Esempio n. 1
0
def nearby():
	print 'geohash.bounding box'
	print geohash.bbox('tdr1w')
	print 'geohash neighbours'
	print geohash.neighbors('tdr1wxype953')
	print 'geohash expand'
	print geohash.expand('tdr1wxype953')
Esempio n. 2
0
def nearby():
    print 'geohash.bounding box'
    print geohash.bbox('tdr1w')
    print 'geohash neighbours'
    print geohash.neighbors('tdr1wxype953')
    print 'geohash expand'
    print geohash.expand('tdr1wxype953')
Esempio n. 3
0
def gh_expansion(seed_gh,exp_iters):
    expansion_ghs = {0:[seed_gh]}
    ghs = []
    for i in range(1,exp_iters+1):
        expansion_ghs[i] = []
        for gh in expansion_ghs[i-1]:
            expansion_ghs[i] = expansion_ghs[i] + geohash.expand(gh)
            ghs = ghs + geohash.expand(gh)
    return list(set(ghs))
Esempio n. 4
0
def gh_expansion(seed_gh, exp_iters):
    expansion_ghs = {0: [seed_gh]}
    ghs = []
    for i in range(1, exp_iters + 1):
        expansion_ghs[i] = []
        for gh in expansion_ghs[i - 1]:
            expansion_ghs[i] = expansion_ghs[i] + geohash.expand(gh)
            ghs = ghs + geohash.expand(gh)
    return list(set(ghs))
Esempio n. 5
0
    def check_line(cls, loc1, loc2, userid):
        "Check if the given line intersects with a camera"

        # get all cameras in the neighbourhood
        hashes = geohash.expand(geohash.encode(loc1.lat, loc1.lon, 7))
        if str(loc1) != str(loc2):
            hashes.extend(geohash.expand(geohash.encode(loc2.lat, loc2.lon, 7)))
        sets = ["camloc:" + h for h in hashes]
        cams = rd.sunion(sets)

        for camstring in cams:
            cam = Camera(camstring)
            rate = cam.check_camera_line(loc1, loc2, userid)

        return False
Esempio n. 6
0
def get_moving_time(geohash1, geohash2):
    try:
        if geohash1 == None or geohash2 == None: # 바로 나오는 경우, 들어가는 경우
            return 0

        if geohash1 == '' or geohash2 == '': # 모를 경우에는 1시간을 줌
            return 60

        geohash1_parent = geohash1[:5]
        geohash2_parent = geohash2[:5]

        expanded = geohash.expand(geohash1_parent)
        expanded_depth2 = set()

        for gh in expanded:
            neighbors = geohash.neighbors(gh)
            expanded_depth2 = expanded_depth2.union(neighbors)

        expanded_depth2 = list(expanded_depth2)

        if geohash1 == geohash2:
            return 30

        elif geohash2_parent in expanded:
            return 60

        elif geohash2_parent in expanded_depth2:
            return 90
        else:
            return 120
    except Exception, e:
        print_err_detail(e)
        return 60
    def article_id_by_geo(self,
                          content_type=0,
                          poi_longitude=None,
                          poi_latitude=None,
                          poi_distance=None):
        filters = [not Article.deleted]

        if content_type:
            filters.append(Article.content_type == content_type)

        if poi_longitude and poi_latitude and poi_distance:
            precision = utils.geo_precision_by_distance(poi_distance)
            poi_hash = geohash.encode(poi_latitude, poi_longitude, precision)
            poi_extend = geohash.expand(poi_hash)
            filters.append(
                sqla.or_(*[
                    Article.geo_hash.like(poi_extend_hash + "%")
                    for poi_extend_hash in poi_extend
                ]))

