Esempio n. 1
0
def train(X,
          Y,
          args,
          increment=False,
          n_classes=10,
          exp=0,
          split=0,
          n_epochs=1):
    x_shape = [args.batch_size] + list(X.shape[1:])

    save_file = args.save_path + "exp_{}/model_split{}.ckpt".format(exp, split)

    with tf.Graph().as_default():
        dset = InputGenerator([None] + list(X.shape[1:]),
                              n_classes,
                              z_size=args.z_size,
                              batch_size=args.batch_size,
                              n_epochs=n_epochs)
        aae = AAE("train",
                  batch_size=args.batch_size,
                  n_epochs=n_epochs,
                  n_classes=n_classes,
                  z_size=args.z_size,
                  input_shape=x_shape)

        iterador = dset.create_train_generator()
        (x_input, y_input), (z_real, y_real) = iterador.get_next()

        # Estructura
        z_hat, y_hat = aae.encoder(x_input)
        x_recon = aae.decoder(z_hat, y_hat)

        dz_real = aae.discriminator_z(z_real)
        dz_fake = aae.discriminator_z(z_hat)
        dy_real = aae.discriminator_y(y_input)
        dy_fake = aae.discriminator_y(y_hat)

        _, y_tilde = aae.encoder(x_input, supervised=True)

        # Metricas
        acc, acc_op = tf.metrics.mean_per_class_accuracy(
            tf.argmax(y_input, -1), tf.argmax(y_tilde, -1), n_classes)
        mse, mse_op = tf.metrics.mean_squared_error(x_input, x_recon)

        # Costos
        ae_loss = tf.losses.log_loss(x_input, x_recon)
        clf_loss = tf.losses.softmax_cross_entropy(y_input, y_tilde)

        dz_real_loss = tf.losses.sigmoid_cross_entropy(tf.ones_like(dz_real),
                                                       dz_real)
        dz_fake_loss = tf.losses.sigmoid_cross_entropy(tf.zeros_like(dz_fake),
                                                       dz_fake)
        dz_loss = dz_real_loss + dz_fake_loss

        dy_real_loss = tf.losses.sigmoid_cross_entropy(tf.ones_like(dy_real),
                                                       dy_real)
        dy_fake_loss = tf.losses.sigmoid_cross_entropy(tf.zeros_like(dy_fake),
                                                       dy_fake)
        dy_loss = dy_real_loss + dy_fake_loss

        gz_loss = tf.losses.sigmoid_cross_entropy(tf.ones_like(dz_fake),
                                                  dz_fake)
        gy_loss = tf.losses.sigmoid_cross_entropy(tf.ones_like(dy_fake),
                                                  dy_fake)
        gen_loss = gz_loss + gy_loss

        # Training ops
        all_vars = tf.trainable_variables()
        dz_vars = [var for var in all_vars if "Discriminator_Z" in var.name]
        dy_vars = [var for var in all_vars if "Discriminator_Y" in var.name]
        enc_vars = [var for var in all_vars if "Encoder" in var.name]
        ae_vars = enc_vars + [var for var in all_vars if "Decoder" in var.name]

        if increment:
            increment_vars = [
                var for var in tf.global_variables() if "Y_" not in var.name
            ]
            increment_vars = [
                var for var in increment_vars
                if "Discriminator" not in var.name
            ]
            init_vars = [
                var for var in tf.global_variables() if "Y_" in var.name
            ]
            init_vars += [
                var for var in tf.global_variables()
                if "Discriminator" in var.name
            ]
        else:
            increment_vars = None
            init_vars = None

        step_tensor = tf.Variable(0, trainable=False, name="Step")
        learning_rate = 0.001
        update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)

        with tf.control_dependencies(update_ops):
            ae_opt = tf.train.AdamOptimizer(learning_rate).minimize(
                ae_loss, var_list=ae_vars, global_step=step_tensor)
            dz_opt = tf.train.AdamOptimizer(learning_rate).minimize(
                dz_loss, var_list=dz_vars)
            dy_opt = tf.train.AdamOptimizer(learning_rate).minimize(
                dy_loss, var_list=dy_vars)
            gen_opt = tf.train.AdamOptimizer(learning_rate).minimize(
                gen_loss, var_list=enc_vars)
            clf_opt = tf.train.AdamOptimizer(learning_rate).minimize(
                clf_loss, var_list=enc_vars)
            train_ops = tf.group([ae_opt, dz_opt, dy_opt, gen_opt, clf_opt])

