Esempio n. 1
0
 def __init__(self, x, s):
     self.x = x
     self.s = s
     self.a = point.diameter / 2
     self.cap = geo.Geodesic(point.diameter / 2, point.f)
     self.mode = "reg"
     """Modos:
Esempio n. 2
0
    def G_function(self, epi, depth, M0, strike, dip, rake):
        dict = geo.Geodesic(a=self.prior['radius'], f=self.prior['f']).ArcDirect(lat1=self.prior['la_r'],
                                                                                 lon1=self.prior['lo_r'],
                                                                                 azi1=self.prior['baz'],
                                                                                 a12=epi, outmask=1929)

        st_syn = self.seis.get_seis_manual(la_s=dict['lat2'], lo_s=dict['lon2'], depth=depth,
                                           strike=strike, dip=dip, rake=rake,
                                           time=self.or_time, M0=M0)

        self.BW_syn.Get_bw_windows(st_syn, epi, depth, self.or_time)
Esempio n. 3
0
    def start_GS(self, BW_obs, depth, epi, M0):
        savepath = self.prior['save_dir'] + '/%s.txt' % self.prior['save_name']
        color = 'b'
        # self.plot_original_vs_filter(BW_obs,color,self.prior['save_dir'],"OBS")

        strike_len = np.linspace(0, 360, int(360 / 15) + 1, endpoint=True)
        dip_len = np.linspace(0, 90, int(90 / 5) + 1, endpoint=True)
        rake_len = np.linspace(-180, 180, int(360 / 15) + 1, endpoint=True)

        with open(savepath, 'w') as save_file:
            self.write_par(save_file)
            i = 0
            print('Iteration: %i' % i)
            for i_s, strike in enumerate(strike_len):
                for i_d, dip in enumerate(dip_len):
                    for i_r, rake in enumerate(rake_len):

                        ## Get the synthetic Data:
                        dict = geo.Geodesic(a=self.prior['radius'], f=self.prior['f']).ArcDirect(
                            lat1=self.prior['la_r'],
                            lon1=self.prior['lo_r'],
                            azi1=self.prior['baz'],
                            a12=epi, outmask=1929)
                        st_syn = self.seis.get_seis_manual(la_s=dict['lat2'], lo_s=dict['lon2'], depth=depth,
                                                           strike=strike, dip=dip, rake=rake,
                                                           time=self.or_time, M0=M0)

                        self.BW_syn.Get_bw_windows(st_syn, epi, depth, self.or_time, self.prior['Full_P_shift'],self.prior['Full_S_shift'])
                        # color = 'r'
                        # self.plot_original_vs_filter(self.BW_syn,color, self.prior['save_dir'], str(i))



                        ## Determine the misfit:
                        Xi_bw, Norms, amplitude, time_shift, fig = self.mis.CC_BW(BW_obs, self.BW_syn,
                                                                                  self.prior['Full_P_shift'],
                                                                                  self.prior['Full_S_shift'],
                                                                                  self.prior['PLOT'])

                        M0_New = M0 / np.mean(amplitude)  # Only Based on PZ
                        if self.prior['PLOT'] == True:
                            # self.plot()
                            if not os.path.exists(self.prior['save_dir'] + '/plots/'):
                                os.makedirs(self.prior['save_dir'] + '/plots/')
                            fig.savefig(
                                self.prior['save_dir'] + '/plots/%.3f_%.3f_%.3f_%05i.png' % (strike, dip, rake, i))
                            plt.close("all")

                        self.write_sample(save_file, epi, depth, strike, dip, rake, M0_New, Xi_bw, Norms, amplitude[0],
                                          time_shift, i, accept=1)
                        i += 1
                        print('Iteration: %i' % i)
            save_file.close()
Esempio n. 4
0
def PolygonArea(cords):
    """
    cords = [[lat,lon]...] list
    Use geodesics on WGS84  for calculations.
    return nvertices, perimeter, area (hectares)
    """
    geoobj = gd.Geodesic(gd.Constants.WGS84_a, gd.Constants.WGS84_f)
    poly = pa.PolygonArea(geoobj)

    for p in cords:
        poly.AddPoint(*p)
    n, perim, area = poly.Compute(True)
    area = area * 10**(-4)  # to hectares
    return n, perim, area
Esempio n. 5
0
    def set_semiPerimeter(self, SemiPerimeter):
        """Definição do valor do semiperímetro e calculo do valor de f correspondente

        Arguments:
            SemiPerimeter {[float]} -- [medida do semiperímetro]

