# -*- coding: utf-8 -*- """ Created on Mon Mar 6 15:51:35 2017 @author: Alon """ import nnDNA as dna import geneticLib.Evolution as Evo import basicLib.loadAndTest as orig users = orig.loadAndUpdateFeatures( '../input/users_2014_actions_combined_device.csv') args = {'users': users} dnaArg = {'dna': dna, 'args': args} Ev = Evo.Evolution(dnaArg, usePrints=True, populationSize=6, numOfEvolutionSteps=10, mutationFactor=0.1) Ev.run()
# -*- coding: utf-8 -*- """ Created on Wed Mar 1 13:41:01 2017 @author: Alon """ import featureDNA as dna import geneticLib.Evolution as Evo Ev = Evo.Evolution(dna, usePrints=True, populationSize=15, numOfEvolutionSteps=10) Ev.run()
# -*- coding: utf-8 -*- """ Created on Wed Mar 1 13:41:01 2017 @author: Alon """ import featureDNA as dna import geneticLib.Evolution as Evo import basicLib.loadAndTest as orig users = orig.loadAndUpdateFeatures('../input/users_2014_sessions_norm.csv') args = {'users': users} dnaArg = {'dna': dna, 'args': args} Ev = Evo.Evolution(dnaArg, usePrints=True, populationSize=60, numOfEvolutionSteps=15) Ev.run()
""" import featureDNA as dna import geneticLib.Evolution as Evo import basicLib.loadAndTest as orig from sklearn import tree predictMethod = tree.DecisionTreeClassifier() users = orig.loadAndUpdateFeatures('../input/users_2014_sessions_norm.csv') args = {'users': users, 'predictMethod': predictMethod} dnaArg = {'dna': dna, 'args': args} features1 = [ 'action_toggle_archived_thread_##_click_##_toggle_archived_thread' ] features2 = [ 'affiliate_provider', 'first_affiliate_tracked', 'first_browser', 'first_device_type', 'gender', 'language', 'signup_app', 'signup_method', 'signup_flow' ] genesList = [features1, features2] hotStart = { 'numOfGenes': len(genesList), 'genesList': genesList } # genes is a list of list (list of list of feturs) Ev = Evo.Evolution(dnaArg, usePrints=True, populationSize=20, numOfEvolutionSteps=60, hotStart=hotStart) Ev.run()
# -*- coding: utf-8 -*- """ Created on Mon Mar 6 15:51:35 2017 @author: Alon """ import nnDNA as dna import geneticLib.Evolution as Evo import basicLib.loadAndTest as orig import pandas as pd users, yRes = orig.loadAndUpdateFeatures('../input/train_users.csv') users = pd.concat([users, yRes], axis=1) args = {'users': users} dnaArg = {'dna': dna, 'args': args} Ev = Evo.Evolution(dnaArg, usePrints=True, populationSize=20, numOfEvolutionSteps=60, mutationFactor=0.1, bestMovesOn=2) Ev.run()