        if increment:
            saver = tf.train.Saver(increment_vars)
        ckpt_saver = tf.train.Saver()

        with tf.Session() as sess:
            if increment:
                sess.run(tf.global_variables_initializer())
                saver.restore(
                    sess,
                    tf.train.latest_checkpoint(args.save_path +
                                               "exp_{}/".format(exp)))
                # sess.run(tf.variables_initializer(init_vars))
            else:
                sess.run(tf.global_variables_initializer())
            sess.run(tf.local_variables_initializer())

            #Cargar los datasets
            sess.run(iterador.initializer,
                     feed_dict={
                         dset.x_input: X,
                         dset.y_input: Y
                     })
            n_steps = (len(X) // args.batch_size) * n_epochs
            # Operacion de entrenamiento:
            with tqdm(desc="Train", total=n_steps, unit="Steps",
                      miniters=10) as pbar:
                try:
                    while True:
                        _, step, accuracy, msqer, _, _ = sess.run(
                            [train_ops, step_tensor, acc, mse, acc_op, mse_op])
                        pbar.update()
                        if step % 10 == 0:
                            pbar.set_postfix(Accuracy=accuracy,
                                             MSE=msqer,
                                             refresh=False)
                except tf.errors.OutOfRangeError:
                    pass
            ckpt_saver.save(sess, save_path=save_file)
        print("Done!")
Esempio n. 2
0
def train(X,
          Y,
          args,
          increment=False,
          n_classes=10,
          exp=0,
          split=0,
          n_epochs=1):
    x_shape = [args.batch_size] + list(X.shape[1:])
    y_shape = [args.batch_size] + list(Y.shape[1:])
    save_file = args.save_path + "exp_{}/model_split{}.ckpt".format(exp, split)
    monitor_path = args.monitor + "exp_{}/split_{}".format(exp, split)

    with tf.Graph().as_default():

        dset = InputGenerator([None] + list(X.shape[1:]),
                              n_classes=n_classes,
                              args.z_size,
                              batch_size=args.batch_size,
                              n_epochs=n_epochs)
        aae = AAE("train",
                  batch_size=args.batch_size,
                  n_epochs=n_epochs,
                  n_classes=n_classes,
                  z_size=args.z_size,
                  input_shape=x_shape)

        iterador = dset.create_train_generator()
        (x_input, y_input), (z_real, y_real) = iterador.get_next()
        # Estructura
        z_hat, y_hat = aae.encoder(x_input)

        pz = tf.sigmoid(z_hat + 1e-8)
        entropia = tf.reduce_mean(-tf.reduce_sum(pz * tf.log(pz), 1))
        #entropia = tf.reduce_mean(0.5*tf.norm(z_hat - z_real, ord=1, axis=1))
        x_recon = aae.decoder(z_hat, y_hat)

        dz_real = aae.discriminator_z(z_real)
        dz_fake = aae.discriminator_z(z_hat)
        dy_real = aae.discriminator_y(y_real)
        dy_fake = aae.discriminator_y(y_hat)

        _, y_tilde = aae.encoder(x_input, supervised=True)

        # Metricas
        acc, acc_op = tf.metrics.mean_per_class_accuracy(
            tf.argmax(y_input, -1), tf.argmax(y_tilde, -1), n_classes)
        mse, mse_op = tf.metrics.mean_squared_error(x_input, x_recon)