        Returns:
            f[float] -- [razão de achatamento]
        """

        self.SemiPerimeter = SemiPerimeter

        def CalcSemiPerimeter(f):
            cap = geo.Geodesic(self.diameter / 2, f)
            result = cap.Inverse(lat1=0, lon1=0, lat2=90, lon2=0)
            CalcSP = result.get('s12')
            return CalcSP

        res = opt.minimize(lambda x: (CalcSemiPerimeter(
            x) - SemiPerimeter)**2, bounds=[(0, 0.999)], method='L-BFGS-B', x0=0.5)
        f = res.get("x")[0]
        self.set_f(f)
        self.cap = geo.Geodesic(self.diameter / 2, self.f)
Esempio n. 6
0
 def CalcSemiPerimeter(f):
     cap = geo.Geodesic(self.diameter / 2, f)
     result = cap.Inverse(lat1=0, lon1=0, lat2=90, lon2=0)
     CalcSP = result.get('s12')
     return CalcSP
Esempio n. 7
0
 def set_f(self, f):
     self.f = f
     self.cap = geo.Geodesic(self.diameter / 2, f)
     result = self.cap.Inverse(lat1=0, lon1=0, lat2=90, lon2=0)
     self.SemiPerimeter = result.get("s12")
     self.__regPolys()
def Normal_check():
    # Initiate Parameters:

    get_parameters = Get_Paramters()
    PARAMETERS = get_parameters.get_unkown()
    PRIOR = get_parameters.get_prior()
    VALUES = get_parameters.specifications()
    VALUES['blind'] = False
    VALUES[
        'directory'] = '/home/nienke/Documents/Applied_geophysics/Thesis/anaconda/Final/check_waveforms'

    ## DISCUSS THIS!!!!
    PRIOR['az'] = PARAMETERS['az']
    PRIOR['baz'] = PARAMETERS['baz']

    # Initiate the databases from instaseis:
    db = instaseis.open_db(PRIOR['VELOC'])
    create = Create_observed(PRIOR, db)

    d_obs, tr_obs, source = create.get_seis_automatic(
        parameters=PARAMETERS,
        prior=PRIOR,
        noise_model=VALUES['noise'],
        sdr=VALUES['sdr'])
    traces_obs, p_obs, s_obs, p_time_obs, s_time_obs = create.get_window_obspy(
        tr_obs, PARAMETERS['epi'], PARAMETERS['depth_s'],
        PARAMETERS['origin_time'], VALUES['npts'])
    time_at_receiver = create.get_receiver_time(PARAMETERS['epi'],
                                                PARAMETERS['depth_s'],
                                                PARAMETERS['origin_time'])

    PRIOR['var_est'] = create.get_var_data(p_time_obs, tr_obs)

    sw = Surface_waves(PRIOR)
    R_env_obs = sw.rayleigh_pick(tr_obs.traces[0],
                                 PARAMETERS['la_s'],
                                 PARAMETERS['lo_s'],
                                 PARAMETERS['depth_s'],
                                 VALUES['directory'],
                                 PARAMETERS['origin_time'],
                                 VALUES['npts'],
                                 plot_modus=False)
    L_env_obs = sw.love_pick(tr_obs.traces[2],
                             PARAMETERS['la_s'],
                             PARAMETERS['lo_s'],
                             PARAMETERS['depth_s'],
                             VALUES['directory'],
                             PARAMETERS['origin_time'],
                             VALUES['npts'],
                             plot_modus=False)
    # tr_obs.plot()
    # ------------------------------------------------------------------

    seis = Seismogram(PRIOR, db)
    window_code = Source_code(PRIOR['VELOC_taup'])
    misfit = Misfit(VALUES['directory'])

    epi = PARAMETERS['epi']
    depth = PARAMETERS['depth_s']
    strike = PARAMETERS['strike']
    dip = PARAMETERS['dip']
    rake = PARAMETERS['rake']
    time = PARAMETERS['origin_time']

    # ---------------------------------------------------------------------------------------------------------------  #
    dict = geo.Geodesic(a=PRIOR['radius'], f=0).ArcDirect(lat1=PRIOR['la_r'],
                                                          lon1=PRIOR['lo_r'],
                                                          azi1=PRIOR['baz'],
                                                          a12=epi,
                                                          outmask=1929)
    d_syn, traces_syn, sources = seis.get_seis_manual(la_s=dict['lat2'],
                                                      lo_s=dict['lon2'],
                                                      depth=depth,
                                                      strike=strike,
                                                      dip=dip,
                                                      rake=rake,
                                                      time=time,
                                                      M0=PRIOR['M0'],
                                                      sdr=VALUES['sdr'])

    R_env_syn = sw.rayleigh_pick(Z_trace=traces_syn.traces[0],
                                 la_s=dict['lat2'],
                                 lo_s=dict['lon2'],
                                 depth=depth,
                                 save_directory=VALUES['directory'],
                                 time_at_rec=time,
                                 npts=VALUES['npts'],
                                 plot_modus=True)
    L_env_syn = sw.love_pick(T_trace=traces_syn.traces[2],
                             la_s=dict['lat2'],
                             lo_s=dict['lon2'],
                             depth=depth,
                             save_directory=VALUES['directory'],
                             time_at_rec=time,
                             npts=VALUES['npts'],
                             plot_modus=False)

    traces_syn.plot(outfile=VALUES['directory'] + '/syntethic')
    total_syn, p_syn, s_syn, p_time_syn, s_time_syn = window_code.get_window_obspy(
        traces_syn, epi, depth, time, VALUES['npts'])

