Esempio n. 1
0
    def read(self,
             fname,
             datavars,
             gvars,
             metadata,
             chans=None,
             sector_definition=None):

        # Use filename field for filename_datetime if it is available.
        dfn = DataFileName(os.path.basename(glob(os.path.join(fname, '*'))[0]))
        if dfn:
            sdfn = dfn.create_standard()
            metadata['top']['filename_datetime'] = sdfn.datetime

        metadata['top']['start_datetime'] = sdfn.datetime
        metadata['top']['end_datetime'] = sdfn.datetime
        metadata['top']['dataprovider'] = 'nesdisstar'
        metadata['top']['platform_name'] = sdfn.satname
        metadata['top']['source_name'] = 'seviri'
        # MUST be set on readers that sector at read time.
        # Affects how reading/processing is done in driver.py
        metadata['top']['sector_definition'] = sector_definition
        metadata['top']['SECTOR_ON_READ'] = True

        si = SatSensorInfo(metadata['top']['platform_name'],
                           metadata['top']['source_name'])
        if not si:
            from ..scifileexceptions import SciFileError
            raise SciFileError(
                'Unrecognized platform and source name combination: ' +
                metadata['top']['platform_name'] + ' ' +
                metadata['top']['source_name'])

        # chans == [] specifies we don't want to read ANY data, just metadata.
        # chans == None specifies that we are not specifying a channel list,
        #               and thus want ALL channels.
        if chans == []:
            # If NO CHANNELS were specifically requested, just return at this
            # point with the metadata fields populated. A dummy SciFile dataset
            # will be created with only metadata. This is for checking what
            # platform/source combination we are using, etc.
            return

        outdir = os.path.join(gpaths['LOCALSCRATCH'],
                              os.path.dirname(sdfn.name))
        self.decompress_msg(fname, outdir, chans)
        try:
            global_data = Scene(platform_name="Meteosat-8",
                                sensor="seviri",
                                reader="hrit_msg",
                                start_time=sdfn.datetime,
                                base_dir=outdir)
        except TypeError:
            global_data = Scene(
                filenames=glob(os.path.join(outdir, '*')),
                reader="hrit_msg",
                filter_parameters={'start_time': sdfn.datetime})
        metadata['top']['start_datetime'] = global_data.start_time
        metadata['top']['end_datetime'] = global_data.end_time

        # Loop through each dataset name found in the dataset_info property above.
        for dsname in self.dataset_info.keys():
            # Loop through the variables found in the current dataset
            # The dataset_info dictionary maps the geoips varname to the
            # varname found in the original datafile
            for geoipsvarname, spvarname in self.dataset_info[dsname].items():
                # If we requested specific channels, and the current channel
                # is not in the list, skip this variable.
                if chans and geoipsvarname not in chans:
                    continue
                # Read the current channel data into the datavars dictionary
                log.info('    Initializing ' + dsname + ' channel "' +
                         spvarname + '" from file into SciFile channel: "' +
                         geoipsvarname + '"...')
                global_data.load([spvarname])
                # Read spvarname from the original datafile into datavars[dsname][geoipsvarname]
        ad = sector_definition.area_definition
        log.info('    Sectoring data to ' + ad.name + ' ...')
        sectored_data = global_data.resample(ad)
        for spvarname in sectored_data.datasets.keys():
            for dsname in self.dataset_info.keys():
                for geoipsvarname in self.dataset_info[dsname].keys():
                    if self.dataset_info[dsname][
                            geoipsvarname] == spvarname.name:
                        if 'Longitude' not in gvars[dsname].keys():
                            log.info('    Saving Longitude to gvars')
                            gvars[dsname]['Longitude'] = np.ma.array(
                                ad.get_lonlats()[0])
                        if 'Latitude' not in gvars[dsname].keys():
                            log.info('    Saving Latitude to gvars')
                            gvars[dsname]['Latitude'] = np.ma.array(
                                ad.get_lonlats()[1])
                        if 'SunZenith' not in gvars[dsname].keys():
                            from geoips.scifile.solar_angle_calc import satnav
                            log.info(
                                '        Using satnav, can only calculate Sun Zenith angles'
                            )
                            gvars[dsname]['SunZenith'] = satnav(
                                'SunZenith', metadata['top']['start_datetime'],
                                gvars[dsname]['Longitude'],
                                gvars[dsname]['Latitude'])
                        self.set_variable_metadata(metadata, dsname,
                                                   geoipsvarname)
                        try:
                            datavars[dsname][geoipsvarname] =\
                             np.ma.array(sectored_data.datasets[spvarname.name].data,
                             mask=sectored_data.datasets[spvarname.name].mask)
                            log.warning('Sectored variable %s ' %
                                        (spvarname.name))
                        except AttributeError:
                            log.warning(
                                'Variable %s does not contain a mask, masking invalid values! Might take longer'
                                % (spvarname.name))
                            datavars[dsname][geoipsvarname] =\
                                np.ma.masked_invalid(sectored_data.datasets[spvarname.name].data)
Esempio n. 2
0
    def read(self,fname,datavars,gvars,metadata,chans=None,sector_definition=None):

