models = [geodyn_trg.TranslationGrowth(), geodyn_trg.TranslationGrowthRotation()] geodynModel = geodyn_trg.PureTranslation() geodynModel = geodyn_trg.TranslationRotation() geodynModel = geodyn_trg.PureGrowth() geodynModel = geodyn_trg.TranslationGrowth() # geodynModel = geodyn_trg.TranslationGrowthRotation() # geodynModel = geodyn_static.Hemispheres() for geodynModel in models: parameters = { 'rICB': rICB, 'tau_ic':age_ic, 'vt': velocity, 'exponent_growth': 0.3, 'omega': omega, 'proxy_type': "age"} geodynModel.set_parameters(parameters) ## perfect sampling equator npoints = 20 #number of points in the x direction for the data set. data_set = data.PerfectSamplingEquator(npoints, rICB = 1.) data_set.method = "bt_point" proxy = geodyn.evaluate_proxy(data_set, geodynModel) data_set.proxy = proxy #evaluate_proxy(data_set, geodynModel) data_set.plot_c_vec(geodynModel) #data_set.plot_scatter() plt.show()
'omega': omega, 'proxy_type': proxy_type} geodynModel.set_parameters(parameters) geodynModel.define_units() # ## Different data set and visualisations # ### Perfect sampling at the equator (to visualise the flow lines) # In[5]: npoints = 50 #number of points in the x direction for the data set. data_set = data.PerfectSamplingEquator(npoints, rICB = 1.) data_set.method = "bt_point" proxy = geodyn.evaluate_proxy(data_set, geodynModel, verbose = False) data_set.plot_c_vec(geodynModel, proxy=proxy) # ### Random data set, with "realistic" repartition # In[6]: # random data set data_set_random = data.RandomData(3000) data_set_random.method = "bt_point" proxy_random = geodyn.evaluate_proxy(data_set_random, geodynModel, verbose=False) r, t, p = data_set_random.extract_rtp("bottom_turning_point") dist = positions.angular_distance_to_point(t, p, *velocity_center)