    ax1 = plt.subplot2grid((5, 1), (0, 0))
    ax1.plot(zero_to_nan(p_syn.traces[0].data), c='r', linewidth=0.3)
    ax1.plot(zero_to_nan(p_obs.traces[0].data),
             c='k',
             linestyle=':',
             linewidth=0.3)
    plt.tight_layout()
    ax2 = plt.subplot2grid((5, 1), (1, 0))
    ax2.plot(zero_to_nan(p_syn.traces[1].data), c='r', linewidth=0.3)
    ax2.plot(zero_to_nan(p_obs.traces[1].data),
             c='k',
             linestyle=':',
             linewidth=0.3)
    plt.tight_layout()
    ax3 = plt.subplot2grid((5, 1), (2, 0))
    ax3.plot(zero_to_nan(s_syn.traces[0].data), c='r', linewidth=0.3)
    ax3.plot(zero_to_nan(s_obs.traces[0].data), c='k', linewidth=0.3)
    plt.tight_layout()
    ax4 = plt.subplot2grid((5, 1), (3, 0))
    ax4.plot(zero_to_nan(s_syn.traces[1].data), c='r', linewidth=0.3)
    ax4.plot(zero_to_nan(s_obs.traces[1].data), c='k', linewidth=0.3)
    plt.tight_layout()
    ax5 = plt.subplot2grid((5, 1), (4, 0))
    ax5.plot(zero_to_nan(s_syn.traces[2].data), c='r', linewidth=0.3)
    ax5.plot(zero_to_nan(s_obs.traces[2].data), c='k', linewidth=0.3)
    plt.tight_layout()

    plt.savefig(VALUES['directory'] + '/%.2f_%.2f.pdf' % (epi, depth))
    plt.close()

    ax1 = plt.subplot2grid((3, 1), (0, 0))
    ax1.plot(zero_to_nan(total_syn.traces[0].data), c='r', linewidth=0.5)
    ax1.plot(zero_to_nan(traces_obs.traces[0].data),
             c='k',
             linestyle=':',
             linewidth=0.5)
    ax1.set_title('SYNTHETIC: = epi: %.2f  REAL: epi = %.2f (depth fixed' %
                  (epi, epi))
    plt.tight_layout()
    ax2 = plt.subplot2grid((3, 1), (1, 0))
    ax2.plot(zero_to_nan(total_syn.traces[1].data), c='r', linewidth=0.5)
    ax2.plot(zero_to_nan(traces_obs.traces[1].data),
             c='k',
             linestyle=':',
             linewidth=0.5)
    plt.tight_layout()
    ax3 = plt.subplot2grid((3, 1), (2, 0))
    ax3.plot(zero_to_nan(total_syn.traces[2].data), c='r', linewidth=0.5)
    ax3.plot(zero_to_nan(traces_obs.traces[2].data),
             c='k',
             linestyle=':',
             linewidth=0.5)
    plt.tight_layout()

    plt.savefig(VALUES['directory'] + '/PS_%.2f_%.2f.pdf' % (epi, depth))
    plt.close()

    Xi_bw_new, time_shift_new, amplitude = misfit.CC_stream(
        p_obs, p_syn, s_obs, s_syn, p_time_obs, p_time_syn)
    s_z_new = 0.1 * Xi_bw_new[0]
    s_r_new = 0.1 * Xi_bw_new[1]
    s_t_new = 1 * Xi_bw_new[2]
    p_z_new = 5 * Xi_bw_new[3]
    p_r_new = 5 * Xi_bw_new[4]
    bw_new = s_z_new + s_r_new + s_t_new + p_z_new + p_r_new
    Xi_R_new = misfit.SW_L2(R_env_obs, R_env_syn, PRIOR['var_est'], amplitude)
    Xi_L_new = misfit.SW_L2(L_env_obs, L_env_syn, PRIOR['var_est'], amplitude)

    R_dict_new = {}
    rw_new = 0
    for j, v in enumerate(Xi_R_new):
        R_dict_new.update({'R_%i_new' % j: v})
        rw_new += v

    L_dict_new = {}
    lw_new = 0
    for j, v in enumerate(Xi_L_new):
        L_dict_new.update({'L_%i_new' % j: v})
        lw_new += v
    Xi_new = bw_new + rw_new + lw_new
    a = 1
def Acces_Blindtest_check():
    BLINDTEST_MSEED = '/home/nienke/Documents/Applied_geophysics/Thesis/anaconda/Database/data_Nienke/M5.0_3914855_deg_2019-09-22.mseed'
    BLINDTEST_XML = BLINDTEST_MSEED.replace(".mseed", ".xml")

    # Initiate Parameters:
    get_parameters = Get_Paramters()
    PRIOR = get_parameters.get_prior()
    VALUES = get_parameters.specifications()
    VALUES['npts'] = 2000
    VALUES[
        'directory'] = '/home/nienke/Documents/Applied_geophysics/Thesis/anaconda/Blindtest/check_waveforms'
    VALUES['blind'] = True

