possible, plot samples, true model and estimated model
    if pdata != 1:
        return
    plt.scatter(X, Y, s=20, c='black', label="Training data")
    # plt.scatter(X_v, Y_v, s=20, c='orange', label="Validation data")
    x = arange(min(X) - 0.1, max(X) + 0.1, 0.1)
    print_mixture_model(x, true_model.get_p()["phi_1"], true_model.get_p()["phi_2"], \
            true_model.get_p()["sigma2_1"], true_model.get_p()["sigma2_2"], 'red', "True model")
    print_mixture_model(x, model.get_p()["phi_1"], model.get_p()["phi_2"], \
                        model.get_p()["sigma2_1"], model.get_p()["sigma2_2"], 'blue', "Predicted model")
    plt.legend(loc=1)
    plt.xlim(min(x), max(x))
    plt.xlabel("x")
    plt.ylabel("y")
    plt.show()
    print "end"
Esempio n. 5
0
def main():
    """
        Executed when program is run.
    """
    ndims = int(sys.argv[1])
    data_t = int(sys.argv[2])
    data_v = 50

    # -------- Generating Data ---------
    # get hyperparameters for model
    hyperp = get_hyperp()
    # generate 50 training data and 20 validation data locations of dim=1
    ndata = data_t  # Training Data
    ndata_v = data_v  # Validation Data
    pdata = ndims  # K
    X = generate_X(ndata, pdata)
    X_v = generate_X(ndata_v, pdata)
    # intialie true model randomly and draw observations from it
    true_model = EM_algo_MM(hyperp, ndata=ndata, pdata=pdata)
    phi1 = true_model.get_p()["phi_1"]
    phi2 = true_model.get_p()["phi_2"]
    print(phi1)
    print(phi2)
    print("\x1b[31;m COSINE SIMILARITY = %.3f \x1b[0m" %
          (1 - cosine(phi1, phi2)))
    Y, Z = generate_YZ(
        X, true_model
    )  # TODO : change distribution.draw to draw samples from the mixture model
    Y_v, Z_v = generate_YZ(X_v, true_model)
    print("Generated %d training data and %d validation data from true model: %s" % \
            (ndata, ndata_v, true_model.get_model_type()))
    true_model.print_p()
    print("")
    # ----------------------------------
    print("Mixture Model")
    print("")
    test_MM_model(ndims=ndims,
                  data_t=data_t,
                  data_v=data_v,
                  hyperp=hyperp,
                  X=X,
                  Y=Y,
                  Z=Z,
                  X_v=X_v,
                  Y_v=Y_v,
                  Z_v=Z_v,
                  true_model=true_model,
                  iters=10)
    print("")
    print("Starting program")
    print("")
    test_LM_model(ndims=ndims,
                  data_t=data_t,
                  data_v=data_v,
                  hyperp=hyperp,
                  X=X,
                  Y=Y,
                  Z=Z,
                  X_v=X_v,
                  Y_v=Y_v,
                  Z_v=Z_v,
                  true_model=true_model,
                  iters=10)
    print("")