        # Costos
        ae_loss = tf.losses.log_loss(
            x_input, x_recon
        )  # tf.reduce_mean(aae.binary_crossentropy(x_input, x_recon))
        clf_loss = tf.losses.softmax_cross_entropy(
            y_input, y_tilde
        )  #tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y_input, logits=y_tilde))

        dz_real_loss = tf.losses.sigmoid_cross_entropy(
            tf.ones_like(dz_real), dz_real
        )  #tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(labels=tf.ones_like(dz_real), logits=dz_real))
        dz_fake_loss = tf.losses.sigmoid_cross_entropy(
            tf.zeros_like(dz_fake), dz_fake
        )  #tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(labels=tf.zeros_like(dz_fake), logits=dz_fake))
        dz_loss = dz_real_loss + dz_fake_loss

        dy_real_loss = tf.losses.sigmoid_cross_entropy(
            tf.ones_like(dy_real), dy_real
        )  #tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(labels=tf.ones_like(dy_real), logits=dy_real))
        dy_fake_loss = tf.losses.sigmoid_cross_entropy(
            tf.zeros_like(dy_fake), dy_fake
        )  #tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(labels=tf.zeros_like(dy_fake), logits=dy_fake))
        dy_loss = dy_real_loss + dy_fake_loss

        gz_loss = tf.losses.sigmoid_cross_entropy(
            tf.ones_like(dz_fake), dz_fake
        )  #tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(labels=tf.ones_like(dz_fake), logits=dz_fake))
        gy_loss = tf.losses.sigmoid_cross_entropy(
            tf.ones_like(dy_fake), dy_fake
        )  #tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(labels=tf.ones_like(dy_fake), logits=dy_fake))
        gen_loss = gz_loss + gy_loss

        # Training ops
        all_vars = tf.trainable_variables()
        dz_vars = [var for var in all_vars if "Discriminator_Z" in var.name]
        dy_vars = [var for var in all_vars if "Discriminator_Y" in var.name]
        enc_vars = [var for var in all_vars if "Encoder" in var.name]

        if increment:
            increment_vars = [
                var for var in tf.global_variables() if "Y_" not in var.name
            ]
            init_vars = [
                var for var in tf.global_variables() if "Y_" in var.name
            ]
        else:
            increment_vars = None
            init_vars = None

        step_tensor = tf.Variable(0, trainable=False, name="Step")
        #learning_rate = tf.train.polynomial_decay(0.005, global_step=step_tensor, decay_steps=20000, end_learning_rate=0.000001, power=2, name="Learning_rate")
        learning_rate = 0.001
        update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)

        with tf.control_dependencies(update_ops):
            ae_opt = tf.train.AdamOptimizer(learning_rate).minimize(
                ae_loss, global_step=step_tensor)
            dz_opt = tf.train.AdamOptimizer(learning_rate).minimize(
                dz_loss, var_list=dz_vars)
            dy_opt = tf.train.AdamOptimizer(learning_rate).minimize(
                dy_loss, var_list=dy_vars)
            gen_opt = tf.train.AdamOptimizer(learning_rate).minimize(
                gen_loss, var_list=enc_vars)
            clf_opt = tf.train.AdamOptimizer(learning_rate).minimize(
                clf_loss, var_list=enc_vars)
            train_ops = tf.group([ae_opt, dz_opt, dy_opt, gen_opt, clf_opt])

        # summaries
        tf.summary.scalar("Losses/AE_loss", ae_loss)
        tf.summary.scalar("Losses/Dis_Y_loss", dy_loss)
        tf.summary.scalar("Losses/Dis_Z_loss", dz_loss)
        tf.summary.scalar("Losses/Gen_loss", gen_loss)
        tf.summary.scalar("Losses/Clf_loss", clf_loss)
        tf.summary.scalar("Metrics/Accuracy", acc)
        tf.summary.scalar("Metrics/MSE", mse)
        tf.summary.scalar("Metrics/Entropy", entropia)
        #tf.summary.scalar("Metrics/LearningRate",learning_rate)
        tf.summary.histogram("Z_pred", z_hat)
        tf.summary.histogram("Z_real", z_real)
        tf.summary.image("X_Real", x_input, 10)
        tf.summary.image("X_Recon", x_recon, 10)
        summary_op = tf.summary.merge_all()

        if increment:
            saver = tf.train.Saver(increment_vars)
        ckpt_saver = tf.train.Saver()