    # st = read(VALUES['directory'] + '/bw.mseed')
    # st_reject = read(VALUES['directory'] + '/bw_reject.mseed')

    # Initiate the databases from instaseis:
    db = instaseis.open_db(PRIOR['VELOC'])
    tr_obs = obspy.read(BLINDTEST_MSEED)
    # tr_obs.plot(outfile=VALUES['directory'] + '/Observed')
    tr_obs.integrate()
    tr_obs.plot(outfile=VALUES['directory'] + '/Observed_integrated')
    source = instaseis.Source.parse(BLINDTEST_XML)
    blindtest = Blindtest()
    events = blindtest.get_events(BLINDTEST_XML)
    # get_parameters.get_prior_blindtest(events[0])
    time, depth, la_s, lo_s = blindtest.get_pref_origin(events[0])

    dist, az, baz = gps2dist_azimuth(lat1=la_s,
                                     lon1=lo_s,
                                     lat2=PRIOR['la_r'],
                                     lon2=PRIOR['lo_r'],
                                     a=PRIOR['radius'],
                                     f=0)
    epi = kilometer2degrees(dist, radius=PRIOR['radius'])
    PRIOR['az'] = az
    PRIOR['baz'] = baz
    PRIOR['epi']['range_min'] = epi - 5
    PRIOR['epi']['range_max'] = epi + 5
    PRIOR['epi']['spread'] = 1
    PRIOR['depth']['range_min'] = depth - 10000
    PRIOR['depth']['range_max'] = depth + 10000
    PRIOR['network'] = tr_obs.traces[0].meta.network
    PRIOR['location'] = tr_obs.traces[0].meta.location
    PRIOR['station'] = tr_obs.traces[0].meta.station
    est_noise = Create_observed(PRIOR, db)
    create = Source_code(PRIOR['VELOC_taup'])
    traces_obs, p_obs, s_obs, p_time_obs, s_time_obs = create.get_window_obspy(
        tr_obs, epi, depth, time, VALUES['npts'])
    PRIOR['var_est'] = est_noise.get_var_data(p_time_obs, tr_obs)
    obs_time = Create_observed(PRIOR, db)
    time_at_receiver = obs_time.get_receiver_time(epi, depth, time)
    plt.figure()

    catalog_path = '/home/nienke/Documents/Applied_geophysics/Thesis/anaconda/Additional_scripts/MQScatalog_withFrequencies/MQS_absolute_withFrequencyInfo.xml'

    events_catalog = blindtest.get_events(catalog_path)

    for v in events_catalog:
        t, d, lat_ev, lo_ev = blindtest.get_pref_origin(v)
        if time.date == t.date:
            Pick_event = v
            break
    PRIOR['M0'] = blindtest.get_pref_scalarmoment(Pick_event)
    picks_surface = get_phase_picks(Pick_event, pick_type='surface')
    R_env_obs, L_env_obs = blindtest.pick_sw(tr_obs,
                                             picks_surface,
                                             epi,
                                             PRIOR,
                                             VALUES['npts'],
                                             VALUES['directory'],
                                             plot_modus=True)

    start_sample = create_starting_sample()
    strike = 243.423396191
    dip = 34.436087773
    rake = 164.912874159

    from Seismogram import Seismogram
    from Misfit import Misfit
    misfit = Misfit(VALUES['directory'])
    seis = Seismogram(PRIOR, db)
    epi = epi - 3
    depth = depth

    # ---------------------------------------------------------------------------------------------------------------  #
    dict = geo.Geodesic(a=PRIOR['radius'], f=0).ArcDirect(lat1=PRIOR['la_r'],
                                                          lon1=PRIOR['lo_r'],
                                                          azi1=PRIOR['baz'],
                                                          a12=epi,
                                                          outmask=1929)
    d_syn, traces_syn, sources = seis.get_seis_manual(la_s=dict['lat2'],
                                                      lo_s=dict['lon2'],
                                                      depth=depth,
                                                      strike=strike,
                                                      dip=dip,
                                                      rake=rake,
                                                      time=time,
                                                      M0=PRIOR['M0'],
                                                      sdr=VALUES['sdr'])

    R_env_syn, L_env_syn = blindtest.pick_sw(traces_syn,
                                             picks_surface,
                                             epi,
                                             PRIOR,
                                             VALUES['npts'],
                                             VALUES['directory'],
                                             plot_modus=False)

    traces_syn.plot(outfile=VALUES['directory'] + '/syntethic')
    total_syn, p_syn, s_syn, p_time_syn, s_time_syn = create.get_window_obspy(
        traces_syn, epi, depth, time, VALUES['npts'])

    ax1 = plt.subplot2grid((5, 1), (0, 0))
    ax1.plot(zero_to_nan(p_syn.traces[0].data), c='r', linewidth=0.3)
    ax1.plot(zero_to_nan(p_obs.traces[0].data),
             c='k',
             linestyle=':',
             linewidth=0.3)
    plt.tight_layout()
    ax2 = plt.subplot2grid((5, 1), (1, 0))
    ax2.plot(zero_to_nan(p_syn.traces[1].data), c='r', linewidth=0.3)
    ax2.plot(zero_to_nan(p_obs.traces[1].data),
             c='k',
             linestyle=':',
             linewidth=0.3)
    plt.tight_layout()
    ax3 = plt.subplot2grid((5, 1), (2, 0))
    ax3.plot(zero_to_nan(s_syn.traces[0].data), c='r', linewidth=0.3)
    ax3.plot(zero_to_nan(s_obs.traces[0].data), c='k', linewidth=0.3)
    plt.tight_layout()
    ax4 = plt.subplot2grid((5, 1), (3, 0))
    ax4.plot(zero_to_nan(s_syn.traces[1].data), c='r', linewidth=0.3)
    ax4.plot(zero_to_nan(s_obs.traces[1].data), c='k', linewidth=0.3)
    plt.tight_layout()
    ax5 = plt.subplot2grid((5, 1), (4, 0))
    ax5.plot(zero_to_nan(s_syn.traces[2].data), c='r', linewidth=0.3)
    ax5.plot(zero_to_nan(s_obs.traces[2].data), c='k', linewidth=0.3)
    plt.tight_layout()

    plt.savefig(VALUES['directory'] + '/%.2f_%.2f.pdf' % (epi, depth))
    plt.close()

