Esempio n. 1
0
def make_matrix(samples, callers, annot_header, annot_data, named_data,
                call_data):
    # annot_header  list of headers for annot_data.
    # annot_data    list of tuples:  chrom, pos, ref, alt[, more]
    # named_data    list of (name, headers, all_annots)
    # call_data     list of tuples: chrom, pos, ref, alt, sample, caller, call
    # chrom   string
    # pos     int
    # ref     string
    # alt     string
    # sample  string
    # caller  string
    # call    Call object
    from genomicode import AnnotationMatrix

    # Make sure there's no duplicates.
    assert annot_header[:4] == ["Chrom", "Pos", "Ref", "Alt"]
    seen = {}
    for x in annot_data:
        x = x[:4]
        x = tuple(x)
        assert x not in seen, "Duplicate"
        seen[x] = 1

    # Make annotation matrix.
    for x in annot_data:
        assert len(x) == len(annot_header)
    headers = annot_header
    all_annots = []
    for i in range(len(headers)):
        x = [x[i] for x in annot_data]
        all_annots.append(x)
    annot_matrix = AnnotationMatrix.create_from_annotations(
        headers, all_annots)

    # Make named matrices.
    named_matrices = []
    for x in named_data:
        name, headers, all_annots = x
        matrix = AnnotationMatrix.create_from_annotations(headers, all_annots)
        x = name, matrix
        named_matrices.append(x)

    # Make call matrix.
    call_matrix = SparseCallMatrix(call_data)

    return SimpleVariantMatrix(samples, callers, annot_matrix, named_matrices,
                               call_matrix)
def add_snpeff_to_svm(svm_file, snpeff_file, outfile):
    import shutil
    from genomicode import filelib
    from genomicode import SimpleVariantMatrix
    from genomicode import AnnotationMatrix

    if not filelib.exists_nz(snpeff_file):
        shutil.copy2(svm_file, outfile)
        return

    # Read the annotations.
    header = None  # includes Chrom, Pos, Ref, Alt
    coord2d = {}
    for d in filelib.read_row(snpeff_file, header=1):
        if header is None:
            header = d._header
        coord = d.Chrom, d.Pos, d.Ref, d.Alt
        coord2d[coord] = d

    svm = SimpleVariantMatrix.read_as_am(svm_file)
    CHROM = svm.header2annots["______Chrom"]
    POS = svm.header2annots["______Pos"]
    REF = svm.header2annots["______Ref"]
    ALT = svm.header2annots["______Alt"]

    snpeff_header = header[4:]
    snpeff_matrix = []  # Row major.
    for i in range(len(CHROM)):
        coord = CHROM[i], POS[i], REF[i], ALT[i]
        row = [""] * len(snpeff_header)
        d = coord2d.get(coord)
        if d:
            row = d._cols[4:]
        assert len(row) == len(snpeff_header)
        snpeff_matrix.append(row)
    assert len(snpeff_matrix) == len(CHROM)
    # AnnotationMatrix is column major.
    snpeff_annots = []
    for j in range(len(snpeff_header)):
        x = [snpeff_matrix[i][j] for i in range(len(snpeff_matrix))]
        snpeff_annots.append(x)
    # Convert the headers to SVM format.
    snpeff_header = ["SnpEff______%s" % x for x in snpeff_header]
    # Make the new SimpleVariantMatrix.
    headers = svm.headers[:4] + snpeff_header + svm.headers[4:]
    x = [svm.header2annots[x] for x in svm.headers_h]
    all_annots = x[:4] + snpeff_annots + x[4:]
    merged = AnnotationMatrix.create_from_annotations(
        headers, all_annots, headerlines=svm.headerlines)
    SimpleVariantMatrix.write_from_am(outfile, merged)
Esempio n. 3
0
def annotate_linked_variants(MATRIX, args):
    if not args:
        return MATRIX
    from genomicode import filelib
    from genomicode import AnnotationMatrix

    link_file = args
    filelib.assert_exists_nz(link_file)
    coord2perc = {}
    for d in filelib.read_row(link_file, header=1):
        chrom = d.Chrom
        pos = int(d.Pos)
        perc = float(d.Perc_Linked)
        coord2perc[(chrom, pos)] = perc

    chrom = MATRIX.header2annots["______Chrom"]
    pos = MATRIX.header2annots["______Pos"]
    pos = [int(x) for x in pos]

    link_score = [""] * len(chrom)
    for i in range(len(chrom)):
        link_score[i] = coord2perc.get((chrom[i], pos[i]), "")