        id_with_geo_list = Article.query.with_entities(Article.id, Article.latitude, Article.longitude). \
            filter(*filters).all()
        if poi_longitude and poi_latitude and poi_distance:
            temp_list = filter(
                lambda x: utils.get_distance_hav(poi_latitude, poi_longitude,
                                                 x[1], x[2]) <= poi_distance,
                id_with_geo_list)
            id_list = [id_with_geo[0] for id_with_geo in temp_list]
        else:
            id_list = [id_with_geo[0] for id_with_geo in id_with_geo_list]
        return id_list
Esempio n. 8
0
 def get_nearest_points_dirty(self, center_point, radius, unit='km'):
     """
     return approx list of point from circle with given center and radius
     it uses geohash and return with some error (see GEO_HASH_ERRORS)
     :param center_point: center of search circle
     :param radius: radius of search circle
     :return: list of GeoPoints from given area
     """
     if unit == 'mi':
         radius = utils.mi_to_km(radius)
     grid_size = GEO_HASH_GRID_SIZE[self.precision]
     if radius > grid_size / 2:
         # radius is too big for current grid, we cannot use 9 neighbors
         # to cover all possible points
         suggested_precision = 0
         for precision, max_size in GEO_HASH_GRID_SIZE.items():
             if radius > max_size / 2:
                 suggested_precision = precision - 1
                 break
         raise ValueError(
             'Too large radius, please rebuild GeoHashGrid with '
             'precision={0}'.format(suggested_precision)
         )
     me_and_neighbors = geohash.expand(self.get_point_hash(center_point))
     return chain(*(self.data.get(key, []) for key in me_and_neighbors))
Esempio n. 9
0
 def get_nearest_points_dirty(self, center_point, radius, unit='km'):
     """
     return approx list of point from circle with given center and radius
     it uses geohash and return with some error (see GEO_HASH_ERRORS)
     :param center_point: center of search circle
     :param radius: radius of search circle
     :return: list of GeoPoints from given area
     """
     if unit == 'mi':
         radius = utils.mi_to_km(radius)
     grid_size = GEO_HASH_GRID_SIZE[self.precision]
     if radius > grid_size / 2:
         # radius is too big for current grid, we cannot use 9 neighbors
         # to cover all possible points
         suggested_precision = 0
         for precision, max_size in GEO_HASH_GRID_SIZE.items():
             if radius > max_size / 2:
                 suggested_precision = precision - 1
                 break
         raise ValueError(
             'Too large radius, please rebuild GeoHashGrid with '
             'precision={0}'.format(suggested_precision)
         )
     me_and_neighbors = geohash.expand(self.get_point_hash(center_point))
     return chain(*(self.data.get(key, []) for key in me_and_neighbors))
Esempio n. 10
0
    def check_line(cls, loc1, loc2, userid):
        "Check if the given line intersects with a camera"

        # get all cameras in the neighbourhood
        hashes = geohash.expand(geohash.encode(loc1.lat, loc1.lon, 7))
        if str(loc1) != str(loc2):
            hashes.extend(geohash.expand(geohash.encode(loc2.lat, loc2.lon,
                                                        7)))
        sets = ['camloc:' + h for h in hashes]
        cams = rd.sunion(sets)

        for camstring in cams:
            cam = Camera(camstring)
            rate = cam.check_camera_line(loc1, loc2, userid)

        return False
Esempio n. 11
0
    def _get_named_neighbors(self, gh):
        ghs = {}
        gh_bbox = geohash.bbox(gh)
        for g in geohash.expand(gh):
            if gh == g:
                continue
            b = geohash.bbox(g)

            if gh_bbox['n'] == b['n'] and gh_bbox['w'] == b["e"]:
                ghs['L'] = g
            elif gh_bbox['n'] == b['n'] and gh_bbox['e'] == b["w"]:
                ghs['R'] = g

            elif gh_bbox['e'] == b['e'] and gh_bbox['n'] == b["s"]:
                ghs['U'] = g
            elif gh_bbox['e'] == b['e'] and gh_bbox['s'] == b["n"]:
                ghs['D'] = g

            elif gh_bbox['n'] == b['s'] and gh_bbox['w'] == b['e']:
                ghs['LU'] = g
            elif gh_bbox['n'] == b['s'] and gh_bbox['e'] == b['w']:
                ghs['RU'] = g

            elif gh_bbox['s'] == b['n'] and gh_bbox['w'] == b['e']:
                ghs['LD'] = g
            elif gh_bbox['s'] == b['n'] and gh_bbox['e'] == b['w']:
                ghs['RD'] = g

