Esempio n. 1
0
def approximate_rpc_as_projective(rpc_model,
                                  col_range,
                                  lin_range,
                                  alt_range,
                                  verbose=False):
    """
    Returns a least-square approximation of the RPC functions as a projection
    matrix. The approximation is optimized on a sampling of the 3D region
    defined by the altitudes in alt_range and the image tile defined by
    col_range and lin_range.
    """
    ### step 1: generate cartesian coordinates of 3d points used to fit the
    ###         best projection matrix
    # get mesh points and convert them to geodetic then to geocentric
    # coordinates
    cols, lins, alts = generate_point_mesh(col_range, lin_range, alt_range)
    lons, lats, alts = rpc_model.direct_estimate(cols, lins, alts)
    x, y, z = geographiclib.geodetic_to_geocentric(lats, lons, alts)

    ### step 2: estimate the camera projection matrix from corresponding
    # 3-space and image entities
    world_points = np.vstack([x, y, z]).T
    image_points = np.vstack([cols, lins]).T
    P = estimation.camera_matrix(world_points, image_points)

    ### step 3: for debug, test the approximation error
    if verbose:
        # compute the projection error made by the computed matrix P, on the
        # used learning points
        colPROJ = np.zeros(len(x))
        linPROJ = np.zeros(len(x))
        for i in xrange(len(x)):
            v = np.dot(P, [[x[i]], [y[i]], [z[i]], [1]])
            colPROJ[i] = v[0] / v[2]
            linPROJ[i] = v[1] / v[2]

        print 'approximate_rpc_as_projective: (min, max, mean)'
        print_distance_between_vectors(cols, colPROJ, 'cols')
        print_distance_between_vectors(lins, linPROJ, 'rows')

    return P
Esempio n. 2
0
    def inverse_estimate(self, lon, lat, alt):
        """
        computes the projection location (col, lin) of the 3D point
        (lon,lat,alt), on the image.  For symmetry, this function returns a
        triplet (col, lin, alt). The value of alt is just a copy of the one
        given in input.
        """
        # convert the geodetic coordinates (lat, lon, alt) to cartesian (x, y, z)
        # WARNING: the convention used by CartConvert is (lat, lon, alt), while
        # we use (lon, lat, alt)
        x, y, z = geographiclib.geodetic_to_geocentric(lat, lon, alt)

        # project the 3D point, represented as homogeneous cartesian coordinates
        p0 = self.P[0, :]
        p1 = self.P[1, :]
        p2 = self.P[2, :]
        col = p0[0] * x + p0[1] * y + p0[2] * z + p0[3];
        lin = p1[0] * x + p1[1] * y + p1[2] * z + p1[3];
        n   = p2[0] * x + p2[1] * y + p2[2] * z + p2[3];
        # homogeneous normalization
        return col/n, lin/n, alt
Esempio n. 3
0
def world_to_image_correspondences_from_rpc(rpc, x, y, w, h, n):
    """
    Uses RPC functions to generate a set of world to image correspondences.

    Args:
        rpc: an instance of the rpc_model.RPCModel class
        x, y, w, h: four integers defining a rectangular region of interest
            (ROI) in the image. (x, y) is the top-left corner, and (w, h)
            are the dimensions of the rectangle. The correspondences
            will be located in that ROI.
        n: cube root of the desired number of correspondences.

    Returns:
        an array of correspondences, one per line, expressed as X, Y, Z, x, y.
    """
    m, M = altitude_range(rpc, x, y, w, h, 100, -100)
    lon, lat, alt = ground_control_points(rpc, x, y, w, h, m, M, n)
    x, y, h = rpc.inverse_estimate(lon, lat, alt)
    X, Y, Z = geographiclib.geodetic_to_geocentric(lat, lon, alt)

    return np.vstack([X, Y, Z]).T, np.vstack([x, y]).T
Esempio n. 4
0
    def inverse_estimate(self, lon, lat, alt):
        """
        computes the projection location (col, lin) of the 3D point
        (lon,lat,alt), on the image.  For symmetry, this function returns a
        triplet (col, lin, alt). The value of alt is just a copy of the one
        given in input.
        """
        # convert the geodetic coordinates (lat, lon, alt) to cartesian (x, y, z)
        # WARNING: the convention used by CartConvert is (lat, lon, alt), while
        # we use (lon, lat, alt)
        x, y, z = geographiclib.geodetic_to_geocentric(lat, lon, alt)

        # project the 3D point, represented as homogeneous cartesian coordinates
        p0 = self.P[0, :]
        p1 = self.P[1, :]
        p2 = self.P[2, :]
        col = p0[0] * x + p0[1] * y + p0[2] * z + p0[3]
        lin = p1[0] * x + p1[1] * y + p1[2] * z + p1[3]
        n = p2[0] * x + p2[1] * y + p2[2] * z + p2[3]
        # homogeneous normalization
        return col / n, lin / n, alt
Esempio n. 5
0
def approximate_rpc_as_projective(rpc_model, col_range, lin_range, alt_range,
        verbose=False):
    """
    Returns a least-square approximation of the RPC functions as a projection
    matrix. The approximation is optimized on a sampling of the 3D region
    defined by the altitudes in alt_range and the image tile defined by
    col_range and lin_range.
    """
    ### step 1: generate cartesian coordinates of 3d points used to fit the
    ###         best projection matrix
    # get mesh points and convert them to geodetic then to geocentric
    # coordinates
    cols, lins, alts = generate_point_mesh(col_range, lin_range, alt_range)
    lons, lats, alts = rpc_model.direct_estimate(cols, lins, alts)
    x, y, z = geographiclib.geodetic_to_geocentric(lats, lons, alts)

    ### step 2: estimate the camera projection matrix from corresponding
    # 3-space and image entities
    world_points = np.vstack([x, y, z]).T
    image_points = np.vstack([cols, lins]).T
    P = estimation.camera_matrix(world_points, image_points)

    ### step 3: for debug, test the approximation error
    if verbose:
        # compute the projection error made by the computed matrix P, on the
        # used learning points
        colPROJ = np.zeros(len(x))
        linPROJ = np.zeros(len(x))
        for i in xrange(len(x)):
            v = np.dot(P, [[x[i]],[y[i]],[z[i]],[1]])
            colPROJ[i] = v[0]/v[2]
            linPROJ[i] = v[1]/v[2]

        print 'approximate_rpc_as_projective: (min, max, mean)'
        print_distance_between_vectors(cols, colPROJ, 'cols')
        print_distance_between_vectors(lins, linPROJ, 'rows')

    return P