    # Add after:
    # Chrom, Pos, Ref, Alt
    header = "Linkage______Score"
    assert header not in MATRIX.headers
    headers = MATRIX.headers[:4] + [header] + MATRIX.headers[4:]
    all_annots = []
    for h in headers:
        if h != header:
            x = MATRIX[h]
        else:
            x = link_score
        all_annots.append(x)
    return AnnotationMatrix.create_from_annotations(headers, all_annots,
                                                    MATRIX.headerlines)
Esempio n. 4
0
    def run(self, network, in_data, out_attributes, user_options, num_cores,
            outfile):
        import math
        from genomicode import filelib
        from genomicode import jmath
        from genomicode import AnnotationMatrix
        from genomicode import SimpleVariantMatrix
        from Betsy import module_utils as mlib

        svm_node = in_data
        filelib.assert_exists_nz(svm_node.identifier)

        linked_file = mlib.get_user_option(user_options,
                                           "linked_variants_file",
                                           not_empty=True,
                                           check_file=True)

        # Read the variant file.
        SVM = SimpleVariantMatrix.read_as_am(svm_node.identifier)
        CHROM = SVM["______Chrom"]
        POS = SVM["______Pos"]
        POS = [int(x) for x in POS]
        all_coords = {}  # (chrom, pos) -> 1
        for x in zip(CHROM, POS):
            all_coords[x] = 1

        # Read the linked variant file.
        # Chrom  Pos  Perc Linked  p
        coord2info = {}  # (chrom, pos) -> d
        for d in filelib.read_row(linked_file, header=1):
            pos = int(d.Pos)
            if (d.Chrom, pos) not in all_coords:
                continue
            coord2info[(d.Chrom, pos)] = d

        # Align the linked annotations to the matrix.
        MAX_SCORE = 1000
        min_p = 10**-(MAX_SCORE / 10)
        linked_headers = ["Perc Linked", "Score"]
        annotations = []
        for (chrom, pos) in zip(CHROM, POS):
            if (chrom, pos) not in coord2info:
                x = [""] * len(linked_headers)
                annotations.append(x)
                continue
            d = coord2info[(chrom, pos)]
            score = MAX_SCORE
            if float(d.p) >= min_p:
                score = -10 * math.log(float(d.p), 10)
            x = d.Perc_Linked, score
            assert len(x) == len(linked_headers)
            annotations.append(x)
        # Convert the headers and annotations to SVM format.
        linked_headers = ["Linkage______%s" % x for x in linked_headers]
        linked_annotations = jmath.transpose(annotations)

        # Make the new SimpleVariantMatrix.
        # Figure out where to put these annotations.
        INDEX = 4
        ## If Annovar exists, put after.
        #I = [i for (i, x) in enumerate(SVM.headers)
        #     if x.upper().startswith("ANNOVAR")]
        #if I:
        #    INDEX = max(INDEX, max(I)+1)
        headers = SVM.headers[:INDEX] + linked_headers + SVM.headers[INDEX:]
        x = [SVM.header2annots[x] for x in SVM.headers_h]
        all_annots = x[:INDEX] + linked_annotations + x[INDEX:]
        merged = AnnotationMatrix.create_from_annotations(
            headers, all_annots, headerlines=SVM.headerlines)

        SimpleVariantMatrix.write_from_am(outfile, merged)
Esempio n. 5
0
    def run(
        self, network, in_data, out_attributes, user_options, num_cores,
        outfile):
        from genomicode import filelib
        from genomicode import hashlib
        from genomicode import jmath
        from genomicode import AnnotationMatrix
        from genomicode import SimpleVariantMatrix
        from Betsy import module_utils as mlib

        simple_node = in_data
        filelib.assert_exists_nz(simple_node.identifier)

        gene_file = mlib.get_user_option(
            user_options, "cancer_genes_file", not_empty=True, check_file=True)

        # Read the cancer genes file.
        # <Gene ID>  <Gene Symbol>  <Dataset>  ...
        symbol2info = {}  # symbol -> d
        gene_iter = filelib.read_row(gene_file, header=1)
        header = None
        for d in gene_iter:
            assert "Gene Symbol" in d._header
            if header is None:
                header = [
                    x for x in d._header
                    if x not in ["Gene ID", "Gene Symbol"]]
            if not d.Gene_Symbol:
                continue
            symbol2info[d.Gene_Symbol] = d

        # Read the variant file.
        SVM = SimpleVariantMatrix.read_as_am(simple_node.identifier)

        GENE_H = "Annovar______Gene.refGene"
        assert GENE_H in SVM.headers, "Missing annotation: %s" % GENE_H
        GENES = SVM[GENE_H]

