def train(epoch): avg_loss = 0.0 epoch_time = 0 progbar = Progbar(len(train_loader.dataset) // c.batch_size) for num_iter, batch in enumerate(train_loader): start_time = time.time() wav = batch[0].unsqueeze(1) mel = batch[1].transpose(1, 2) lens = batch[2] target = batch[3] if use_cuda: wav = wav.cuda() mel = mel.cuda() target = target.cuda() current_step = num_iter + epoch * len(train_loader) + 1 optimizer.zero_grad() out = model(wav, mel) loss, fp, tp = criterion(out, target, lens) loss.backward() grad_norm, skip_flag = check_update(model, 5, 100) if skip_flag: optimizer.zero_grad() print(" | > Iteration skipped!!") continue optimizer.step() step_time = time.time() - start_time epoch_time += step_time # update progbar.update(num_iter+1, values=[('total_loss', loss.item()), ('grad_norm', grad_norm.item()), ('fp', fp), ('tp', tp) ]) avg_loss += loss.item()
def evaluate(epoch, ema): avg_loss = 0.0 epoch_time = 0 progbar = Progbar(len(val_loader.dataset) // c.eval_batch_size) ema_model = FFTNetModel(hid_channels=256, out_channels=256, n_layers=c.num_quant, cond_channels=80) ema_model = ema.assign_ema_model(model, ema_model, use_cuda) ema_model.eval() with torch.no_grad(): for num_iter, batch in enumerate(train_loader): start_time = time.time() wav = batch[0].unsqueeze(1) mel = batch[1].transpose(1, 2) lens = batch[2] target = batch[3] if use_cuda: wav = wav.cuda() mel = mel.cuda() target = target.cuda() current_step = num_iter + epoch * len(train_loader) + 1 out = ema_model(wav, mel) loss, fp, tp = criterion(out, target, lens) step_time = time.time() - start_time epoch_time += step_time # update progbar.update(num_iter + 1, values=[('total_loss', loss.item()), ('fp', fp), ('tp', tp)]) avg_loss += loss.item()
def evaluate(epoch): avg_loss = 0.0 epoch_time = 0 progbar = Progbar(len(val_loader.dataset) // c.eval_batch_size) with torch.no_grad(): for num_iter, batch in enumerate(train_loader): start_time = time.time() wav = batch[0].unsqueeze(1) mel = batch[1].transpose(1, 2) lens = batch[2] target = batch[3] if use_cuda: wav = wav.cuda() mel = mel.cuda() target = target.cuda() current_step = num_iter + epoch * len(train_loader) + 1 out = model(wav, mel) loss, fp, tp = criterion(out, target, lens) step_time = time.time() - start_time epoch_time += step_time # update progbar.update(num_iter+1, values=[('total_loss', loss.item()), ('grad_norm', grad_norm.item()), ('fp', fp), ('tp', tp) ]) avg_loss += loss.item()
def dl_progress(count, block_size, total_size): global progbar if total_size < 1000000: return if progbar is None: progbar = Progbar(total_size) else: progbar.update(count * block_size)
def train(epoch): avg_loss = 0.0 epoch_time = 0 progbar = Progbar(len(train_loader.dataset) // c.batch_size) if c.ema_decay > 0: ema = EMA(c.ema_decay) for name, param in model.named_parameters(): if param.requires_grad: ema.register(name, param) else: ema = None model.train() for num_iter, batch in enumerate(train_loader): start_time = time.time() wav = batch[0].unsqueeze(1) mel = batch[1].transpose(1, 2) lens = batch[2] target = batch[3] if use_cuda: wav = wav.cuda() mel = mel.cuda() target = target.cuda() current_step = num_iter + epoch * len(train_loader) + 1 optimizer.zero_grad() # out = torch.nn.parallel.data_parallel(model, (wav, mel)) out = model(wav, mel) loss, fp, tp = criterion(out, target, lens) loss.backward() grad_norm, skip_flag = check_update(model, 5, 100) if skip_flag: optimizer.zero_grad() print(" | > Iteration skipped!!") continue optimizer.step() # model ema if ema is not None: for name, param in model.named_parameters(): if name in ema.shadow: ema.update(name, param.data) step_time = time.time() - start_time epoch_time += step_time # update progbar.update(num_iter + 1, values=[('total_loss', loss.item()), ('grad_norm', grad_norm.item()), ('fp', fp), ('tp', tp)]) avg_loss += loss.item() return ema, avg_loss