        with tf.Session() as sess:
            if increment:
                sess.run(tf.global_variables_initializer())
                saver.restore(
                    sess,
                    tf.train.latest_checkpoint(args.save_path +
                                               "exp_{}/".format(exp)))
                # sess.run(tf.variables_initializer(init_vars))
            else:
                sess.run(tf.global_variables_initializer())
            sess.run(tf.local_variables_initializer())
            summary_writer = tf.summary.FileWriter(monitor_path)
            #Cargar los datasets
            sess.run(iterador.initializer,
                     feed_dict={
                         dset.x_input: X,
                         dset.y_input: Y
                     })
            n_steps = (len(X) // args.batch_size) * n_epochs
            # Operacion de entrenamiento:
            with tqdm(desc="Train", total=n_steps, unit="Steps",
                      miniters=10) as pbar:
                try:
                    while True:
                        _, step, accuracy, msqer, _, _, summary = sess.run([
                            train_ops, step_tensor, acc, mse, acc_op, mse_op,
                            summary_op
                        ])
                        summary_writer.add_summary(summary, step)
                        pbar.update()
                        if step % 10 == 0:
                            pbar.set_postfix(Accuracy=accuracy,
                                             MSE=msqer,
                                             refresh=False)

                except tf.errors.OutOfRangeError:
                    pass
            ckpt_saver.save(sess, save_path=save_file)
        print("Done!")
Esempio n. 3
0
def generate(X, Y, args, n_classes=10, exp=0, split=0, n_generados=1000):
    x_shape = [args.batch_size] + list(X.shape[1:])
    y_shape = [args.batch_size] + list(Y.shape[1:])
    save_file = args.save_path + "exp_{}/model_split{}.ckpt".format(exp, split)

    with tf.Graph().as_default():
        dset = InputGenerator([None] + list(X.shape[1:]),
                              n_classes,
                              args.z_size,
                              batch_size=args.batch_size,
                              n_epochs=1)
        aae = AAE("test",
                  batch_size=n_classes,
                  n_epochs=1,
                  n_classes=n_classes,
                  z_size=args.z_size,
                  input_shape=x_shape)

        iterador = dset.create_gen_generator()
        z_input, y_input = iterador.get_next()

        x_recon = aae.decoder(z_input, y_input)  #neutralizar los numeros
        _, y_tilde = aae.encoder(x_recon)
        acc, acc_op = tf.metrics.mean_per_class_accuracy(
            tf.argmax(y_input, -1), tf.argmax(y_tilde, -1), n_classes)

        saver = tf.train.Saver()
        with tf.Session() as sess:
            saver.restore(
                sess,
                tf.train.latest_checkpoint(args.save_path +
                                           "exp_{}/".format(exp)))
            sess.run(tf.local_variables_initializer())
            sess.run(iterador.initializer)

            X_gen = np.empty((0, 28, 28, 1), dtype=np.float32)  #[]
            Y_gen = np.empty((0, n_classes), dtype=np.float32)  #[]
            with tqdm(desc="Generador", unit="Steps") as pbar:
                while True:  #for step in pbar:
                    #y_clases = one_hot(np.random.randint(n_classes, size=args.batch_size), n_classes)
                    #Z = np.random.normal(0, 0.75, (args.batch_size, args.z_size))
                    x_p, y_p, y_clases, accuracy, _ = sess.run(
                        [x_recon, y_tilde, y_input, acc, acc_op])

                    pbar.update()
                    idx = (y_clases.argmax(-1) == y_p.argmax(-1)
                           )  # & (y_p.max(-1) >= 0.9)
                    # idx = np.argwhere(y_clases.argmax(-1) == y_p.argmax(-1)).squeeze()
                    X_gen = np.append(X_gen, x_p[idx], axis=0)  #+= [x_p[idx]]
                    Y_gen = np.append(Y_gen, y_p[idx], axis=0)  #+= [y_p[idx]]
                    ngen = np.bincount(Y_gen.argmax(-1)).mean()
                    pbar.set_postfix(Gen_Acc=accuracy,
                                     D_Gen=ngen,
                                     refresh=False)
                    if ngen >= n_generados:
                        break