        # Align the matrix to the simple variant matrix.
        gene_headers = header
        gene_annotations = []
        for i, gene_str in enumerate(GENES):
            # Format of genes:
            # PFN1P2
            # PMS2P2,PMS2P7
            values = [""] * len(gene_headers)
            genes = gene_str.split(",")
            for gene in genes:
                if gene not in symbol2info:
                    continue
                d = symbol2info[gene]
                for j, h in enumerate(gene_headers):
                    h = hashlib.hash_var(h)
                    assert hasattr(d, h)
                    x = getattr(d, h)
                    assert x in ["", "1"]
                    if x == "1":
                        values[j] = 1
            gene_annotations.append(values)
        # Convert the headers and annotations to SVM format.
        gene_headers = ["Cancer Genes______%s" % x for x in gene_headers]
        gene_annotations = jmath.transpose(gene_annotations)

        # Make the new SimpleVariantMatrix.
        # Figure out where to put these annotations.
        INDEX = 4
        # If Annovar exists, put after.
        I = [i for (i, x) in enumerate(SVM.headers)
             if x.upper().startswith("ANNOVAR")]
        if I:
            INDEX = max(INDEX, max(I)+1)
        # If SnpEff exists, put after.
        I = [i for (i, x) in enumerate(SVM.headers)
             if x.upper().startswith("SNPEFF")]
        if I:
            INDEX = max(INDEX, max(I)+1)
        # If COSMIC exists, put after.
        I = [i for (i, x) in enumerate(SVM.headers)
             if x.upper().startswith("COSMIC")]
        if I:
            INDEX = max(INDEX, max(I)+1)
        headers = SVM.headers[:INDEX] + gene_headers + SVM.headers[INDEX:]
        x = [SVM.header2annots[x] for x in SVM.headers_h]
        all_annots = x[:INDEX] + gene_annotations + x[INDEX:]
        merged = AnnotationMatrix.create_from_annotations(
            headers, all_annots, headerlines=SVM.headerlines)

        SimpleVariantMatrix.write_from_am(outfile, merged)
    def run(self, network, in_data, out_attributes, user_options, num_cores,
            out_filename):
        #import shutil
        from genomicode import filelib
        from genomicode import parallel
        from genomicode import alignlib
        from genomicode import SimpleVariantMatrix
        from genomicode import AnnotationMatrix
        from Betsy import module_utils as mlib

        summary_node = in_data
        summary_filename = summary_node.identifier
        metadata = {}

        buildver = mlib.get_user_option(user_options,
                                        "annovar_buildver",
                                        allowed_values=["hg19"],
                                        not_empty=True)

        # Name files.
        p, root, ext = mlib.splitpath(summary_filename)
        annovar_infile = "pos.txt"
        log_filename = "annovar.log"
        # Annovar takes a filestem, without the ".vcf".
        annovar_outstem = "annotations"
        # Produces file:
        # <annovar_outstem>.hg19_multianno.txt
        multianno_file = "%s.hg19_multianno.txt" % annovar_outstem
        #temp_file = "temp.txt"

        # Make the infile for Annovar.
        # <chrom> <start> <end> <ref> <alt>
        handle = open(annovar_infile, 'w')
        for d in filelib.read_row(summary_filename, skip=2, header=1):
            x = d.Chrom, d.Pos, d.Pos, d.Ref, d.Alt
            print >> handle, "\t".join(x)
        handle.close()

        cmd = alignlib.make_annovar_command(annovar_infile,
                                            log_filename,
                                            annovar_outstem,
                                            buildver,
                                            vcf_input=False)
        parallel.sshell(cmd)
        metadata["commands"] = [cmd]

        filelib.assert_exists_nz(log_filename)
        filelib.assert_exists_nz(multianno_file)

        matrix = SimpleVariantMatrix.read(summary_filename)
        annot_matrix = matrix.annot_matrix
        #headers = annot_matrix.headers + anno_header[5:]
        chrom, pos = annot_matrix["Chrom"], annot_matrix["Pos"]
        ref, alt = annot_matrix["Ref"], annot_matrix["Alt"]
        pos = [int(x) for x in pos]

        # Read in the multianno output file.
        pos2d = {}  # (chrom, start, ref, alt) -> d
        anno_header = None
        for d in filelib.read_row(multianno_file, header=1):
            key = d.Chr, int(d.Start), d.Ref, d.Alt
            assert key not in pos2d, "Duplicate pos: %s" % str(key)
            pos2d[key] = d
            if not anno_header:
                anno_header = d._header
        assert anno_header

