Esempio n. 1
0
def main(args=None):
    if len(sys.argv) is 3:
        model_path = str(sys.argv[1])
        dataset_path = str(sys.argv[2])
    else:
        print(
            "Pass model path and dataset path in respectively as command line argument"
        )
        exit()

    from generators.pascal import PascalVocGenerator
    from model import efficientdet
    import os

    os.environ['CUDA_VISIBLE_DEVICES'] = '0'

    phi = 4
    weighted_bifpn = False
    common_args = {
        'batch_size': 1,
        'phi': phi,
    }
    test_generator = PascalVocGenerator(dataset_path,
                                        'test',
                                        shuffle_groups=False,
                                        skip_truncated=False,
                                        skip_difficult=True,
                                        **common_args)
    model_path = model_path
    input_shape = (test_generator.image_size, test_generator.image_size)
    anchors = test_generator.anchors
    num_classes = test_generator.num_classes()
    model, prediction_model = efficientdet(phi=phi,
                                           num_classes=num_classes,
                                           weighted_bifpn=weighted_bifpn)
    prediction_model.load_weights(model_path, by_name=True)
    average_precisions = evaluate(test_generator,
                                  prediction_model,
                                  visualize=False)
    # compute per class average precision
    total_instances = []
    precisions = []
    for label, (average_precision,
                num_annotations) in average_precisions.items():
        print('{:.0f} instances of class'.format(num_annotations),
              test_generator.label_to_name(label),
              'with average precision: {:.4f}'.format(average_precision))
        total_instances.append(num_annotations)
        precisions.append(average_precision)
    mean_ap = sum(precisions) / sum(x > 0 for x in total_instances)
    print('mAP: {:.4f}'.format(mean_ap))
Esempio n. 2
0
 phi = 1
 weighted_bifpn = False
 common_args = {
     'batch_size': 1,
     'phi': phi,
 }
 test_generator = PascalVocGenerator('datasets/VOC2007',
                                     'test',
                                     shuffle_groups=False,
                                     skip_truncated=False,
                                     skip_difficult=True,
                                     **common_args)
 model_path = 'checkpoints/2019-12-03/pascal_05_0.6283_1.1975_0.8029.h5'
 input_shape = (test_generator.image_size, test_generator.image_size)
 anchors = test_generator.anchors
 num_classes = test_generator.num_classes()
 model, prediction_model = efficientdet(phi=phi,
                                        num_classes=num_classes,
                                        weighted_bifpn=weighted_bifpn)
 prediction_model.load_weights(model_path, by_name=True)
 average_precisions = evaluate(test_generator,
                               prediction_model,
                               visualize=False)
 # compute per class average precision
 total_instances = []
 precisions = []
 for label, (average_precision,
             num_annotations) in average_precisions.items():
     print('{:.0f} instances of class'.format(num_annotations),
           test_generator.label_to_name(label),
           'with average precision: {:.4f}'.format(average_precision))
Esempio n. 3
0
def main():

    generator = PascalVocGenerator(cfg.IMAGE_DIR,
                                   cfg.ANNOTATION_DIR,
                                   cfg.TEST_TEXT,
                                   classes=cfg.CLASSES,
                                   skip_difficult=True,
                                   train_data=False)

    num_classes = generator.num_classes()
    classes = list(generator.classes.keys())
    colors = [
        np.random.randint(0, 256, 3).tolist() for i in range(num_classes)
    ]
    model = centernet(num_classes,
                      score_threshold=cfg.SCORE_THRESHOLD,
                      nms=cfg.NMS,
                      flip_test=cfg.FLIP_TEST,
                      training=False)
    model.load_weights(model_path, by_name=True, skip_mismatch=True)

    for i in range(10):
        image = generator.load_image(i)
        #cv2.imwrite("./results/{}_o.jpg".format(i), image)
        src_image = image.copy()

        c = np.array([image.shape[1] / 2., image.shape[0] / 2.],
                     dtype=np.float32)
        s = max(image.shape[0], image.shape[1]) * 1.0

        tgt_w = generator.input_size
        tgt_h = generator.input_size
        image = generator.preprocess_image(image,
                                           c,
                                           s,
                                           tgt_w=tgt_w,
                                           tgt_h=tgt_h)

        if cfg.FLIP_TEST:
            flipped_image = image[:, ::-1]
            inputs = np.stack([image, flipped_image], axis=0)
        else:
            inputs = np.expand_dims(image, axis=0)

        detections = model.predict_on_batch(inputs)[0]

        scores = detections[:, 4]

        indices = np.where(scores > cfg.SCORE_THRESHOLD)[0]

        detections = detections[indices]
        detections_copy = detections.copy()
        detections = detections.astype(np.float64)
        trans = get_affine_transform(c, s, (tgt_w // 4, tgt_h // 4), inv=1)

        for j in range(detections.shape[0]):
            detections[j, 0:2] = affine_transform(detections[j, 0:2], trans)
            detections[j, 2:4] = affine_transform(detections[j, 2:4], trans)

        detections[:, [0, 2]] = np.clip(detections[:, [0, 2]], 0,
                                        src_image.shape[1])
        detections[:, [1, 3]] = np.clip(detections[:, [1, 3]], 0,
                                        src_image.shape[0])

        for detection in detections:
            xmin = int(round(detection[0]))
            ymin = int(round(detection[1]))
            xmax = int(round(detection[2]))
            ymax = int(round(detection[3]))
            score = '{:.4f}'.format(detection[4])
            class_id = int(detection[5])
            color = colors[class_id]
            class_name = classes[class_id]
            label = '-'.join([class_name, score])
            ret, baseline = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX,
                                            0.5, 1)

            cv2.rectangle(src_image, (xmin, ymin), (xmax, ymax), color, 1)
            cv2.rectangle(src_image, (xmin, ymax - ret[1] - baseline),
                          (xmin + ret[0], ymax), color, -1)
            cv2.putText(src_image, label, (xmin, ymax - baseline),
                        cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0), 1)
        #cv2.imwrite("./results/{}_r.jpg".format(i), src_image)
        cv2.imshow('image', src_image)
        cv2.waitKey(0)
Esempio n. 4
0
import os
import numpy as np
import time
from generators.utils import affine_transform, get_affine_transform
import os.path as osp

os.environ['CUDA_VISIBLE_DEVICES'] = '0'
generator = PascalVocGenerator(
    'datasets/VOC2007',
    'test',
    shuffle_groups=False,
    skip_truncated=False,
    skip_difficult=True,
)
model_path = 'checkpoints/2019-11-10/pascal_81_1.5415_3.0741_0.6860_0.7057_0.7209_0.7290.h5'
num_classes = generator.num_classes()
classes = list(generator.classes.keys())
flip_test = True
nms = True
keep_resolution = False
score_threshold = 0.1
colors = [np.random.randint(0, 256, 3).tolist() for i in range(num_classes)]
model, prediction_model, debug_model = centernet(
    num_classes=num_classes,
    nms=nms,
    flip_test=flip_test,
    freeze_bn=True,
    score_threshold=score_threshold)
prediction_model.load_weights(model_path, by_name=True, skip_mismatch=True)
for i in range(10):
    image = generator.load_image(i)