    # time =

    ax1 = plt.subplot2grid((3, 1), (0, 0))
    ax1.plot(zero_to_nan(total_syn.traces[0].data), c='r', linewidth=0.5)
    ax1.plot(zero_to_nan(traces_obs.traces[0].data),
             c='k',
             linestyle=':',
             linewidth=0.5)
    ax1.set_title('SYNTHETIC: = epi: %.2f  REAL: epi = %.2f (depth fixed' %
                  (epi, epi + 3))
    plt.tight_layout()
    ax2 = plt.subplot2grid((3, 1), (1, 0))
    ax2.plot(zero_to_nan(total_syn.traces[1].data), c='r', linewidth=0.5)
    ax2.plot(zero_to_nan(traces_obs.traces[1].data),
             c='k',
             linestyle=':',
             linewidth=0.5)
    plt.tight_layout()
    ax3 = plt.subplot2grid((3, 1), (2, 0))
    ax3.plot(zero_to_nan(total_syn.traces[2].data), c='r', linewidth=0.5)
    ax3.plot(zero_to_nan(traces_obs.traces[2].data),
             c='k',
             linestyle=':',
             linewidth=0.5)
    plt.tight_layout()

    plt.savefig(VALUES['directory'] + '/PS_%.2f_%.2f.pdf' % (epi, depth))
    plt.close()

    Xi_bw_new, time_shift_new, amplitude = misfit.CC_stream(
        p_obs, p_syn, s_obs, s_syn, p_time_obs, p_time_syn)
    s_z_new = 0.1 * Xi_bw_new[0]
    s_r_new = 0.1 * Xi_bw_new[1]
    s_t_new = 1 * Xi_bw_new[2]
    p_z_new = 5 * Xi_bw_new[3]
    p_r_new = 5 * Xi_bw_new[4]
    bw_new = s_z_new + s_r_new + s_t_new + p_z_new + p_r_new
    Xi_R_new = misfit.SW_L2(R_env_obs, R_env_syn, PRIOR['var_est'], amplitude)
    Xi_L_new = misfit.SW_L2(L_env_obs, L_env_syn, PRIOR['var_est'], amplitude)

    R_dict_new = {}
    rw_new = 0
    for j, v in enumerate(Xi_R_new):
        R_dict_new.update({'R_%i_new' % j: v})
        rw_new += v

    L_dict_new = {}
    lw_new = 0
    for j, v in enumerate(Xi_L_new):
        L_dict_new.update({'L_%i_new' % j: v})
        lw_new += v
    Xi_new = bw_new + rw_new + lw_new
    a = 1
Esempio n. 10
0
import geographiclib.geodesic as geo
import matplotlib.pyplot as plt
import math as m

a = 1
calc = geo.Geodesic(a, 0.5)
initLat = 0
initLon = 0
finalLat = 0
finalLon = 175
numDiv = 100

l = calc.InverseLine(lat1=initLat, lon1=initLon, lat2=finalLat, lon2=finalLon)
increment = l.s13 / numDiv

lat = initLat
lon = initLon
x_data = []
y_data = []
s = 0
lats = []
lons = []
for i in range(numDiv + 1):
    g = l.Position(s)
    lat = m.radians(g.get("lat2"))
    r = a * (1 - m.sin(lat))  # esse cálculo não está correto!!!
    lon = m.radians(g.get("lon2"))
    x = a - r * m.cos(lon)
    y = a - r * m.sin(lon)
    x_data.append(x)
    y_data.append(y)
Esempio n. 11
0
    def G_function(self, epi, depth, M0, moment_old=None):
        if moment_old is None:
            strike, dip, rake = self.model_samples_sdr()
        else:
            strike, dip, rake = self.model_samples_sdr(moment_old[0],
                                                       moment_old[1],
                                                       moment_old[2])
        # epi =45.9233274286
        # depth = 10000
        # strike = 79
        # dip = 50
        # rake = 20
        # strike = moment_old[0]
        # dip = moment_old[1]
        # rake = moment_old[2]