        # Use the appropriate python based reader for opening the current data 
        # type. This package must be installed on the system, and imported above
        # in the "Installed Libraries" import section.
        df = ncdf.Dataset(str(fname), 'r')

        # Uncomment this shell statement in order to interrogate the data file 
        # and determine what attributes and fields need to be read from the 
        # data file.
        #print 'Entering IPython shell in '+self.name+' for development purposes'
        #shell()

        # Grab necessary metadata that will populate the _finfo, 
        # _dsinfo, and _varinfo properties on the SciFile object.
        # The available fields for varinfo can be found in 
        # scifile/containers.py at the beginning of the file.
        # Additional options available with the metadata dictionary
        # can be found in the comments with the dataset_info property above.
        metadata['top']['start_datetime'] = datetime.strptime(df.time_coverage_start.split('.')[0],'%Y-%m-%dT%H:%M:%S')
        # Note an apparent bug in productfilename uses end_datetime as filename. 
        # For now just leave out end_datetime (it automatically gets set to start_datetime
        # in scifile if undefined)
        # Ooops, this might have messed up pass predictor
        metadata['top']['end_datetime'] = datetime.strptime(df.time_coverage_end.split('.')[0],'%Y-%m-%dT%H:%M:%S')
        metadata['top']['dataprovider'] = 'unknown'
        # DOC/NOAA/NESDIS/OSPO > Office of Satellite and Product Operations,     NESDIS, NOAA, U.S. Department of
        # Commerce
        if 'DOC/NOAA/NESDIS/OSPO' in df.institution:
            metadata['top']['dataprovider'] = 'noaa-nesdis-ospo'
        elif 'NOAA' in df.institution and 'NESDIS' in df.institution:
            metadata['top']['dataprovider'] = 'noaanesdis'
        elif 'NOAA' in df.institution:
            metadata['top']['dataprovider'] = 'noaa'
        metadata['top']['filename_datetime'] = metadata['top']['start_datetime']

        # Tells driver to NOT try to sector this data.
        metadata['top']['NON_SECTORABLE'] = True

        # platform_name and source_name MUST match values found 
        # in SensorInfo_classes and SatInfo_classes in utils/satellite_info.py. 
        # Those are the keys used throughout GeoIPS for determining what data 
        # type we are working with. If opening the SatSensorInfo object fails,
        # raise an Error and stop operation.
        
        # source_name = 'amsr2'
        # platform_name = 'gcom-w1'
        metadata['top']['platform_name'] = df.platform_name.lower()
        metadata['top']['source_name'] = df.instrument_name.lower()
        si = SatSensorInfo(metadata['top']['platform_name'],metadata['top']['source_name'])
        if not si:
            from ..scifileexceptions import SciFileError
            raise SciFileError('Unrecognized platform and source name combination: '+metadata['top']['platform_name']+' '+metadata['top']['source_name'])