            #print("Generated Acc={:02.3f}%".format(100*accuracy))
            assert len(X_gen) == len(Y_gen)
            #X_gen = np.concatenate(X_gen, axis=0)
            #Y_gen = np.concatenate(Y_gen, axis=0).argmax(-1)
            Y_gen = Y_gen.argmax(-1)

            gen_str = "Elementos:" + str(np.bincount(Y_gen)) + "\n"
            print(gen_str)
            # print("Elementos Generados por Clase:", np.bincount(Y_gen))
            return X_gen, Y_gen, gen_str
Esempio n. 4
0
def main(args):
    dataset = EMNIST()

    with open("res_exp2.txt", "w") as f:
        for exp in np.arange(1, args.n_exps+1): #Haremos 1 validacion por ahora
            #exp=1
            f.write("\n-- Experimento {}/{} --\n".format(exp, args.n_exps))#1, 1))#

            #Directorios de guardado
            create_dir(args.save_path + "exp_{}/".format(exp))

            np.random.seed(args.seed)
            #Entrenaremos la red con los datos iniciales de los digitos
            Xtrain, Ytrain = dataset.load_segment_of_data(np.arange(10), "train")
            Xtrain, Ytrain = shuffle(Xtrain, Ytrain, random_state=args.seed)
            Ytrain = one_hot(Ytrain, 10)

            train(Xtrain, Ytrain, args, n_classes=10, exp=exp, n_epochs=args.n_epochs)
            #Evaluamos el desempeño del modelo
            Xtest, Ytest = dataset.load_segment_of_data(np.arange(10), "test")
            Ytest = one_hot(Ytest, 10)
            eval_str = eval(Xtest, Ytest, args, n_classes=10, exp=1)
            f.write(eval_str)
            f.write("Letra;SoftmaxAcc;OpenMaxAcc;Deteccion;Errores\n")

            omax = get_train_fit(Xtrain, Ytrain, args, n_classes=10, exp=1)
            save_file = args.save_path + "exp_{}/model_split{}.ckpt".format(exp, 0)

            Xtest, Ytest = dataset.load_segment_of_data(np.arange(10), "test")
            with tf.Graph().as_default():
                dset = InputGenerator([None,28,28,1], 10, args.z_size, batch_size=args.batch_size, n_epochs=1)
                aae = AAE("test", batch_size=args.batch_size, z_size=args.z_size, n_epochs=1, n_classes=10)
                iterador = dset.create_test_generator()
                x_input = iterador.get_next()
                _, y_tilde = aae.encoder(x_input, supervised=True)

                saver = tf.train.Saver()
                with tf.Session() as sess:
                    saver.restore(sess, tf.train.latest_checkpoint(args.save_path + "exp_{}/".format(exp)))

                    for i in np.arange(10, dataset.n_classes):
                        Xc, Yc = dataset.load_segment_of_data([i], kind="train")
                        Xchar = np.concatenate([Xtest, Xc], 0)
                        Ychar = np.concatenate([Ytest, Yc], 0)
                        Ychar[Ychar>9] = 10

                        sess.run(iterador.initializer, {dset.x_input:Xchar})
                        eval_logits = np.empty((0, 10), dtype=np.float32)
                        try:
                            while True:
                                logit = sess.run(y_tilde)
                                eval_logits = np.append(eval_logits, logit, axis=0)
                        except tf.errors.OutOfRangeError:
                            pass

                        openmax = omax.evaluate(eval_logits, Ychar)
                        softmax = omax._softmax(eval_logits)

                        Ypred = np.where(openmax.max(-1) <= args.threshold, 10, openmax.argmax(-1))
                        sm_acc = accuracy_score(Ychar, softmax.argmax(-1))
                        om_acc = accuracy_score(Ychar, Ypred)

                        detect = len(np.intersect1d(np.argwhere(Ypred == 10).squeeze(), np.argwhere(Ychar == 10).squeeze()))/len(Yc)
                        mistakes = len(np.intersect1d(np.argwhere(Ypred == 10).squeeze(), np.argwhere(Ychar < 10).squeeze()))/len(Yc)
                        res_text = "{};{:2.3f};{:2.3f};{:2.3f};{:2.3f}\n".format(CARACTERES[i], 100*sm_acc, 100*om_acc, 100*detect, 100*mistakes)
                        print(res_text)
                        f.write(res_text)