        # epi = 35.2068855191
        # depth = 16848.1405882

        dict = geo.Geodesic(a=self.prior['radius'],
                            f=0).ArcDirect(lat1=self.prior['la_r'],
                                           lon1=self.prior['lo_r'],
                                           azi1=self.prior['baz'],
                                           a12=epi,
                                           outmask=1929)
        d_syn, traces_syn, sources = self.seis.get_seis_manual(
            la_s=dict['lat2'],
            lo_s=dict['lon2'],
            depth=depth,
            strike=strike,
            dip=dip,
            rake=rake,
            time=self.time_at_rec,
            M0=M0,
            sdr=self.sdr)
        # 3.16227766016798e+16
        if self.blind == True:
            R_env_syn, L_env_syn = self.BT.pick_sw(traces_syn,
                                                   self.picks,
                                                   epi,
                                                   self.prior,
                                                   30000,
                                                   self.directory,
                                                   plot_modus=False)
        else:
            R_env_syn = self.SW.rayleigh_pick(Z_trace=traces_syn.traces[0],
                                              la_s=dict['lat2'],
                                              lo_s=dict['lon2'],
                                              depth=depth,
                                              save_directory=self.directory,
                                              time_at_rec=self.time_at_rec,
                                              npts=self.npts,
                                              plot_modus=False)
            L_env_syn = self.SW.love_pick(T_trace=traces_syn.traces[2],
                                          la_s=dict['lat2'],
                                          lo_s=dict['lon2'],
                                          depth=depth,
                                          save_directory=self.directory,
                                          time_at_rec=self.time_at_rec,
                                          npts=self.npts,
                                          plot_modus=False)
        # traces_syn.plot(outfile=self.directory + '/syntethic')
        total_syn, p_syn, s_syn, start_time_p, start_time_s = self.window.get_window_obspy(
            traces_syn, epi, depth, self.time_at_rec, self.npts)
        #
        # plot_obs = self.full_obs_trace.copy()
        # plot_obs.trim(traces_syn.traces[0].meta.starttime, traces_syn.traces[0].meta.endtime)
        # if self.iter % 10 == 0:
        #     for i in range(len(self.full_obs_trace)):
        #         subplot_no = len(self.full_obs_trace) * 100 + 10 + i + 1
        #         if i < 3:
        #             P_obs = int(
        #                 (self.P_Start.timestamp - traces_syn.traces[
        #                     i].meta.starttime.timestamp) / traces_syn.traces[i].meta.delta)
        #             P_syn = int(
        #                 (start_time_p.timestamp - traces_syn.traces[
        #                     i].meta.starttime.timestamp) / traces_syn.traces[i].meta.delta)
        #         S_obs = int(
        #             (self.S_start.timestamp - traces_syn.traces[
        #                 i].meta.starttime.timestamp) / traces_syn.traces[i].meta.delta)
        #
        #         S_syn = int(
        #             (start_time_s.timestamp - traces_syn.traces[
        #                 i].meta.starttime.timestamp) / traces_syn.traces[i].meta.delta)
        #         ax = plt.subplot(subplot_no)
        #         plt.plot(plot_obs.traces[i].data, alpha=0.5, c='k', linewidth=0.3)
        #         plt.plot(traces_syn.traces[i].data, alpha=0.5, c='r', linewidth=0.3)
        #         ymin, ymax = ax.get_ylim()
        #         if i < 3:
        #             plt.vlines([P_obs], ymin, ymax, label="Observed", colors='k', linewidth=0.3)
        #             plt.vlines([P_syn], ymin, ymax, label="synthetic", colors='r', linewidth=0.3)
        #         plt.vlines([S_obs], ymin, ymax, label="Observed", colors='k', linewidth=0.3)
        #         plt.vlines([S_syn], ymin, ymax, label="synthetic", colors='r', linewidth=0.3)
        #         plt.xlabel(self.time_at_rec.strftime('%Y-%m-%dT%H:%M:%S + sec'))
        #         plt.legend(loc='center left', bbox_to_anchor=(1, 0.5))
        #         plt.tight_layout()
        #
        #     # plt.savefig(self.directory + '/P_S_Picks_%i.pdf' %self.iter)
        #     plt.show()
        #     plt.close()

        return R_env_syn, L_env_syn, total_syn, p_syn, s_syn, np.array(
            [strike, dip, rake]), start_time_p
Esempio n. 12
0
def memoPoligonPA(filestr,
                  shpname='memopa',
                  crs=None,
                  geodesic=True,
                  cfile=True,
                  verbose=False,
                  saveshape=True,
                  wincpp=True,
                  verdadeiro=True,
                  tolerance=1e-6,
                  snap_points=[],
                  snap_dist=10.):
    """
    Cria sequencia de vertices a partir de string de arquivo texto de
    memorial descritivo da poligonal de requerimento usando ponto de amarração.
    Vertices output em SIRGAS 2000.

    crs: crs do memorial default p/ SAD69(96)
        prj4 string
        based on
        https://wiki.osgeo.org/wiki/Brazilian_Coordinate_Reference_Systems#Ellipsoids_in_use
        ....

    snap_points: list [ [lat, lon] ]
        snap coordinate considering `snap_dist` to ONLY ONE point and
        recalculate walking vertices
        TODO: implement for 2/3 ... more points


    geodesic: default True  - calculos geodésicos
                      False - calculos planimetricos UTM projetado



    ### Calculos Geodésicos - SIGAREAS/SCM
    Usa pacote Geographiclib (Charles F. F. Karney)
    p/ calculos e distâncias, azimutes geodesicos (isso é direto no elipsoide)
    usa matemática esférica/elipsoidal para calculo direto ou inverso.

    ### Calculos Planimetricos
    Utiliza pacote Pyproj/PRJ4 para projeção em UTM e calculo distâncias. azimutes
    considerando o norte do GRID UTM.

    ### Transformações entre datuns
    Transformaçao de coordenadas entre datuns utilizando pacote Pyproj/PRJ4.
    Testado dando resultados identicos ao do site INPE Calculadora http://www.dpi.inpe.br/calcula/
    Mais precisos que o CONVNAV.