def mainmodel(dro=0.4, lr=0.00005, threshold = 0.5, fn_weights = 1.0, model=modeltype, mini_batch=20, num_epochs=500, preload=preload): print("model:%s minibatch:%d num_epochs:%d dropout:%f learingrate:%f threshold:%f fn_weights:%f\n" %(model,mini_batch,num_epochs,dro,lr,threshold,fn_weights)) print('Preprocessing data...') for i in range(X_train.shape[0]): X_train[i,0] = preprocessing.scale(X_train[i,0]) X_train[i,1] = preprocessing.scale(X_train[i,1]) X_train[i,2] = preprocessing.scale(X_train[i,2]) for i in range(X_val.shape[0]): X_val[i,0] = preprocessing.scale(X_val[i,0]) X_val[i,1] = preprocessing.scale(X_val[i,1]) X_val[i,2] = preprocessing.scale(X_val[i,2]) print ('The shape of training data is' + str(X_train.shape)) print ('The shape of test data is' + str(X_val.shape)) # Prepare Theano variables for inputs and targets input_var = T.tensor4('input') target_var = T.matrix('targets') # target_var = T.matrix('targets') # Create neural network model (depending on first command line parameter) print("Building model and compiling functions...") # add input_var when needed in transfer learning model network = build_model(input_var=input_var,dro=dro) if preload: if model=='vgg': read_model_param(network['fc7'],modelloaddir, preload) else: read_model_param(network['pool5/7x7_s1'],modelloaddir, preload) print('pretrained model loaded') start_time = time.time() networkout = network['prob'] prediction = lasagne.layers.get_output(networkout) # disable dropout test_prediction = lasagne.layers.get_output(networkout, deterministic=True) # loss = lasagne.objectives.categorical_crossentropy(prediction, target_var) loss = fas_neg_entrop(prediction, target_var, fn_weights) loss = loss.mean() params = lasagne.layers.get_all_params(networkout, trainable=True) updates = lasagne.updates.adagrad( loss, params, learning_rate=lr, epsilon=1e-06) train_fn = theano.function([input_var, target_var], loss, updates=updates) getpred_fn = theano.function([input_var], prediction) getpred_test_fn = theano.function([input_var], test_prediction) print("Starting training...") time.time()-start_time # We iterate over epochs: # log the accuracy of each epoch fout = open('../log/xin_log_dro_' + str(dro) +'_lr_'+ str(lr) +'_ts_'+ str(threshold) + '.log', 'w+') list_sort = []#postive,negtive,epoch for epoch in range(num_epochs): # In each epoch, we do a full pass over the training data: fout.write('Epoch'+str(epoch)+'\n') print('Epoch',epoch) train_batches = 0 progbarcount = 0 progbar=Progbar(30) # log the probabilities of prediction in each epoch output_path = '../log/prediction_epoch_' + str(epoch) + '.out' output_path_train = '../log/train_epoch_' + str(epoch) + '.out' with file(output_path_train, 'wb') as outfile_train: for batch in iterate_minibatches(X_train, Y_train, mini_batch, shuffle=True): inputs, targets = batch # reshape to fit the loss function calculation targets = targets.reshape((targets.shape[0],1)) progbarcount = progbarcount + np.float(len(targets))/len(Y_train)*25 batch_pred_train = getpred_fn(inputs) if train_batches == 0: pred_train = batch_pred_train y_label_train = targets train_batches += 1 else: pred_train = np.concatenate((pred_train,batch_pred_train)) y_label_train = np.concatenate((y_label_train,targets)) train_batches += 1 np.savetxt(outfile_train, batch_pred_train, fmt='%-7.2f') err = train_fn(inputs, targets) outfile_train.close() progbar.update(progbarcount,values=[('train_batches',train_batches)]) # And a full pass over the validation data: val_batches = 0 with file(output_path, 'wb') as outfile: pred_val = [] for batch in iterate_minibatches(X_val, Y_val, np.min([mini_batch,len(Y_val)]), shuffle=True): inputs, targets = batch batch_pred_val = getpred_test_fn(inputs) if val_batches == 0: pred_val = batch_pred_val y_label_val = targets else: pred_val = np.concatenate((pred_val,batch_pred_val)) y_label_val = np.concatenate((y_label_val,targets)) np.savetxt(outfile, batch_pred_val, fmt='%-7.2f') val_batches += 1 outfile.close() progbar.update(30,values=[('val_batches',val_batches)]) ## For softmax # train_acc = get_acc(y_label_train, pred_train[:,1], threshold) # val_acc = get_acc(y_label_val, pred_val[:,1], threshold) # For sigmoid train_acc = get_acc(y_label_train, pred_train, threshold) val_acc = get_acc(y_label_val, pred_val, threshold) # img_save_path = '../log/curve_epoch_' + str(epoch) + '.png' # plot_recall_curve(y_label_val,pred_val,img_save_path) # all_param_values = lasagne.layers.get_all_param_values(networkout) # print ('Accuracy : {:.2f} %'.format(100*train_acc[0][0])) # print ('Precision : {:.2f} %'.format(100*train_acc[0][3])) # print ('Positive Recall: {:.2f} %'.format(100*train_acc[0][1])) # print ('Negtive Recall : {:.2f} %'.format(100*train_acc[0][2])) # # print ('Val Accuracy : {:.2f} %'.format(100*val_acc[0])) # print ('Val Precision : {:.2f} %'.format(100*val_acc[3])) # print ('Val Positive Recall: {:.2f} %'.format(100*val_acc[1])) # print ('Val Negtive Recall : {:.2f} %'.format(100*val_acc[2])) print ('Accuracy : {:.2f}% {:.2f}%'.format(100*train_acc[0][0], 100*val_acc[0])) print ('Precision : {:.2f}% {:.2f}%'.format(100*train_acc[0][3], 100*val_acc[3])) print ('Positive Recall: {:.2f}% {:.2f}%'.format(100*train_acc[0][1], 100*val_acc[1])) print ('Negtive Recall : {:.2f}% {:.2f}%'.format(100*train_acc[0][2], 100*val_acc[2])) if 0 == epoch: list_sort.append([val_acc[0],val_acc[3],val_acc[1],val_acc[2],epoch]) saveflag = True i = 0 while i< len(list_sort) and i < 30: if 1.0 == val_acc[1] and val_acc[2] < 0.1: saveflag = False break elif val_acc[1] > list_sort[i][2] and abs(train_acc[0][0]-val_acc[0])> 0.05 and train_acc[0][0] < 0.99: list_sort.insert(i, [val_acc[0],val_acc[3],val_acc[1],val_acc[2],epoch]) break elif val_acc[1] == list_sort[i][2] and val_acc[2] > list_sort[i][3] and \ abs(train_acc[0][0]-val_acc[0])> 0.05 and train_acc[0][0] < 0.99: list_sort.insert(i, [val_acc[0],val_acc[3],val_acc[1],val_acc[2],epoch]) break else: i +=1 if 30 == i: saveflag = False fout.write('Accuracy : {:.2f} %'.format(100*train_acc[0][0])) fout.write('Precision : {:.2f} %'.format(100*train_acc[0][3])) fout.write('Positive Recall: {:.2f} %'.format(100*train_acc[0][1])) fout.write('Negtive Recall : {:.2f} %'.format(100*train_acc[0][2])) fout.write('Val Accuracy : {:.2f} %'.format(100*val_acc[0])) fout.write('Val Precision : {:.2f} %'.format(100*val_acc[3])) fout.write('Val Positive Recall: {:.2f} %'.format(100*val_acc[1])) fout.write('Val Negtive Recall : {:.2f} %'.format(100*val_acc[2])) if True == saveflag: saveto = ('1w_zzz_jjy_qt_SavedModels_Epoch_' + str(epoch) + '_dro_' + str(dro) +'_lr_'+ str(lr) +'_ts_'+ str(threshold)+ '.params') write_model_param(networkout,modelsavedir,saveto) # After training, we compute and print the test error: for one in list_sort[:30]: print(one) fout.close() print ("Training Completed!") return 0