        return ghs
Esempio n. 12
0
 def search_geohash(self, east_longitude, north_latitude, bits=6):
     # 打开数据库连接
     data = []
     geohash_source = geohash.encode(north_latitude, east_longitude, bits)
     # print geohash_source
     geohash_value_list = geohash.expand(geohash_source)
     # geohash_value_list.append(geohash_source)
     db = MySQLdb.connect("localhost", "root", "root", "citydb")
     # 使用cursor()方法获取操作游标
     cursor = db.cursor()
     # SQL 插入语句
     for geohash_value in geohash_value_list:
         sql = "SELECT * FROM CITYLIST WHERE GEOHASH LIKE '{}%'".format(geohash_value)
         try:
             # 执行sql语句
             cursor.execute(sql)
             # 提交到数据库执行
             results = cursor.fetchall()
             for result in results:
                 data.append(result)
             # print data_json
         except:
             # 发生错误时回滚
             print "Error: unable to fecth data"
         # 关闭数据库连接
     db.close()
     if len(data) < 3:
         return self.search_geohash(east_longitude, north_latitude, bits - 1)
     else:
         return data
Esempio n. 13
0
 def expand(self, hashes):
     new = []
     for h in hashes:
         neighbors = geohash.expand(h)
         for n in neighbors:
             if n not in self.fetched:
                 new.append(n)
     return new
Esempio n. 14
0
 def _get_hits(self, center_hash):
     hits = []
     for hash_ in geohash.expand(center_hash):
         try:
             hits.extend(self.trie.values_for_prefix(hash_))
         except KeyNotFound:
             pass
     return hits
Esempio n. 15
0
 def expand(self, hashes):
     new = []
     for h in hashes:
         neighbors = geohash.expand(h)
         for n in neighbors:
             if n not in self.fetched:
                 new.append(n)
     return new
Esempio n. 16
0
 def get_near_points(self, center_point, radius=2000):
     """A cheap filter that fetchs all points of 4 neighbor grids that are 
     within a circle generated from given center point and radius.
     
     : param center_point: a center point
     : param radius: a radius from a center point. 2000 by default.
     """
     me_and_neighbors = geohash.expand(self.get_point_hash(center_point))
     return chain(*(self.data.get(key, []) for key in me_and_neighbors))
Esempio n. 17
0
def update_location(user_id, lat, lng):
    user_geohash = geohash.encode(lat, lng, precision=5)
    user_key = "users:%s" % user_id
    last_hash = r.hget(user_key, "user_geohash")
    r.decr("count:%s" % last_hash)

    for key in geohash.expand(user_geohash):
        if (r.sismember("geohashes", key)):
            r.incr("count:%s" % key)
            r.hset(user_key, "user_geohash", key)
            break
Esempio n. 18
0
 def _get_area_demand(self, df):
     df_area_demand = []
     print("Aggregating demand.")
     for ghash in tqdm(df.geohash6.unique()):
         area_codes = geohash.expand(ghash)
         df_temp = (df[df.geohash6.isin(area_codes)].groupby(
             'timestamp', as_index=False).demand.sum().rename(
                 {
                     'demand': 'area_demand'
                 }, axis=1).assign(geohash6=ghash))
         df_area_demand.append(df_temp)
     return pd.concat(df_area_demand, sort=False)
Esempio n. 19
0
def main():
    args = parse_args()

    # get country geometry
    country = json.load(open(args.country_geojson))['features'][0]
    polygon = ee.Geometry.Polygon(country['geometry']['coordinates'])
    geohashes_country = polygon2geohash(polygon, precision=5, coarse_precision=5)

    # Get locations of sightings, and restrict to AOI
    df = pd.read_csv(args.hopper_csv)
    df['geohash'] = df[['Y', 'X']].apply(lambda x: geohash.encode(*x, precision=5), axis=1).values
    df = df.loc[df.STARTDATE > args.start_date].loc[df['geohash'].isin(geohashes_country)]
    df['STARTDATE'] = pd.to_datetime(df.STARTDATE)

    # Encode locations as geohashes and get surrounding geohashes
    gh = set(df['geohash'])
    for _ in range(30):
        for g in list(gh):
            gh |= set(geohash.expand(g))

    gh = list(gh.intersection(geohashes_country))

    random.shuffle(gh)
    gh = gh[:len(gh) // 3]
    gh.extend(list(df['geohash']))
    gh = list(set(gh))