    Testado contra o CONVNAV dandos resultados na ordem em média < 1 metro de diferença.
    Quase certeza que é diferença de abordagem provavelmente na hora de contruir a navegação.
    CONVNAV mantem longitude constante quando N, S rumos verdadeiros.

    cfile: default True
        Cria arquivo COORDS.txt adequado
        para inserir no SIGAREAS->Administrador->Inserir Poligonal

    wincpp : default True
        use geographiclib compiled on windows/pybind11 vstudio by Andre
        8th order

    verdadeiro: default True
        force 'rumos verdadeiros'
        force decimal coordinates lat, lon to repeat last lat, lon

    tolerance: default 1e-6 (decimal degrees)
        diference to previous lat or lon to force 'verdadeiro' option
        WARNING:
        If navigation is very detailed this parameter may change it COMPLETELY

    Conforme Emilio todo o banco de dados do SCM foi convertido
    considerando que os dados já estavam no datum SAD69(96).

    Exemplos:

    1. Com rumos verdadeiros

    -20 14 14 3  # latitude do Ponto de Amarração
    -43 52 50 2  # longitude do Ponto de Amarração

    1000 SW 75 15  # distancia (metros) direção grau-minutos para o primeiro vértice
    2200 E         # incremento direcional a partir do primeiro vértice
    1350 S
    2200 W
    1350 N

    2. Com rumos diversos

    -20 16 38 4
    -43 55 15 0

    4836 NE 51 12
    286  NW 00 00
    302  SE 90 00
    140  NW 00 00

    Aproximadamente 0.001 (1 mm) walk changes 8 casa ou 10-8 grau decimal.
    """
    wincpp = wincpp
    if crs is not None:
        crs = CRS(crs)
    else:
        # older sad69
        #crs = CRS('+proj=longlat +ellps=aust_SA +towgs84=-66.87,4.37,-38.52,0,0,0,0 +no_defs')
        crs = CRS(CRS_SAD69_96)  # sad69(96) lat lon
    print("Input CRS: ", crs)
    lines = filestr.split('\n')
    # PA information
    latpa = get_graus(lines[0])
    lonpa = get_graus(lines[1])
    print("Input lat, lon : {:.8f} {:.8f} {:}".format(latpa, lonpa,
                                                      'SAD69(96)'))
    print("lat {:} {:} {:} {:} | lon {:} {:} {:} {:}".format(
        *decdeg2dmsd(latpa), *decdeg2dmsd(lonpa)))
    # convert PA geografica de datum de SAD69(96)  para SIRGAS 2000
    # conforme Emilio todo o banco de dados do SCM foi convertido
    # considerando que os dados eram SAD69(96)
    sirgas = CRS_SIRGAS2000
    tosirgas = Transformer.from_crs(crs, sirgas)
    lonpa, latpa = tosirgas.transform(lonpa, latpa)
    print("Input lat, lon: {:.8f} {:.8f} {:}".format(latpa, lonpa,
                                                     'SIRGAS2000'))
    print("lat {:} {:} {:} {:} | lon {:} {:} {:} {:}".format(
        *decdeg2dmsd(latpa), *decdeg2dmsd(lonpa)))

    # Projection transformation
    # get adequate UTM zone by using the simple equation
    # 1 + np.floor((-44 + 180)/6) % 60
    zone = 1 + np.floor((lonpa + 180) / 6) % 60
    utm_crs = CRS(
        "+proj=utm +zone={:} +south +units=m +ellps=GRS80 +towgs84=0,0,0,0,0,0,0 +no_defs"
        .format(zone))
    # custom CRS LTM primeiro vertice
    # utm_crs = """+proj=tmerc +ellps=WGS84 +datum=WGS84 +units=m +no_defs +lon_0={:} +x_0=50000 +y_0=0 +k_0=0.9996
    #+towgs84=0,0,0,0,0,0,0""".format(lonpa)
    # Lambert Azimuthal Equal Area
    # utm_crs = """+proj=laea +ellps=WGS84 +datum=WGS84 +units=m +no_defs +lon_0={:} +lat_0={:} +x_0=0 +y_0=0 +towgs84=0,0,0,0,0,0,0""".format(lonpa, latpa)
    if not geodesic:
        print("PRJ4 string UTM:", utm_crs)
    proj = Transformer.from_crs(sirgas, utm_crs)
    deproj = Transformer.from_crs(utm_crs, sirgas)  # Deprojection

    # read all lines of segments defining the polygon
    # assumed clockwise
    directions_xy = []
    directions_az = []
    lines = lines[3:]
    idx = 0
    print("First vertex at index 1, 0 is PA")
    for line in lines:
        dist, quad, angle = memoLineRead(line)
        azimuth = getazimuth(quad, angle)
        dx, dy = projectxy(dist, quad, angle)
        directions_xy.append([dx, dy])
        directions_az.append([dist, azimuth])
        print(
            "{:3d} : {:>+9.3f} {:>5} {:>+7.2f} {:>+7.2f} {:>+9.2f} {:>+9.2f}".
            format(idx, dist, quad.ljust(5), angle, azimuth, dx, dy))
        idx += 1

    vertices_dg = []
    vertices_utm = []
    if geodesic:  # geodesic calculations # go to first vertex
        # assume clockwise, assume closed polygon otherwise BROKE
        first_vertex = geodesic_walk((latpa, lonpa), directions_az[:1])[1]
        # ignora  PA not vertex, remove from directions also
        directions_az = directions_az[1:]
        vertices_dg = geodesic_poly_walk(first_vertex, directions_az, 0)