        # Use filename field for filename_datetime if it is available.
        # Else, just use the start_datetime we found from the data
        # above. Note we ALWAYS want to have a default if DataFileName
        # is not defined.  We do not want to rely on having our specific 
        # internal filename format in order to process, but if we have 
        # additional information available from the data filename, we
        # can use it.
        dfn = DataFileName(os.path.basename(fname)) 
        if dfn:
            sdfn = dfn.create_standard()
            metadata['top']['filename_datetime'] = sdfn.datetime


        # chans == [] specifies we don't want to read ANY data, just metadata.
        # chans == None specifies that we are not specifying a channel list, 
        #               and thus want ALL channels.
        if chans == []:
            # If NO CHANNELS were specifically requested, just return at this 
            # point with the metadata fields populated. A dummy SciFile dataset 
            # will be created with only metadata. This is for checking what 
            # platform/source combination we are using, etc.
            return 


        # Set up the dictionaries of variables that will go in each dataset.
        #       datavars: actual channel data
        #       gvars:    geolocation variable data 
        #                 specifically named:
        #                 Latitude (REQUIRED), 
        #                 Longitude (REQUIRED), and 
        #                 SunZenith (optional, required for day/night 
        #                 discrimination) 

        # Each data variable array and geolocation variable array of a 
        #   specific dataset_name MUST be the same shape

        # datavars[dataset_name][geoips_varname] = geoips_varname_channel_data
        # gvars[dataset_name]['Latitude'] = dataset_name_lat_numpy_array
        # gvars[dataset_name]['Longitude'] = dataset_name_lon_numpy_array
        # *OPTIONAL* gvars[dataset_name]['SunZenith'] = dataset_name_sunzenith_numpy_array
        
        # geoips_varname_channel_data.shape == dataset_name_lat_numpy_array.shape 
        #   == dataset_name_lon_array.shape == dataset_name_sunzenith_numpy_array.shape

        # Only datavars and gvars with the same shape can go in the same dataset.

        # See additional datavars and gvars dictionary structure information
        #       found in the comments above, with the dataset_info property of this reader.


        # Loop through each dataset name found in the dataset_info property above.
        for dsname in self.dataset_info.keys():
            # Loop through the variables found in the current dataset
            # The dataset_info dictionary maps the geoips varname to the
            # varname found in the original datafile
            for geoipsvarname,ncvarname in self.dataset_info[dsname].items():
                # If we requested specific channels, and the current channel
                # is not in the list, skip this variable.
                if chans and geoipsvarname not in chans:
                    continue
                # Read the current channel data into the datavars dictionary
                log.info('    Reading '+dsname+' channel "'+ncvarname+'" from file into SciFile channel: "'+geoipsvarname+'"...')
                # Read ncvarname from the original datafile into datavars[dsname][geoipsvarname]
                datavars[dsname][geoipsvarname] = np.ma.masked_equal(df.variables[ncvarname][...],df.variables[ncvarname]._FillValue)

        # Loop through each dataset name found in the gvar_info property above.
        for dsname in self.gvar_info.keys():
            # Loop through the variables found in the current dataset
            # The gvar_info dictionary maps the geoips varname to the
            # varname found in the original datafile
            for geoipsvarname,ncvarname in self.gvar_info[dsname].items():
                # Read the current channel data into the datavars dictionary
                log.info('    Reading '+dsname+' channel "'+ncvarname+'" from file into SciFile channel: "'+geoipsvarname+'"...')
                # Read ncvarname from the original datafile into datavars[dsname][geoipsvarname]
                gvars[dsname][geoipsvarname] = np.ma.masked_equal(df.variables[ncvarname][...],df.variables[ncvarname]._FillValue)
Esempio n. 3
0
    def read(self,
             fname,
             datavars,
             gvars,
             metadata,
             chans=None,
             sector_definition=None):
        class data_grid:
            #indir='devnull'...this looks for the directory that the file is in
            dtg = '9999999999'
            mapvars = {}
            nz = 0
            nzp1 = 0
            nnest = 0
            delx0 = 0
            dely0 = 0
            nest = [0]

        class Nest(object):
            def __init__(self, nx, ny, ii, jj, iref, jref, tcmx, tcmy, delx,
                         dely):
                self.nx = nx
                self.ny = ny
                self.ii = ii
                self.jj = jj
                self.iref = iref
                self.jref = jref
                self.tcmx = tcmx
                self.tcmy = tcmy
                self.delx = delx
                self.dely = dely