    # Prepare to load data
    os.makedirs(args.outdir, exist_ok=True)

    # Get all geohashes of interest for around date where a hopper sighting occurs
    interval = 30
    delta = date.fromisoformat('2020-06-01') - date.fromisoformat(args.start_date)

    locs = []
    for i in range(int(delta.days/30)):
        start_date = date.fromisoformat(args.start_date) + timedelta(days=i*interval)
        end_date = start_date + timedelta(days=interval)
        for i in range(len(gh)):
            locs.append({'date_start': str(start_date),
                         'date_end': str(end_date),
                         'geohash': gh[i]})

    # Run jobs in parallel
    jobs = []
    for loc in locs:
        job = delayed(get_one_sentinel)(loc, outdir=args.outdir)
        jobs.append(job)

    random.shuffle(jobs)

    _ = Parallel(backend='multiprocessing', n_jobs=args.n_jobs, verbose=1, batch_size=4)(tqdm(jobs))
Esempio n. 20
0
def lookup():
	"""Calculate ten closest stations from input latitude and longitude, return data for ten closest stations as a JSON object."""

	# From Google maps API:
	l = request.values.get("lat", 0, type=float)
	g = request.values.get("lng", 0, type=float)
	session["location"] = {"input":(l,g)}
	# Geohash encode the input, then determine the expanded neighborhood based on expanded geohash
	reference_location = geohash.encode(l, g)
	location_box = geohash.expand(reference_location[:3])
	neighborhoods = []
	for place in location_box:
		geohash_str = place + '%'
		neighbor = dbsession.query(model.Station_Geohash).\
			select_from(model.Station_Geohash).\
			filter(model.Station_Geohash.geohash_loc.ilike(geohash_str)).\
			all()
		neighborhoods = neighborhoods + neighbor
	dist_list = []
	# For all of the stations found in neighborhoods, check for data and snow. 
	# If there is data and snow for a given station, add it to the heap
	for location in neighborhoods:
		try: 
			station = dbsession.query(model.Station).filter(model.Station.id == location.station_id).one()
			snow = station.snow_data[-1]
			origin = float(l), float(g)
			destination = float(station.latitude), float(station.longitude)
			kms = int(distance(origin, destination))
			mi = int(0.621371*kms)
			if snow.depth != None and snow.depth > 0:
				if snow.water_equiv != None and snow.water_equiv != 0:
					density = (int((snow.water_equiv / snow.depth) * 100))
					if density > 100:
							density = 100
				else: 
					density = "No Data" 
				dist_list.append({'dist':mi, 'text-code':station.id, 'id':station.given_id, 'ele':station.elevation,\
					'lat':station.latitude, 'lng':station.longitude, 'name':station.name, 'depth':snow.depth,\
				'depth_change':snow.depth_change, 'density':density, 'date':snow.date.strftime("%m/%d/%y %H:%M")})
			else:
				continue
		except IndexError:
			continue
	# Return the 10 closest stations, their distances away in miles (converted from kms)
	#  and basic telemetry data for that station
	closest_sta = sorted(dist_list, key=lambda k: k['dist'])[0:10]
	time_stamps = [x['date'] for x in closest_sta]
	time_stamp = max(time_stamps)
	response = json.dumps({"closest": closest_sta, "time_stamp":time_stamp})
	return response
Esempio n. 21
0
def compute_geohash_key(geoh, with_neighbors=True):
    if with_neighbors:
        neighbors = geohash.expand(geoh)
        neighbors = [dbkeys.geohash_key(n) for n in neighbors]
    else:
        neighbors = [geoh]
    key = 'gx|{}'.format(geoh)
    total = DB.sunionstore(key, neighbors)
    if not total:
        # No need to keep it.
        DB.delete(key)
        key = False
    else:
        DB.expire(key, 10)
    return key
Esempio n. 22
0
def compute_geohash_key(geoh, with_neighbors=True):
    if with_neighbors:
        neighbors = geohash.expand(geoh)
        neighbors = [keys.geohash_key(n) for n in neighbors]
    else:
        neighbors = [geoh]
    key = 'gx|{}'.format(geoh)
    total = DB.sunionstore(key, neighbors)
    if not total:
        # No need to keep it.
        DB.delete(key)
        key = False
    else:
        DB.expire(key, 10)
    return key
Esempio n. 23
0
def get_labels(df, df_label, label_name='hoppers', n_neighbor=0):
    df[label_name] = 0
    for row in df_label.iterrows():
        start_day = row[1].date
        end_day = start_day + timedelta(days=30)
        gh = set([row[1].gh])
        if n_neighbor > 0:
            for _ in range(n_neighbor):
                for g in list(gh):
                    gh |= set(geohash.expand(g))
        gh = list(gh)
        idx = df[label_name].loc[df['geohash'].isin(gh)].loc[
            df['date'] >= start_day].loc[df['date'] < end_day].index.values
        df[label_name].iloc[idx] = 1
    return df
Esempio n. 24
0
def geohash_and_neighbours(gh, neighbours_deepth=1):
    '''
    >>> geohash_and_neighbours('bg4r', neighbours_deepth=0)
    set(['bg4r'])
    >>> sorted(geohash_and_neighbours('bg4r'))
    ['bg4n', 'bg4p', 'bg4q', 'bg4r', 'bg4w', 'bg4x', 'bg60', 'bg62', 'bg68']
    >>> sorted(geohash_and_neighbours('bg4r', neighbours_deepth=2))
    ['bg1v', 'bg1y', 'bg1z', 'bg3b', 'bg3c', 'bg4j', 'bg4m', 'bg4n', 'bg4p', 'bg4q', 'bg4r', 'bg4t', 'bg4v', 'bg4w', 'bg4x', 'bg4y', 'bg4z', 'bg60', 'bg61', 'bg62', 'bg63', 'bg68', 'bg69', 'bg6b', 'bg6c']