        rsnap_points = []  # new reference points from snapping points
        if snap_points:
            for spoint in snap_points:  # list of lat, lon points
                for i in range(len(vertices_dg)):
                    distance = GeoInverseWGS84(*spoint, *vertices_dg[i])
                    #print(distance)
                    if (distance < snap_dist):
                        print(
                            "Snaping: distance from snap-vertex : Lat {:>4.8f} Lon {:>4.8f} to "
                            "vertex : {:>3d} is {:>5.3f} m".format(
                                *spoint, i, distance))
                        #print("accept?")
                        rsnap_points.append([i, spoint])
            if rsnap_points:  # at least one acceptable snap_point
                print("Recalculating vertices")
                if len(rsnap_points) == 1:
                    vertices_dg = geodesic_poly_walk(rsnap_points[0][1],
                                                     directions_az,
                                                     rsnap_points[0][0])

        # create UTM equivalents
        for vertex in vertices_dg:
            utmx, utmy = proj.transform(vertex[1], vertex[0])
            vertices_utm += [utmx, utmy]
            print("UTM X {:10.3f} Y {:10.3f} Lat {:4.8f} Lon {:4.8f}".format(
                utmx, utmy, vertex[0], vertex[1]))

    else:  # planimetric calculations
        xpa, ypa = proj.transform(lonpa, latpa)
        cx, cy = xpa, ypa
        for segment in directions_xy:
            dx, dy = segment
            cx += dx
            cy += dy
            vertices_utm.append([cx, cy])
        for vertex in vertices_utm:
            lon, lat = deproj.transform(vertex[0], vertex[1])
            vertices_dg.append([lat, lon])
            print("UTM X {:10.3f} Y {:10.3f} Lat {:4.8f} Lon {:4.8f}".format(
                vertex[0], vertex[1], lat, lon))

    if verdadeiro:  # force verdadeiro
        vertices_dg = force_verd(vertices_dg, tolerance).tolist()

    if cfile:
        fformatPoligonal(vertices_dg, verbose=verbose, endfirst=True)

    # Create polygon shape file
    if saveshape:
        savePolygonWGS84(vertices_dg, shpname)
        gdfvs = gp.GeoSeries(list(map(Point, vertices_dg)),
                             index=np.arange(len(vertices_dg)))
        gdfvs.set_crs(pyproj.CRS(CRS_SIRGAS2000))  # SIRGAS 2000
        gdfvs.to_file(shpname + 'points.shp')

    if verbose:
        elipsoide = gd.Geodesic(gd.Constants.WGS84_a,
                                gd.Constants.WGS84_f)  # same as SIRGAS
        poly = pa.PolygonArea(elipsoide)
        for p in vertices_dg:
            poly.AddPoint(*p)
        poly.Compute(True)
        py_num, py_perim, py_area = poly.Compute(True)
        py_area = py_area * 10**(-4)  # to hectares
        print("nvertices {:} area {:>9.8f} perimeter {:>9.8f}".format(
            py_num, py_area, py_perim))

    return vertices_dg, vertices_utm
Esempio n. 13
0
from collections import namedtuple
from enum import Enum
from math import floor

import numpy as np
from geographiclib import geodesic

WGS84 = geodesic.Geodesic(geodesic.Constants.WGS84_a,
                          geodesic.Constants.WGS84_f)
LongLat = namedtuple("LongLat", "long lat")
"""Longitude and latitude always get reversed, so use this to help."""


class Direction(Enum):
    North = 0
    East = 90
    South = 180
    West = 270


def pixel_containing(point, geo_transform):
    """
    Which pixel has this long-lat? This version won't work if there
    is shear. To implement it with shear, turn this into homogeneous
    coordinates and invert the geo_transform.

    Args:
        point: A point in longitude and latitude.
        geo_transform: Six points for a transformation with shear.

    Returns:
Esempio n. 14
0
## Step 2 - Parameters = epi,depth
# For now the epi,depth,time are using the exact same values as the prior, because I wanted to test my code
epi = PARAMETERS['epi']
depth = PARAMETERS['depth_s']

## Step 3 - Parameters = Strike,dip,rake
strike = PARAMETERS['strike']
dip = PARAMETERS['dip']
rake = PARAMETERS['rake']

## Step 4 - Calculate d_syn with the use of get_seismogram (from instaseis)
seis = Seismogram(PRIOR, db)
window_code = Source_code(PRIOR['VELOC_taup'])
dict = geo.Geodesic(a=PRIOR['radius'], f=0).ArcDirect(lat1=PRIOR['la_r'],
                                                      lon1=PRIOR['lo_r'],
                                                      azi1=PRIOR['baz'],
                                                      a12=epi,
                                                      outmask=1929)

# FULL seismogram
# d_obs = stacked numpy array of the seismogram
# traces = obspy stream with 3 traces [Z,R,T]
# source = instaseis source
d_syn, tr_syn, sources = seis.get_seis_manual(la_s=dict['lat2'],
                                              lo_s=dict['lon2'],
                                              depth=depth,
                                              strike=strike,
                                              dip=dip,
                                              rake=rake,
                                              time=time_at_receiver,
                                              sdr=True)