        # define the model grid
        model_grid = {}
        model_grid['im'] = 277
        model_grid['jm'] = 229
        model_grid['lm'] = 60
        model_grid['num_bytes'] = model_grid['im'] * model_grid['jm'] * 4

        #Constant files for geolocation and header
        latitude = '/SATPROJECT/users/projects3/users/laflash/outdirs/nrtdata/realtime/longterm_files/COAMPS_metadata/latitu_sfc_000000_000000_3a0277x0229_2018092400_00000000_fcstfld'
        longitude = '/SATPROJECT/users/projects3/users/laflash/outdirs/nrtdata/realtime/longterm_files/COAMPS_metadata/longit_sfc_000000_000000_3a0277x0229_2018092400_00000000_fcstfld'
        header = '/SATPROJECT/users/projects3/users/laflash/outdirs/nrtdata/realtime/longterm_files/COAMPS_metadata/datahd_sfc_000000_000000_1a2000x0001_2018090918_00000000_infofld'

        #def main(file, lat_file, lon_file, cdtg, fld, level, model_grid, image_dir):
        #    istat = 0
        #    lat, istat = seek_field(lat_file, model_grid, 1)
        #    lon, istat = seek_field(lon_file, model_grid, 1)
        #
        #    data, stat = seek_field(file, model_grid, level)
        #
        #    title = ( "%s lvl:%.2i %s %s" % (fld.upper(), int(level), cdtg, tau) )
        #    level_name = ( "l%.2i" % int(level) )
        #    image_name = '_'.join(["ascos1", "2a", cdtg, fld, level_name, tau])
        #
        #    plot_global(data, lat, lon, title, image_name,
        #                clabel=plot_parm[fld]['units'],
        #                range=[plot_parm[fld]['min'],plot_parm[fld]['max']])

        def seek_field(filename):
            print 'Reading file...'
            #metadata
            datafilename = filename.split('/')[-1].split('_')
            wxparameter = datafilename[0]
            level_type = datafilename[1]
            lvl1 = datafilename[2]
            lvl1 = "%06.1f" % (float(lvl1))
            lvl2 = datafilename[3]
            if wxparameter == 'latitu' or wxparameter == 'longit':
                lvl2 = 1
            else:
                lvl2 = "%06.1f" % (float(lvl2))
            imest_and_gridlevels = datafilename[4]
            dtg = datafilename[5]
            filetype = datafilename[6]
            record_length = model_grid['num_bytes']
            # top to bottom
            offset = (model_grid['lm'] - int(float(lvl2))) * record_length

            # bottom to top
            offset = (int(float(lvl2)) - 1) * record_length
            #offset = (1 - int(float(lvl2))) * record_length

            #  binary file read
            if os.path.isfile(filename):
                f = open(filename, 'rb')
                f.seek(offset)
                data = np.fromstring(f.read(model_grid['num_bytes']),
                                     dtype='float32')
                if sys.byteorder == 'little':
                    data = data.byteswap()
                data = data.reshape(model_grid['jm'], model_grid['im'])
                data = np.ma.masked_equal(data, -990.99)
                istat = 0
            else:
                print "missing file"
                print filename
                data = [[-999.99] * model_grid['im']] * model_grid['jm']
                istat = -1
            return data, wxparameter, level_type, lvl1, lvl2, dtg, filetype

        def read_coamps_header(filename):
            #"%s/datahd_sfc_000000_000000_1a2000x0001_%s_00000000_infofld"%(indir, dtg)
            if os.path.isfile(filename):  #might not need
                #data_grid.indir = indir#might not need

                f = open(filename, 'rb')

                datahd = f.read()
                datahd = list(datahd.split())