    '''
    # some neighbours are calculated many times, but for performance this makes almost no difference
    ghs = set([gh])
    for i in range(neighbours_deepth):
        for gh in tuple(ghs): # tuple because we want a copy from it
            ghs.update(geohash.expand(gh))
    return ghs
Esempio n. 25
0
def geohash_and_neighbors(gh, neighbors_deepth=1):
    '''
    >>> geohash_and_neighbors('bg4r', neighbors_deepth=0)
    set(['bg4r'])
    >>> sorted(geohash_and_neighbors('bg4r'))
    ['bg4n', 'bg4p', 'bg4q', 'bg4r', 'bg4w', 'bg4x', 'bg60', 'bg62', 'bg68']
    >>> sorted(geohash_and_neighbors('bg4r', neighbors_deepth=2))
    ['bg1v', 'bg1y', 'bg1z', 'bg3b', 'bg3c', 'bg4j', 'bg4m', 'bg4n', 'bg4p', 'bg4q', 'bg4r', 'bg4t', 'bg4v', 'bg4w', 'bg4x', 'bg4y', 'bg4z', 'bg60', 'bg61', 'bg62', 'bg63', 'bg68', 'bg69', 'bg6b', 'bg6c']

    '''

    # some neighbors are calculated repeatedly, that's ok for performance
    ghs = set([gh])
    for i in range(neighbors_deepth):
        for gh in tuple(ghs):  # tuple because we want to copy ghs
            ghs.update(geohash.expand(gh))
    return ghs
Esempio n. 26
0
    def get_neighbours(cls, lat, lng, radius, tags):
        # get length of geohash for the required radius
        geohash_length = 12
        for to_remove, accuracy in sorted(GEOHASH_CHARS_TO_DISTANCE.items()):
            if  accuracy < radius:
                geohash_length = ( to_remove - 1 )
                break

        query = []
        param = []
        result = []

        # get encoding of current lat, lng
        geohash_code = encode(lat, lng, geohash_length)

        # get neighbours of current geohash accoridng to radius
        # and generate sql statements for them
        # the choice to run the sql statements as literal SQL
        # and not through the ORM was a concious decision since
        # I did not want all these objects to be created just
        # and pass through the layers of the ORM, this is a performance
        # critical method and no need for that overhead.
        for prefix in expand(geohash_code):
            query.append("geohash LIKE ?")
            param.append(prefix+"%")

        query_text = "SELECT DISTINCT(shop.id), latitude, longitude FROM shop LEFT JOIN tagging"+\
                     " ON shop.id = tagging.shop_id WHERE (" +\
                     " OR ".join(query)+ ")"