        # Multianno starts with:
        # Chr Start End Ref Alt
        # Ignore these.
        assert anno_header[:5] == ["Chr", "Start", "End", "Ref", "Alt"]
        headers = anno_header[5:]

        all_annots = []
        #for h in annot_matrix.headers_h:
        #    x = annot_matrix.header2annots[h]
        #    all_annots.append(x)
        for i in range(5, len(anno_header)):
            annots = []
            for coord in zip(chrom, pos, ref, alt):
                d = pos2d.get(coord)
                x = ""
                if d:
                    x = d._cols[i]
                annots.append(x)
            all_annots.append(annots)
        x = AnnotationMatrix.create_from_annotations(headers, all_annots)
        matrix.named_matrices.insert(0, ("Annovar", x))

        SimpleVariantMatrix.write(out_filename, matrix)

        ## cols_to_add = len(anno_header) - 5
        ## assert cols_to_add > 0

        ## # Merge the multianno file with the simple call summary.  Add
        ## # these columns before the <Sample>.
        ## # Sample                <Sample>
        ## # Caller                <Caller>
        ## # Chrom  Pos  Ref  Alt  Ref/Alt/VAF
        ## handle = open(temp_file, 'w')
        ## it = filelib.read_cols(summary_filename)
        ## header1 = it.next()
        ## header2 = it.next()
        ## header3 = it.next()
        ## assert len(header1) == len(header2), "%d %d %d %s" % (
        ##     len(header1), len(header2), len(header3), summary_filename)
        ## assert len(header1) == len(header3), "%d %d %d %s" % (
        ##     len(header1), len(header2), len(header3), summary_filename)
        ## assert header1[0] == "Sample"
        ## assert header2[0] == "Caller"
        ## assert header3[:4] == ["Chrom", "Pos", "Ref", "Alt"]
        ## header1 = header1[:4] + [""]*cols_to_add + header1[4:]
        ## header2 = header2[:4] + [""]*cols_to_add + header2[4:]
        ## header3 = header3[:4] + anno_header[5:] + header3[4:]
        ## print >>handle, "\t".join(header1)
        ## print >>handle, "\t".join(header2)
        ## print >>handle, "\t".join(header3)
        ## for cols in it:
        ##     chrom, pos, ref, alt = cols[:4]
        ##     pos = int(pos)
        ##     d = pos2d.get((chrom, pos))
        ##     if not d:
        ##         cols = cols[:4] + [""]*cols_to_add + cols[4:]
        ##         continue
        ##     assert ref == d.Ref, "%s %s %s %s %s %s" % (
        ##         chrom, pos, ref, alt, d.Ref, d.Alt)
        ##     assert alt == d.Alt, "%s %s %s %s %s %s" % (
        ##         chrom, pos, ref, alt, d.Ref, d.Alt)
        ##     x = d._cols[5:]
        ##     assert len(x) == cols_to_add
        ##     cols = cols[:4] + x + cols[4:]
        ##     print >>handle, "\t".join(cols)
        ## handle.close()

        ## shutil.move(temp_file, out_filename)

        return metadata
    def run(
        self, network, antecedents, out_attributes, user_options, num_cores,
        out_filename):
        import arrayio
        from genomicode import filelib
        from genomicode import AnnotationMatrix
        from genomicode import SimpleVariantMatrix

        simple_node, signal_node = antecedents
        filelib.assert_exists_nz(simple_node.identifier)
        filelib.assert_exists_nz(signal_node.identifier)

        # Read the variant file.
        SVM = SimpleVariantMatrix.read(simple_node.identifier)
        #AM = SVM.annot_matrix
        #assert GENE_H in AM.headers

        # Read the gene expression file.
        GXP = arrayio.read(signal_node.identifier)

        # Make sure the samples from the variant matrix can be found
        # in the gene expression matrix.
        GXP_samples = GXP.col_names(arrayio.COL_ID)
        missing = [x for x in SVM.samples if x not in GXP_samples]
        assert len(missing) < len(SVM.samples), (
            "SimpleVariantMatrix and gene expression file have "
            "no common samples.")
        # Actually, may not have all the same samples.  For example, a
        # gene expression profile might not have been calculated for
        # the germline sample.  So ignore if something is missing.
        #x = missing
        #if len(x) > 5:
        #    x = x[:5] + ["..."]
        #msg = "Samples (%d) not found in gene expression file: %s" % (
        #    len(missing), ", ".join(x))
        #assert not missing, msg

        # Add all the samples from the gene expression file.
        SAMPLES = GXP_samples

        # Find the genes in each row.
        GENE_H = "Gene.refGene"
        annovar_matrix = None
        for (name, matrix) in SVM.named_matrices:
            if GENE_H in matrix.headers:
                annovar_matrix = matrix
                break
        assert annovar_matrix, "Missing annotation: %s" % GENE_H
        GENES = annovar_matrix[GENE_H]