def mainmodel(model=modeltype, mini_batch=20, num_epochs=30, dro=0.7, lr=0.0001, preload=preload, saveto=saveto): print("model:%s minibatch:%d num_epochs:%d dropout:%f learingrate:%f\n" % (model, mini_batch, num_epochs, dro, lr)) # Load the dataset print("Loading data...") X_train, y_train, X_val, y_val, X_test, y_test = load_data() # Prepare Theano variables for inputs and targets input_var = T.tensor4('input') target_var = T.ivector('targets') # Create neural network model (depending on first command line parameter) print("Building model and compiling functions...") ## add input_var when needed in transfer learning model network = build_model(input_var=input_var, dro=dro) if preload: # with open(preload, 'r') as f: # data = pickle.load(f) # print(data) # lasagne.layers.set_all_param_values(model, data) if model == 'vgg': read_model_param(network['fc7'], modelloaddir, preload) else: read_model_param(network['pool5/7x7_s1'], modelloaddir, preload) print('pretrained model loaded') start_time = time.time() networkout = network['prob'] #networkout=network prediction = lasagne.layers.get_output(networkout) loss = lasagne.objectives.categorical_crossentropy(prediction, target_var) loss = loss.mean() acc = T.mean(T.eq(T.argmax(prediction, axis=1), target_var), dtype=theano.config.floatX) params = lasagne.layers.get_all_params(networkout, trainable=True) updates = lasagne.updates.adagrad(loss, params, learning_rate=lr, epsilon=1e-06) test_prediction = lasagne.layers.get_output(networkout, deterministic=True) test_loss = lasagne.objectives.categorical_crossentropy( test_prediction, target_var) test_loss = test_loss.mean() test_acc = T.mean(T.eq(T.argmax(test_prediction, axis=1), target_var), dtype=theano.config.floatX) train_fn = theano.function([input_var, target_var], [loss, acc], updates=updates) # Compile a second function computing the validation loss and accuracy: val_fn = theano.function([input_var, target_var], [test_loss, test_acc]) # Finally, launch the training loop. print("Starting training...") time.time() - start_time # We iterate over epochs: train_accuracy = [] train_losses = [] val_accuracy = [] val_losses = [] time_id = str(int(time.time())) #outfilename='./benchmark/'+model+'_'+str(mini_batch)+'_'+str(num_epochs)+'_'+str(dro)+'_'+str(lr)+'_'+time_id+'.txt' outfilename = './benchmark/' + model + '_' + str(mini_batch) + '_' + str( num_epochs) + '_' + str(dro) + '_' + str(lr) + '.txt' print(outfilename) outfile = open(outfilename, 'w') #outfile.write("model:%s mini_batch:%s num_epochs:%s dro:%s learningrate:%s\n" % (model,mini_batch,num_epochs,dro,lr)) for epoch in range(num_epochs): # In each epoch, we do a full pass over the training data: print('Epoch', epoch) train_err = 0 train_acc = 0 train_batches = 0 progbarcount = 0 progbar = Progbar(30) for batch in iterate_minibatches(X_train, y_train, mini_batch, shuffle=True): inputs, targets = batch progbarcount = progbarcount + np.float( len(targets)) / len(y_train) * 25 err, acc = train_fn(inputs, targets) train_err += err train_acc += acc train_batches += 1 #print(train_batches) progbar.update(progbarcount, values=[('acc', round(train_acc / train_batches, 3)), ('loss', round(train_err / train_batches, 3))]) train_accuracy.append(round(train_acc / train_batches, 3)) train_losses.append(round(train_err / train_batches, 3)) # And a full pass over the validation data: val_err = 0 val_acc = 0 val_batches = 0 for batch in iterate_minibatches(X_val, y_val, np.min([mini_batch, len(y_val)]), shuffle=False): inputs, targets = batch err, acc = val_fn(inputs, targets) val_err += err val_acc += acc val_batches += 1 #print(val_acc,val_err,val_batches) progbar.update(30, values=[('val_acc', round(val_acc / val_batches, 3)), ('val_loss', round(val_err / val_batches, 3))]) val_accuracy.append(round(val_acc / val_batches, 3)) val_losses.append(round(val_err / val_batches, 3)) # After training, we compute and print the test error: print(val_losses) ''' outfile.write('\n') outfile.write('train_acc: ') for it in train_accuracy: outfile.write('%s,' % it) outfile.write('\n') outfile.write('train_loss: ') for it in train_losses: outfile.write('%s,' % it) outfile.write('\n') outfile.write('val_acc: ') for it in val_accuracy: outfile.write('%s,' % it) outfile.write('\n') outfile.write('vall_loss: ') for it in val_losses: outfile.write('%s,' % it) outfile.write('\n') ''' test_err = 0 test_acc = 0 test_batches = 0 for batch in iterate_minibatches(X_val, y_val, np.min([mini_batch, len(y_val)]), shuffle=False): inputs, targets = batch err, acc = val_fn(inputs, targets) test_err += err test_acc += acc test_batches += 1 print("") print("Final results:") print(" test loss:\t\t\t{:.6f}".format(test_err / test_batches)) print(" test accuracy:\t\t{:.2f} %".format(test_acc / test_batches * 100)) #outfile.write('\n') #outfile.write("test accuracy:\t\t{:.2f} %".format(test_acc / test_batches * 100)) outfile.write("test accuracy:\t{:.2f}".format(test_acc / test_batches)) outfile.close() write_model_param(networkout, modelsavedir, saveto) return train_err / train_batches, train_acc / train_batches * 100, val_err / val_batches, val_acc / val_batches * 100
def mainmodel(dro=0.4, lr=0.00005, threshold = 0.5, fn_weights = 1.0, model=modeltype, mini_batch=20,num_epochs=100, preload=preload): print("model:%s minibatch:%d num_epochs:%d dropout:%f learingrate:%f threshold:%f fn_weights:%f\n" %(model,mini_batch,num_epochs,dro,lr,threshold,fn_weights)) print('Preprocessing data...') for i in range(X_train.shape[0]): X_train[i,0] = preprocessing.scale(X_train[i,0]) X_train[i,1] = preprocessing.scale(X_train[i,1]) X_train[i,2] = preprocessing.scale(X_train[i,2]) for i in range(X_val.shape[0]): X_val[i,0] = preprocessing.scale(X_val[i,0]) X_val[i,1] = preprocessing.scale(X_val[i,1]) X_val[i,2] = preprocessing.scale(X_val[i,2]) print ('The shape of training data is' + str(X_train.shape)) print ('The shape of test data is' + str(X_val.shape)) # Prepare Theano variables for inputs and targets input_var = T.tensor4('input') target_var = T.matrix('targets') # target_var = T.matrix('targets') # Create neural network model (depending on first command line parameter) print("Building model and compiling functions...") # add input_var when needed in transfer learning model network = build_model(input_var=input_var,dro=dro) if preload: if model=='vgg': read_model_param(network['fc7'],modelloaddir, preload) else: read_model_param(network['pool5/7x7_s1'],modelloaddir, preload) print('pretrained model loaded') start_time = time.time() networkout = network['prob'] prediction = lasagne.layers.get_output(networkout) # disable dropout test_prediction = lasagne.layers.get_output(networkout, deterministic=True) # loss = lasagne.objectives.categorical_crossentropy(prediction, target_var) loss = fas_neg_entrop(prediction, target_var, fn_weights) loss = loss.mean() params = lasagne.layers.get_all_params(networkout, trainable=True) updates = lasagne.updates.adagrad( loss, params, learning_rate=lr, epsilon=1e-06) train_fn = theano.function([input_var, target_var], loss, updates=updates) getpred_fn = theano.function([input_var], prediction) getpred_test_fn = theano.function([input_var], test_prediction) print("Starting training...") time.time()-start_time # We iterate over epochs: # log the accuracy of each epoch fout = open('../log/xin_log_dro_' + str(dro) +'_lr_'+ str(lr) +'_ts_'+ str(threshold) + '.log', 'w+') list_sort = []#postive,negtive,epoch list_sort.append([0,0,0,0,0]) for epoch in range(num_epochs): # In each epoch, we do a full pass over the training data: fout.write('Epoch'+str(epoch)+'\n') print('Epoch',epoch) train_batches = 0 progbarcount = 0 progbar=Progbar(30) # log the probabilities of prediction in each epoch output_path = '../log/prediction_epoch_' + str(epoch) + '.out' output_path_train = '../log/train_epoch_' + str(epoch) + '.out' with file(output_path_train, 'wb') as outfile_train: for batch in iterate_minibatches(X_train, Y_train, mini_batch, shuffle=True): inputs, targets = batch # reshape to fit the loss function calculation targets = targets.reshape((targets.shape[0],1)) progbarcount = progbarcount + np.float(len(targets))/len(Y_train)*25 batch_pred_train = getpred_fn(inputs) if train_batches == 0: pred_train = batch_pred_train y_label_train = targets train_batches += 1 else: pred_train = np.concatenate((pred_train,batch_pred_train)) y_label_train = np.concatenate((y_label_train,targets)) train_batches += 1 np.savetxt(outfile_train, batch_pred_train, fmt='%-7.2f') err = train_fn(inputs, targets) outfile_train.close() progbar.update(progbarcount,values=[('train_batches',train_batches)]) # And a full pass over the validation data: val_batches = 0 with file(output_path, 'wb') as outfile: pred_val = [] pred = [] for batch in iterate_minibatches(X_val, Y_val, np.min([mini_batch,len(Y_val)]), shuffle=False): inputs, targets = batch batch_pred_val = getpred_test_fn(inputs) pdd = getpred_test_fn(inputs) if val_batches == 0: pred_val = batch_pred_val y_label_val = targets else: pred_val = np.concatenate((pred_val,batch_pred_val)) y_label_val = np.concatenate((y_label_val,targets)) np.savetxt(outfile, batch_pred_val, fmt='%-7.2f') val_batches += 1 pred.append(pdd) np.save(modelsavedir+str(epoch) +'.npy',pred) outfile.close() progbar.update(30,values=[('val_batches',val_batches)]) ## For softmax # train_acc = get_acc(y_label_train, pred_train[:,1], threshold) # val_acc = get_acc(y_label_val, pred_val[:,1], threshold) # For sigmoid train_acc = get_acc(y_label_train, pred_train, threshold) val_acc = get_acc(y_label_val, pred_val, threshold) # img_save_path = '../log/curve_epoch_' + str(epoch) + '.png' # plot_recall_curve(y_label_val,pred_val,img_save_path) # all_param_values = lasagne.layers.get_all_param_values(networkout) # print ('Accuracy : {:.2f} %'.format(100*train_acc[0][0])) # print ('Precision : {:.2f} %'.format(100*train_acc[0][3])) # print ('Positive Recall: {:.2f} %'.format(100*train_acc[0][1])) # print ('Negtive Recall : {:.2f} %'.format(100*train_acc[0][2])) # # print ('Val Accuracy : {:.2f} %'.format(100*val_acc[0])) # print ('Val Precision : {:.2f} %'.format(100*val_acc[3])) # print ('Val Positive Recall: {:.2f} %'.format(100*val_acc[1])) # print ('Val Negtive Recall : {:.2f} %'.format(100*val_acc[2])) print ('Accuracy : {:.2f} % {:.2f} %'.format(100*train_acc[0][0], 100*val_acc[0])) print ('Precision : {:.2f} % {:.2f} %'.format(100*train_acc[0][3], 100*val_acc[3])) if 0.9 <= val_acc[1] and val_acc[1]<0.98 and val_acc[2]>0.25: print('----------------------------------------------------------------------------') print ('Positive Recall: {:.2f} % {:.2f} %'.format(100*train_acc[0][1], 100*val_acc[1])) if 0.9 <= val_acc[1] and val_acc[1]<0.98 and val_acc[2]>0.25: print('----------------------------------------------------------------------------') print ('Negtive