        # include tags in the search
        if tags:
            query_text += " AND tag_id IN (%s) AND tagging.id IS NOT NULL" % ','.join('?' * len(tags))
            param += tags

        # manually filter the outliers after that do not
        # fall within the exact radius, but fall within the geohash
        # neighbours
        orig = GeopyPoint(latitude=lat, longitude=lng)
        for row in db.engine.execute(query_text, param):
            shop_as_point = GeopyPoint(latitude=row[1], longitude=row[2])
            if distance(orig, shop_as_point).meters <= radius:
                result.append(row[0])

        return result
Esempio n. 27
0
 def __get_search_region_geohashes(self):
     if self.unit == 'mi':
         self.radius = utils.mi_to_km(self.radius)
     grid_size = GEO_HASH_GRID_SIZE[self.precision]
     if self.radius > grid_size / 2:
         # radius is too big for current grid, we cannot use 9 neighbors
         # to cover all possible points
         suggested_precision = 0
         for precision, max_size in GEO_HASH_GRID_SIZE.items():
             if self.radius > max_size / 2:
                 suggested_precision = precision - 1
                 break
         raise ValueError(
             'Too large radius, please rebuild GeoHashGrid with '
             'precision={0}'.format(suggested_precision))
     search_region_geohashes = geohash.expand(
         self.get_point_hash(self.center_point))
     return search_region_geohashes
def get_surroundings_grid(geo_hash, levels):
    # should at least return one geo hash and its surroundings
    if levels == 0:
        levels = 1
    grid_hashes = dict()
    grid_hashes[geo_hash] = True
    count = 1
    # levels is proportional to the radius to get the size of the patch
    while (count <= levels):

        grid_hashes_new = dict()
        for cell in grid_hashes.keys():
            surroundings = geohash.expand(cell)
            grid_hashes_new[cell] = True
            for newcell in surroundings:
                grid_hashes_new[newcell] = True
        grid_hashes = grid_hashes_new
        count = count + 1
    return grid_hashes.keys()
def get_surroundings_grid(geo_hash, levels):
    # should at least return one geo hash and its surroundings
    if levels == 0:
        levels = 1
    grid_hashes = dict()
    grid_hashes[geo_hash] = True
    count = 1
    # levels is proportional to the radius to get the size of the patch
    while (count <= levels):

        grid_hashes_new = dict()
        for cell in grid_hashes.keys():
            surroundings = geohash.expand(cell)
            grid_hashes_new[cell] = True
            for newcell in surroundings:
                grid_hashes_new[newcell] = True
        grid_hashes = grid_hashes_new
        count = count + 1
    return grid_hashes.keys()
Esempio n. 30
0
def geohash_neighbors(geohashstr):
    return {'$in': geohash.expand(geohashstr)}
Esempio n. 31
0
 def expand(self):
     return [Geohash(hash) for hash in geohash.expand(self)]
Esempio n. 32
0
    def get(self):
        motordb = self.settings['motordb']
        print 'processing request'
        ### Process Bounds and Center arguments

        view_bounds_str = self.get_argument("bounds")
        view_center_str = self.get_argument("center")
        view_zoom_str = self.get_argument("zoom")
        view_zoom = int(view_zoom_str)

        if not view_bounds_str or not view_center_str:
            self.write([])
            self.finish()
            return

        view_bounds_south, view_bounds_west, view_bounds_north, view_bounds_east = [float(x) for x in view_bounds_str.split(',')]

        view_center_lat, view_center_long = [float(x) for x in view_center_str.split(',')]

        view_bounds_width = abs(view_bounds_north - view_bounds_south)
        view_bounds_height = abs(view_bounds_east - view_bounds_west)

        #Do not use spacial reference system so that calculations are faster.. not needed 
        view_bounds_ring = osgeo.ogr.Geometry(osgeo.ogr.wkbLinearRing)
        view_bounds_ring.TransformTo(WGS_84)
        view_bounds_ring.AddPoint(view_bounds_west, view_bounds_north)
        view_bounds_ring.AddPoint(view_bounds_east, view_bounds_north)
        view_bounds_ring.AddPoint(view_bounds_east, view_bounds_south)
        view_bounds_ring.AddPoint(view_bounds_west, view_bounds_south)
        view_bounds_ring.AddPoint(view_bounds_west, view_bounds_north)

        view_bounds_geom = osgeo.ogr.Geometry(osgeo.ogr.wkbPolygon)
        view_bounds_geom.TransformTo(WGS_84)
        view_bounds_geom.AddGeometry(view_bounds_ring)
        view_bounds_area = view_bounds_geom.Area()
        
        view_center_hash = geohash.encode(view_center_lat, view_center_long, precision=32)