        # Make a list of the genes.
        genes = {}
        for i, gene_str in enumerate(GENES):
            # Format of genes:
            # PFN1P2
            # PMS2P2,PMS2P7
            for x in gene_str.split(","):
                genes[x] = 1
        genes = sorted(genes)

        # Make a matrix of the gene expression values for each gene
        # and each sample.
        #I = [GXP_samples.index(x) for x in SVM.samples]
        #GXP_a = GXP.matrix(genes, I)  # align the matrices.
        GXP_a = GXP.matrix(genes, None)
        
        # Write out the expression matrix for debugging purposes.
        arrayio.write(GXP_a, "expression.txt")

        # Search for each of the genes in the matrix.
        gene2I = {}   # gene -> list of row indexes
        for gene in genes:
            x = GXP_a._index(row=gene)
            I_row, i_col = x
            if I_row:
                gene2I[gene] = I_row

        # Align the gene expression matrix to the simple variant
        # matrix.
        #matrix = [[None]*len(SVM.samples) for i in range(len(GENES))]
        matrix = [[None]*len(SAMPLES) for i in range(len(GENES))]
        for i, gene_str in enumerate(GENES):
            # Format of genes:     Format of output
            # PFN1P2                  5.2
            # PMS2P2,PMS2P7           2.2,8.6
            # If a gene is missing, then skip it.
            genes = gene_str.split(",")
            #for j in range(len(SVM.samples)):
            for j in range(len(SAMPLES)):
                values = []  # expression values for each gene.
                for k in range(len(genes)):
                    if genes[k] not in gene2I:
                        continue
                    x = [GXP_a._X[l][j] for l in gene2I[genes[k]]]
                    # If there are multiple instances of this gene,
                    # then pick the one with the maximum expression.
                    x = max(x)
                    values.append(x)
                values = [_pretty_gxp(x) for x in values]
                x = ",".join(values)
                matrix[i][j] = x

        # Add the matrix back to the simple variant matrix.
        #headers = SVM.samples
        headers = SAMPLES
        all_annots = []
        for j in range(len(headers)):
            x = [matrix[i][j] for i in range(len(matrix))]
            all_annots.append(x)
        x = AnnotationMatrix.create_from_annotations(headers, all_annots)
        SVM.named_matrices.append(("Gene Expression", x))

        # Write to file.
        SimpleVariantMatrix.write(out_filename, SVM)
def add_coverage_to_svm(svm_file, coverage_file, outfile, is_rna_cov):
    from genomicode import jmath
    from genomicode import filelib
    from genomicode import AnnotationMatrix
    from genomicode import SimpleVariantMatrix
    
    # Read the variant file.
    SVM = SimpleVariantMatrix.read(svm_file)
    AM = SVM.annot_matrix
    assert "Chrom" in AM.headers
    assert "Pos" in AM.headers
    CHROM = AM["Chrom"]
    POS = AM["Pos"]
    POS = [int(x) for x in POS]

    # Read the coverage matrix.
    # Chrom  Pos  <Sample>  [<Sample> ...]
    # Pos is 1-based.
    coord2sample2cov = {}  # (chrom, pos) -> sample -> ref/alt/vaf
    cov_samples = {}
    for d in filelib.read_row(coverage_file, header=1):
        coord = d.Chrom, int(d.Pos)
        if coord not in coord2sample2cov:
            coord2sample2cov[coord] = {}
        for i in range(2, len(d._header)):
            sample = d._header[i]
            cov = d._cols[i]
            if not cov:
                continue
            #coord2sample2cov[coord][sample] = int(cov)
            coord2sample2cov[coord][sample] = cov
            cov_samples[sample] = 1

    # Make sure the samples from the variant matrix can be found
    # in the coverage matrix.
    missing = [x for x in SVM.samples if x not in cov_samples]
    assert len(missing) < len(SVM.samples), (
        "SimpleVariantMatrix and coverage file have "
        "no common samples.")
    # If the samples aren't sequenced at high coverage, it's
    # possible they just don't have reads at these positions.  Be
    # a little lenient here, and accept the file if some of the
    # samples overlap.
    #x = missing
    #if len(x) > 5:
    #    x = x[:5] + ["..."]
    #msg = "Samples (%d) not found in coverage file: %s" % (
    #    len(missing), ", ".join(x))
    #assert not missing, msg
    # Report the coverage for the samples at the intersection.
    SAMPLES = [x for x in SVM.samples if x in cov_samples]

    # Align the matrix to the simple variant matrix.
    #matrix = [[None]*len(SVM.samples) for i in range(AM.num_annots())]
    matrix = [[None]*len(SAMPLES) for i in range(AM.num_annots())]
    for i in range(AM.num_annots()):
        coord = CHROM[i], POS[i]
        sample2cov = coord2sample2cov.get(coord, {})
        x = [sample2cov.get(x, "") for x in SAMPLES]
        #x = map(str, x)
        matrix[i] = x

