Esempio n. 1
0
def initClasses(param):
    # The Network class
    net = network.Network(param)
    # The Genetic Algorithm class
    ga = genetic.geneticAlgorithm(param)
    # The class with comparison functions
    com = network.compare()
    return net, ga, com
Esempio n. 2
0
def initClasses(param, MPI, groupSize, networkFitness):
    # The Network class
    net = network.Network(param)
    # The Genetic Algorithm class
    ga = genetic.geneticAlgorithm(param)
    # The class with comparison functions
    com = network.compare(networkFitness)
    # The MPI class
    pd = parallel.parallelDistributed(MPI, groupSize, param)
    return net, ga, com, pd
Esempio n. 3
0
def find_tour():
    global last_update_ts
    global traffic_analyzer
    curr_ts = time()
    if curr_ts - last_update_ts > 1000:
        # update traffic data
        traffic_analyzer = TrafficAnalyzer()
        last_update_ts = curr_ts
        print('Traffic data updated at', str(datetime.now()))
    try:
        data = request.get_json()
        W = data['W']
        R = data['R']
        if 'custom_hour' not in data:
            traffic_analyzer.scale_weights(W, R)
        else:
            get_analyzer(int(data['custom_hour'])).scale_weights(W, R)
        tour = geneticAlgorithm(W, int(len(W)**2))
        res = {'tour': tour}
        return make_response(jsonify(res), 200)
    except:
        return make_response('{"code": 1, "message": "fail"}', 400)
Esempio n. 4
0
			# visualization
			print("Best Found [(score, genrow)]:", best, ", Mutation number:", count+1)
			time.sleep(0.5)

			# continue with new gene row to mutate
			bestMel = orderedTuple[-1][1]

			lastGen = generation[-1][1]

		count += 1

	return ("Winning Generation[(score, genrow), (nextBestScore, nextBestGenRow), ...]:"), generation, ("Amount of mutations needed:"), count


# print(mutateGood(data.mel, 2, []))
print(geneticAlgorithm(1000, data.mel, data.mir))

# testArray1 = [2,3,1,4,5]
# testArray2 = [3,2,1,5,4]
# testArray3 = [1,2,3,4,5]
# print(scoreTest2(testArray1))
# print(scoreTest2(testArray2))
# print(scoreTest2(testArray3))


def experimentGraph(length):
    # while length > 3:
    for j in range(10):
        title = "steepestAscend; N = " + str(length)
        gen1 = [*range(1,length + 1)]
        gen2 = [*range(1,length + 1)]