        ###print "VIEW %.64f" % view_bounds_area

        possible_hashes = set(list('0123456789bcdefghjkmnpqrstuvwxyz'))

        if view_zoom == 5: end_precision = 0
        if view_zoom == 6: end_precision = 0
        if view_zoom == 7: end_precision = 1
        if view_zoom == 8: end_precision = 2
        if view_zoom == 9: end_precision = 2
        if view_zoom == 10: end_precision = 3
        if view_zoom == 11: end_precision = 4
        if view_zoom == 12: end_precision = 5
        if view_zoom == 13: end_precision = 6
        if view_zoom == 14: end_precision = 6
        if view_zoom == 15: end_precision = 7

        end_precision = (view_zoom / 3) #perfect
        if end_precision > PRECISION:
            end_precision = PRECISION
        if end_precision < 0:
            end_precision = 0

        if view_zoom < 8:
            end_precision = 0
        ##print end_precision, '!!!'

        for precision in range(1,end_precision+1):
            new_possible_hashes = set([])

            for possible_hash in possible_hashes:
                possible_hash_bbox = geohash.bbox(possible_hash)
                #Do not use spacial reference system
                possible_hash_ring = osgeo.ogr.Geometry(osgeo.ogr.wkbLinearRing)
                possible_hash_ring.TransformTo(WGS_84)
                possible_hash_ring.AddPoint(possible_hash_bbox['w'], possible_hash_bbox['n'])
                possible_hash_ring.AddPoint(possible_hash_bbox['e'], possible_hash_bbox['n'])
                possible_hash_ring.AddPoint(possible_hash_bbox['e'], possible_hash_bbox['s'])
                possible_hash_ring.AddPoint(possible_hash_bbox['w'], possible_hash_bbox['s'])
                possible_hash_ring.AddPoint(possible_hash_bbox['w'], possible_hash_bbox['n'])
            
                possible_hash_geom = osgeo.ogr.Geometry(osgeo.ogr.wkbPolygon)
                possible_hash_geom.TransformTo(WGS_84)
            
                possible_hash_geom.AddGeometry(possible_hash_ring)

                possible_hash_geom_intersection = view_bounds_geom.Intersection(possible_hash_geom)
                possible_hash_geom_intersection.TransformTo(WGS_84)
                possible_hash_area = possible_hash_geom_intersection.Area()

                if possible_hash_area or view_center_hash.startswith(possible_hash):
                    ##print "!!!!", possible_hash, view_center_hash
                    for hash_char in '0123456789bcdefghjkmnpqrstuvwxyz':
                        new_possible_hashes.add(possible_hash + hash_char)

            possible_hashes = new_possible_hashes


        new_possible_hashes = set([])
        new_possible_grandparent_hashes = set([])

        for possible_hash in possible_hashes:
            possible_hash_bbox = geohash.bbox(possible_hash)
            #Do not use spacial reference system
            possible_hash_ring = osgeo.ogr.Geometry(osgeo.ogr.wkbLinearRing)
            possible_hash_ring.TransformTo(WGS_84)
            possible_hash_ring.AddPoint(possible_hash_bbox['w'], possible_hash_bbox['n'])
            possible_hash_ring.AddPoint(possible_hash_bbox['e'], possible_hash_bbox['n'])
            possible_hash_ring.AddPoint(possible_hash_bbox['e'], possible_hash_bbox['s'])
            possible_hash_ring.AddPoint(possible_hash_bbox['w'], possible_hash_bbox['s'])
            possible_hash_ring.AddPoint(possible_hash_bbox['w'], possible_hash_bbox['n'])
        
            possible_hash_geom = osgeo.ogr.Geometry(osgeo.ogr.wkbPolygon)
            possible_hash_geom.TransformTo(WGS_84)
        
            possible_hash_geom.AddGeometry(possible_hash_ring)