    # Add the matrix back to the simple variant matrix.
    headers = SAMPLES
    all_annots = jmath.transpose(matrix)
    name = "Coverage"
    # If this is being used to add RNA coverage, use a different
    # name.
    if is_rna_cov:
        name = "RNA Coverage"
    x = AnnotationMatrix.create_from_annotations(headers, all_annots)
    SVM.named_matrices.append((name, x))

    # Write to file.
    SimpleVariantMatrix.write(outfile, SVM)
    def run(
        self, network, in_data, out_attributes, user_options, num_cores,
        outfile):
        from genomicode import filelib
        from genomicode import jmath
        from genomicode import AnnotationMatrix
        from genomicode import SimpleVariantMatrix
        from Betsy import module_utils as mlib

        svm_node = in_data
        filelib.assert_exists_nz(svm_node.identifier)

        cosmic_file = mlib.get_user_option(
            user_options, "cosmic_variants_file", not_empty=True,
            check_file=True)
        
        # Read the variant file.
        SVM = SimpleVariantMatrix.read_as_am(svm_node.identifier)
        CHROM = SVM["______Chrom"]
        POS = SVM["______Pos"]
        POS = [int(x) for x in POS]
        all_coords = {}  # (chrom, pos) -> 1
        for x in zip(CHROM, POS):
            all_coords[x] = 1

        # Read the COSMIC variant file.
        # Chrom  Start  End  GRCh  Count  SNP
        # Mutation CDS  Mutation AA
        # FATHMM prediction  FATHMM score  Mutation somatic status
        coord2info = {}  # (chrom, pos) -> d
        for d in filelib.read_row(cosmic_file, header=1):
            start, end = int(d.Start), int(d.End)
            in_svm = False
            for pos in range(start, end+1):
                if (d.Chrom, pos) in all_coords:
                    in_svm = True
                    break
            if not in_svm:
                continue
            coord2info[(d.Chrom, pos)] = d

        # Align the COSMIC annotations to the matrix.
        cosmic_headers = [
            "SNP", "Num Tumors", "Mutation CDS", "Mutation AA",
            "FATHMM prediction", "FATHMM score", "Mutation somatic status"]
        annotations = []
        for (chrom, pos) in zip(CHROM, POS):
            if (chrom, pos) not in coord2info:
                x = [""] * len(cosmic_headers)
                annotations.append(x)
                continue
            d = coord2info[(chrom, pos)]
            x = d.SNP, d.Count, d.Mutation_CDS, d.Mutation_AA, \
                d.FATHMM_prediction, d.FATHMM_score, \
                d.Mutation_somatic_status
            annotations.append(x)
        # Convert the headers and annotations to SVM format.
        cosmic_headers = ["COSMIC______%s" % x for x in cosmic_headers]
        cosmic_annotations = jmath.transpose(annotations)

        # Make the new SimpleVariantMatrix.
        # Figure out where to put these annotations.
        INDEX = 4
        # If Annovar exists, put after.
        I = [i for (i, x) in enumerate(SVM.headers)
             if x.upper().startswith("ANNOVAR")]
        if I:
            INDEX = max(INDEX, max(I)+1)
        # If SnpEff exists, put after.
        I = [i for (i, x) in enumerate(SVM.headers)
             if x.upper().startswith("SNPEFF")]
        if I:
            INDEX = max(INDEX, max(I)+1)
        headers = SVM.headers[:INDEX] + cosmic_headers + SVM.headers[INDEX:]
        x = [SVM.header2annots[x] for x in SVM.headers_h]
        all_annots = x[:INDEX] + cosmic_annotations + x[INDEX:]
        merged = AnnotationMatrix.create_from_annotations(
            headers, all_annots, headerlines=SVM.headerlines)

        SimpleVariantMatrix.write_from_am(outfile, merged)
Esempio n. 10
0
def read_as_am(filename, is_csv=False):
    # Read file in SVM format.  Return an AnnotationMatrix object.
    # Does no special processing on any columns (i.e. no parsing as
    # integers or Call objects).  Everything is a string.