Recall : {:.2f} % {:.2f} %'.format(100*train_acc[0][2], 100*val_acc[2])) if 1 == len(list_sort) and 0.9 <= val_acc[1] and val_acc[1]<0.98 and val_acc[2]>=0.25: list_sort.insert(0, [val_acc[0],val_acc[3],val_acc[1],val_acc[2],epoch]) saveflag = True i = 0 while i< min(len(list_sort),50) and 1 <> len(list_sort) and 0.9 <= val_acc[1] and val_acc[1]<0.98 and val_acc[2]>=0.25: if val_acc[1] > list_sort[i][2] and abs(train_acc[0][1]-val_acc[1])< 0.1 and train_acc[0][0] < 0.98: list_sort.insert(i, [val_acc[0],val_acc[3],val_acc[1],val_acc[2],epoch]) break elif val_acc[1] == list_sort[i][2] and val_acc[2] > list_sort[i][3] and \ abs(train_acc[0][1]-val_acc[1])< 0.1 and train_acc[0][0] < 0.98: list_sort.insert(i, [val_acc[0],val_acc[3],val_acc[1],val_acc[2],epoch]) break else: i +=1 if 1==len(list_sort) or 0.9 > val_acc[1] or val_acc[1]>=0.98 or val_acc[2]<0.25: saveflag = False fout.write('Accuracy : {:.2f} %'.format(100*train_acc[0][0])) fout.write('Precision : {:.2f} %'.format(100*train_acc[0][3])) fout.write('Positive Recall: {:.2f} %'.format(100*train_acc[0][1])) fout.write('Negtive Recall : {:.2f} %'.format(100*train_acc[0][2])) fout.write('Val Accuracy : {:.2f} %'.format(100*val_acc[0])) fout.write('Val Precision : {:.2f} %'.format(100*val_acc[3])) fout.write('Val Positive Recall: {:.2f} %'.format(100*val_acc[1])) fout.write('Val Negtive Recall : {:.2f} %'.format(100*val_acc[2])) if True == saveflag: saveto = ('1w_3k_7k_SavedModels_Epoch_'+str(round(val_acc[1],2)*10)+'_'+str(round(val_acc[2],2)*10)+'_' + str(epoch) + '_dro_' + str(dro) +'_lr_'+ str(lr) +'_ts_'+ str(threshold)+ '.params') write_model_param(networkout,modelsavedir,saveto) else: time.sleep(30) for one in list_sort[:50]: print(one) # After training, we compute and print the test error: fout.close() print ("Training Completed!") return 0
def dl_progress(count, block_size, total_size): global progbar if progbar is None: progbar = Progbar(total_size) else: progbar.update(count * block_size)
def dl_progress(count, block_size, total_size, progbar=None): if progbar is None: progbar = Progbar(total_size) else: progbar.update(count * block_size)
def mainmodel(model=modeltype, mini_batch=20,num_epochs=30, dro=0.7,lr=0.0001, preload=preload,saveto=saveto): print("model:%s minibatch:%d num_epochs:%d dropout:%f learingrate:%f\n" % (model,mini_batch,num_epochs,dro,lr)) # Load the dataset print("Loading data...") X_train, y_train, X_val, y_val, X_test, y_test = load_data() # Prepare Theano variables for inputs and targets input_var = T.tensor4('input') target_var = T.ivector('targets') # Create neural network model (depending on first command line parameter) print("Building model and compiling functions...") ## add input_var when needed in transfer learning model network = build_model(input_var=input_var,dro=dro) if preload: # with open(preload, 'r') as f: # data = pickle.load(f) # print(data) # lasagne.layers.set_all_param_values(model, data) if model=='vgg': read_model_param(network['fc7'],modelloaddir, preload) else: read_model_param(network['pool5/7x7_s1'],modelloaddir, preload) print('pretrained model loaded') start_time = time.time() networkout=network['prob'] #networkout=network prediction = lasagne.layers.get_output(networkout) loss = lasagne.objectives.categorical_crossentropy(prediction, target_var) loss = loss.mean() acc = T.mean(T.eq(T.argmax(prediction, axis=1), target_var), dtype=theano.config.floatX) params = lasagne.layers.get_all_params(networkout, trainable=True) updates = lasagne.updates.adagrad( loss, params, learning_rate=lr, epsilon=1e-06) test_prediction = lasagne.layers.get_output(networkout, deterministic=True) test_loss = lasagne.objectives.categorical_crossentropy(test_prediction, target_var) test_loss = test_loss.mean() test_acc = T.mean(T.eq(T.argmax(test_prediction, axis=1), target_var), dtype=theano.config.floatX) train_fn = theano.function([input_var, target_var], [loss,acc], updates=updates) # Compile a second function computing the validation loss and accuracy: val_fn = theano.function([input_var, target_var], [test_loss, test_acc]) # Finally, launch the training loop. print("Starting training...") time.time()-start_time # We iterate over epochs: train_accuracy=[] train_losses=[] val_accuracy=[] val_losses=[] time_id=str(int(time.time())) #outfilename='./benchmark/'+model+'_'+str(mini_batch)+'_'+str(num_epochs)+'_'+str(dro)+'_'+str(lr)+'_'+time_id+'.txt' outfilename='./benchmark/'+model+'_'+str(mini_batch)+'_'+str(num_epochs)+'_'+str(dro)+'_'+str(lr)+'.txt' print (outfilename) outfile=open(outfilename,'w') #outfile.write("model:%s mini_batch:%s num_epochs:%s dro:%s learningrate:%s\n" % (model,mini_batch,num_epochs,dro,lr)) for epoch in range(num_epochs): # In each epoch, we do a full pass over the training data: print('Epoch',epoch) train_err = 0 train_acc = 0 train_batches = 0 progbarcount = 0 progbar=Progbar(30) for batch in iterate_minibatches(X_train, y_train, mini_batch, shuffle=True): inputs, targets = batch progbarcount = progbarcount + np.float(len(targets))/len(y_train)*25 err, acc = train_fn(inputs, targets) train_err += err train_acc += acc train_batches += 1 #print(train_batches) progbar.update(progbarcount,values=[('acc',round(train_acc/train_batches,3)), ('loss',round(train_err/train_batches,3))]) train_accuracy.append(round(train_acc/train_batches,3)) train_losses.append(round(train_err/train_batches,3)) # And a full pass over the validation data: val_err = 0 val_acc = 0 val_batches = 0 for batch in iterate_minibatches(X_val, y_val, np.min([mini_batch,len(y_val)]), shuffle=False): inputs, targets = batch err, acc = val_fn(inputs, targets) val_err += err val_acc += acc val_batches += 1 #print(val_acc,val_err,val_batches) progbar.update(30,values=[('val_acc',round(val_acc/val_batches,3)), ('val_loss',round(val_err/val_batches,3))]) val_accuracy.append(round(val_acc/val_batches,3)) val_losses.append(round(val_err/val_batches,3)) # After training, we compute and print the test error: print (val_losses) ''' outfile.write('\n') outfile.write('train_acc: ') for it in train_accuracy: outfile.write('%s,' % it) outfile.write('\n') outfile.write('train_loss: ') for it in train_losses: outfile.write('%s,' % it) outfile.write('\n') outfile.write('val_acc: ') for it in val_accuracy: outfile.write('%s,' % it) outfile.write('\n') outfile.write('vall_loss: ') for it in val_losses: outfile.write('%s,' % it) outfile.write('\n') ''' test_err = 0 test_acc = 0 test_batches = 0 for batch in iterate_minibatches(X_val, y_val, np.min([mini_batch,len(y_val)]), shuffle=False): inputs, targets = batch err, acc = val_fn(inputs, targets) test_err += err test_acc += acc test_batches += 1 print("") print("Final results:") print(" test loss:\t\t\t{:.6f}".format(test_err / test_batches)) print(" test accuracy:\t\t{:.2f} %".format( test_acc / test_batches * 100)) #outfile.write('\n') #outfile.write("test accuracy:\t\t{:.2f} %".format(test_acc / test_batches * 100)) outfile.write("test accuracy:\t{:.2f}".format(test_acc / test_batches)) outfile.close() write_model_param(networkout,modelsavedir,saveto) return train_err/train_batches, train_acc/train_batches * 100, val_err/val_batches, val_acc/val_batches * 100