            possible_hash_geom_intersection = view_bounds_geom.Intersection(possible_hash_geom)
            possible_hash_geom_intersection.TransformTo(WGS_84)
            possible_hash_area = possible_hash_geom_intersection.Area()

            if possible_hash_area or view_center_hash.startswith(possible_hash):
                new_possible_hashes.update(geohash.expand(possible_hash))
                new_possible_grandparent_hashes.add(possible_hash[0:-1])

        possible_hashes = new_possible_hashes


        centroids = []

        for hash in sorted(list(possible_hashes)):
            _lat, _long = geohash.decode(hash)
            centroids.append({
                'hash': hash,
                'arg': True,
                'lat': _lat,
                'long': _long,
            })

        lots = []
        regions = []
        region_set = set([])

        query = {'parent': {'$in': list(possible_hashes)}}
        cursor = motordb.lots.find(query)
        print query

        self.update_region_cache()

        while (yield cursor.fetch_next):
            lot = cursor.next_object()
            lot['lot'] = True
            lot['bbox'] = geohash.bbox(lot['hash'])
            outline = osgeo.ogr.Geometry(wkb=str(lot['geom']['outline']))
            outline.TransformTo(WGS_84)
            lot['geom']['outline'] = json.loads(osgeo.ogr.ForceToPolygon(outline).ExportToJson())
            #geom = osgeo.ogr.ForceToPolygon(osgeo.ogr.Geometry(json.dumps(lot['geom']['outline'])).ConvexHull())
            geom = outline.ConvexHull()

            if view_bounds_geom.Contains(geom) or view_bounds_geom.Intersects(geom) or view_zoom == 5:
                region_set.add(lot['region']['_id'])
                if view_zoom != 5:
                    lots.append(lot)

        for region_oid in region_set:
            region = copy.deepcopy(self.settings['cache']['region']['map']['_id'][region_oid])
            region['region'] = True
            outline = osgeo.ogr.Geometry(wkb=str(region['geom']['outline']))
            outline.TransformTo(WGS_84)
            region['geom']['outline'] = json.loads(osgeo.ogr.ForceToPolygon(outline).ExportToJson())
            regions.append(region)
        

        self.write(bson.json_util.dumps(sorted(regions, key=lambda x: x['order']) + lots))
        self.finish()
        return
Esempio n. 33
0
	def test_geohash(self):
		self.assertEqual(geohash.encode(47.6097, -122.3331), 'c23nb5pf85m4')
		self.assertEqual(geohash.expand('c23'), ['c22', 'c26', 'c28', 'c29', 'c2d', 'c20', 'c21', 'c24', 'c23'])
Esempio n. 34
0
    pre_num += 1

    if username in user_start_end_dict:
        log("user_start_end_dict[username]", user_start_end_dict[username])
        log("user_start_dict[username]", user_start_dict[username])
        log("user_end_dict[username]", user_end_dict[username])

        fp_user_start_end = fp_growth.generate(user_start_end_dict[username],
                                               1, 2)

        user_start_list = []
        user_end_list = []

        for j, val in enumerate(user_start_dict[username]):
            user_start_list.extend([[item] for item in geohash.expand(val[0])])

        for j, val in enumerate(user_end_dict[username]):
            user_end_list.extend([[item] for item in geohash.expand(val[0])])

        log("user_start_list", user_start_list)
        log("user_end_list", user_end_list)
        fp_user_start = fp_growth.generate(user_start_list, 2, 0)
        fp_user_end = fp_growth.generate(user_end_list, 2, 0)

    if ori in start_end_dict:
        log("start_end_dict[ori]", start_end_dict[ori])

        # start_end_list = []
        # for j, val in enumerate(start_end_dict[ori]):
        #     start_end_list.extend([[item] for item in geohash.expand(val[0])])
Esempio n. 35
0
 def expand(self):
     return [Geohash(hash) for hash in geohash.expand(self)]
Esempio n. 36
0
 def SC_population(self,node_gh):#function uses geohash precision of 3 (ie radius of 73km) and sums population within this radius
     total_close_pop = (sum([data['population'] for gh,data in POP_DICT.items()
                 if gh[0:3] in geohash.expand(node_gh[0:3])]))
     return total_close_pop