    # Header format:  <header0>___<header1>___<header2>
    # "blanks" are filled in.  E.g. "Annovar" occurs in each Annovar
    # column in header0.
    #
    # Headers:
    # ______Chrom
    # ______Pos
    # ______Ref
    # ______Alt
    # Num Callers______<Sample>
    # ...
    from genomicode import filelib
    from genomicode import AnnotationMatrix

    delimiter = "\t"
    if is_csv:
        delimiter = ","

    matrix = []
    for x in filelib.read_cols(filename, delimiter=delimiter):
        matrix.append(x)
    assert len(matrix) >= 3  # at least 3 rows for the header
    for i in range(1, len(matrix)):
        assert len(matrix[i]) == len(matrix[0])
    assert len(matrix[0]) >= 4  # Chrom, Pos, Ref, Alt
    assert len(matrix[0]) >= 5, "No calls"

    header0 = matrix[0]
    header1 = matrix[1]
    header2 = matrix[2]
    assert header2[:4] == ["Chrom", "Pos", "Ref", "Alt"]

    # Fill in the blanks for header1.
    for i in range(1, len(header1)):
        if header1[i]:
            continue
        # header1[i] is blank.  If header0[i], then this starts a new
        # "block".  Start with a new header1, and do not copy the old
        # one over.
        if not header1[i] and not header0[i]:
            header1[i] = header1[i - 1]
    # Fill in the blanks for header0.
    for i in range(1, len(header0)):
        if not header0[i]:
            header0[i] = header0[i - 1]

    # Make a list of all samples.
    I = [i for (i, x) in enumerate(header2) if x == "Ref/Alt/VAF"]
    assert I
    x = [header0[i] for i in I]
    x = [x for x in x if x]
    # Get rid of duplicates, preserving order.
    x = [x[i] for (i, y) in enumerate(x) if y not in x[:i]]
    samples = x

    # Make a list of all callers.
    x = [header1[i] for i in I]
    x = [x for x in x if x]
    # Get rid of duplicates, preserving order.
    x = [x[i] for (i, y) in enumerate(x) if y not in x[:i]]
    callers = x

    headers = []
    for x in zip(header0, header1, header2):
        x = "___".join(x)
        headers.append(x)
    all_annots = []
    for j in range(len(headers)):
        annots = [x[j] for x in matrix[3:]]
        all_annots.append(annots)
    matrix = AnnotationMatrix.create_from_annotations(headers, all_annots)
    matrix.samples = samples
    matrix.callers = callers
    return matrix
    def run(self, network, in_data, out_attributes, user_options, num_cores,
            out_filename):
        from genomicode import filelib
        from genomicode import SimpleVariantMatrix
        from genomicode import AnnotationMatrix

        simple_file = in_data.identifier
        metadata = {}

        # Read all in memory.  Hopefully, not too big.
        ds = []
        for d in filelib.read_row(simple_file, header=-1):
            ds.append(d)
            #if len(ds) > 50000:  # DEBUG
            #    break

        # MuSE sometimes has alternates.
        # Alt       A,C
        # Num_Alt  13,0
        # VAF      0.19,0.0
        # Detect this and fix it.  Take the alternate with the highest VAF.
        for d in ds:
            if d.Num_Alt.find(",") < 0:
                continue
            x1 = d.Num_Alt.split(",")
            x2 = d.VAF.split(",")
            assert len(x1) == len(x2)
            x1 = map(int, x1)
            x2 = map(float, x2)
            max_vaf = max_i = None
            for i in range(len(x2)):
                if max_vaf is None or x2[i] > max_vaf:
                    max_vaf = x2[i]
                    max_i = i
            assert max_i is not None
            d.Num_Alt = str(x1[max_i])
            d.VAF = str(x2[max_i])

        # Make a list of all the positions.
        positions = {}  # (Chrom, Pos) -> 1
        for d in ds:
            positions[(d.Chrom, int(d.Pos))] = 1
        positions = sorted(positions)

        # Make a list of all the callers.
        callers = {}
        for d in ds:
            callers[d.Caller] = 1
        callers = sorted(callers)

        # Make a list of all the samples.
        samples = {}
        for d in ds:
            samples[d.Sample] = 1
        samples = sorted(samples)

        # Make a list of the coordinates.
        coord_data = {}
        for d in ds:
            x = d.Chrom, int(d.Pos), d.Ref, d.Alt
            coord_data[x] = 1
        coord_data = sorted(coord_data)

        # Make a list of all DNA calls.
        call_data = []
        for d in ds:
            assert d.Source in ["DNA", "RNA"]
            if d.Source != "DNA":
                continue
            num_ref = num_alt = vaf = None
            if d.Num_Ref:
                num_ref = int(d.Num_Ref)
            if d.Num_Alt:
                num_alt = int(d.Num_Alt)
            if d.VAF:
                vaf = float(d.VAF)
            if num_ref is None and num_alt is None and vaf is None:
                continue
            call = SimpleVariantMatrix.Call(num_ref, num_alt, vaf)
            x = d.Chrom, int(d.Pos), d.Ref, d.Alt, d.Sample, d.Caller, call
            call_data.append(x)

        # sample -> caller -> chrom, pos, ref, alt -> call
        samp2caller2coord2call = {}
        for x in call_data:
            chrom, pos, ref, alt, sample, caller, call = x
            coord = chrom, pos, ref, alt
            if sample not in samp2caller2coord2call:
                samp2caller2coord2call[sample] = {}
            caller2coord2call = samp2caller2coord2call[sample]
            if caller not in caller2coord2call:
                caller2coord2call[caller] = {}
            coord2call = caller2coord2call[caller]
            # A (sample, caller, coord) may have multiple calls.  For
            # example, for germline samples that are called with each
            # tumor sample.  If this is the case, then take the call
            # with the highest coverage.
            if coord in coord2call:
                old_call = coord2call[coord]
                cov = old_cov = None
                if call.num_ref is not None and call.num_alt is not None:
                    cov = call.num_ref + call.num_alt
                if old_call.num_ref is not None and \
                       old_call.num_alt is not None:
                    old_cov = old_call.num_ref + old_call.num_alt
                if cov is None and old_cov is not None:
                    call = old_call
                elif cov is not None and old_cov is not None and cov < old_cov:
                    call = old_call
            coord2call[coord] = call

        # Count the number of callers that called a variant at each
        # position for each sample.
        samp2coord2caller = {}  # sample -> chrom, pos, ref, alt -> caller -> 1
        # Need to do this first, to make sure each caller is counted
        # at most once.  This is to account for germline samples that
        # is called by each caller multiple times.
        for x in call_data:
            chrom, pos, ref, alt, sample, caller, call = x
            coord = chrom, pos, ref, alt
            if sample not in samp2coord2caller:
                samp2coord2caller[sample] = {}
            if coord not in samp2coord2caller[sample]:
                samp2coord2caller[sample][coord] = {}
            samp2coord2caller[sample][coord][caller] = 1
        samp2coord2nc = {}  # sample -> chrom, pos, ref, alt -> num_callers
        for sample in samp2coord2caller:
            samp2coord2nc[sample] = {}
            for coord in samp2coord2caller[sample]:
                samp2coord2nc[sample][coord] = len(
                    samp2coord2caller[sample][coord])
        #for x in call_data:
        #    chrom, pos, ref, alt, sample, caller, call = x
        #    coord = chrom, pos, ref, alt
        #    if sample not in samp2coord2nc:
        #        samp2coord2nc[sample] = {}
        #    nc = samp2coord2nc[sample].get(coord, 0) + 1
        #    samp2coord2nc[sample][coord] = nc

        # Format everything into an annotation matrix.
        headers0 = []
        headers1 = []
        headers2 = []
        all_annots = []

        # Add the positions.
        headers0 += ["", "", "", ""]
        headers1 += ["", "", "", ""]
        headers2 += ["Chrom", "Pos", "Ref", "Alt"]
        for i in range(4):
            x = [x[i] for x in coord_data]
            x = [str(x) for x in x]
            all_annots.append(x)

        # Add the number of callers information.
        headers0 += ["Num Callers"] * len(samples)
        headers1 += [""] * len(samples)
        headers2 += samples
        for sample in samples:
            annots = []
            for coord in coord_data:
                nc = samp2coord2nc.get(sample, {}).get(coord, "")
                annots.append(nc)
            all_annots.append(annots)

        # Add information about calls.
        for sample in samples:
            caller2coord2call = samp2caller2coord2call.get(sample, {})
            for i, caller in enumerate(callers):
                h0 = ""
                if not i:
                    h0 = sample
                h1 = caller
                h2 = "Ref/Alt/VAF"
                headers0.append(h0)
                headers1.append(h1)
                headers2.append(h2)

                coord2call = caller2coord2call.get(caller, {})
                annots = []
                for coord in coord_data:
                    x = ""
                    call = coord2call.get(coord)
                    if call:
                        x = SimpleVariantMatrix._format_call(call)
                    annots.append(x)
                all_annots.append(annots)

        # Set the headers.
        assert len(headers0) == len(headers1)
        assert len(headers0) == len(headers2)
        assert len(headers0) == len(all_annots)
        headers = [None] * len(headers0)
        for i, x in enumerate(zip(headers0, headers1, headers2)):
            x = "___".join(x)
            headers[i] = x
        matrix = AnnotationMatrix.create_from_annotations(headers, all_annots)
        SimpleVariantMatrix.write_from_am(out_filename, matrix)

        #annot_header = ["Chrom", "Pos", "Ref", "Alt"]
        #matrix = SimpleVariantMatrix.make_matrix(
        #    samples, callers, annot_header, coord_data, named_data,
        #    call_data)
        #SimpleVariantMatrix.write(out_filename, matrix)

        return metadata