                # separate occasional values with no space between them
                for j in range(len(datahd)):
                    val = datahd[j]
                    if len(val) > 13:
                        i1 = 0
                        k = 0
                        for i in range(len(val) - 1):
                            if val[i:i + 1] == 'E':
                                newval = val[i1:i + 4]
                                if i + 4 < 15:
                                    datahd[j] = newval
                                else:
                                    datahd.insert(j + k, newval)
                            k = k + 1
                            i1 = i + 4

                data_grid.mapvars['nproj'] = float(datahd[2])
                data_grid.mapvars['stdlat1'] = float(datahd[3])
                data_grid.mapvars['stdlat2'] = float(datahd[4])
                data_grid.mapvars['stdlon'] = float(datahd[5])
                data_grid.mapvars['reflat'] = float(datahd[6])
                data_grid.mapvars['reflon'] = float(datahd[7])

                data_grid.nz = int(float(datahd[1]))
                data_grid.nzp1 = int(float(datahd[1])) + 1
                data_grid.nnest = int(float(datahd[10]))
                data_grid.delx0 = float(datahd[9])
                data_grid.dely0 = float(datahd[8])

                nn = 1
                while nn <= data_grid.nnest:
                    ng = 30 + (nn - 1) * 30
                    nx = int(float(datahd[ng - 1]))
                    ny = int(float(datahd[ng + 0]))
                    ii = float(datahd[ng + 1])
                    jj = float(datahd[ng + 2])
                    iref = float(datahd[ng + 3])
                    jref = float(datahd[ng + 4])
                    tcmx = float(datahd[ng + 27])
                    tcmy = float(datahd[ng + 28])
                    delx = float(datahd[ng + 6])
                    dely = float(datahd[ng + 7])
                    data_grid.nest.append(
                        Nest(nx, ny, ii, jj, iref, jref, tcmx, tcmy, delx,
                             dely))
                    nn = nn + 1

                # vertical indices
                nz = data_grid.nz
                dsigm = np.array(datahd[500:500 + nz]).astype(np.float)
                data_grid.sigw = np.append(
                    np.flipud(np.cumsum(np.flipud(dsigm))), [0.0])
                data_grid.sigm = datahd[800:800 + nz]
                data_grid.ztop = data_grid.sigw[0]

        data, wxparameter, level_type, lvl1, lvl2, dtg, filetype = seek_field(
            fname)
        metadata['top']['level'] = lvl2
        metadata['top']['start_datetime'] = datetime.strptime(dtg, '%Y%m%d%H')
        metadata['top']['end_datetime'] = datetime.strptime(dtg, '%Y%m%d%H')
        metadata['top']['dataprovider'] = 'NRL'
        metadata['top']['filename_datetime'] = metadata['top'][
            'start_datetime']
        metadata['top']['platform_name'] = 'model'
        metadata['top']['source_name'] = 'coampsieee'
        si = SatSensorInfo(metadata['top']['platform_name'],
                           metadata['top']['source_name'])
        if not si:
            raise SciFileError(
                'Unrecognized platform and source name combination: ' +
                metadata['top']['platform_name'] + ' ' +
                metadata['top']['source_name'])

        dfn = DataFileName(os.path.basename(fname))
        if dfn:
            sdfn = dfn.create_standard()
            metadata['top']['filename_datetime'] = sdfn.datetime

        # Tells driver to NOT try to sector this data.
        metadata['top']['NON_SECTORABLE'] = True

        if chans == []:
            return

#        def rdata (filename)#parmnm, lvltyp, lev1, lev2, inest, dtg, tau, indir='def', outtyp='fcstfld', im=-1, jm=-1):
#
#        # read coamps binary flat file
#
#            if indir == 'def': indir = data_grid.indir
#            if im == -1: im = data_grid.nest[inest].nx
#            if jm == -1: jm = data_grid.nest[inest].ny
#            if inest == 0:
#        #global
#                filename = "%s/%s_%s_%06.1f_%06.1f_glob%03dx%03d_%s_%04d0000_%s" \
#                %(indir, parmnm, lvltyp, lev1, lev2, im, jm, dtg, tau, outtyp)
#            else:
#        #COAMPS
#                filename = "%s/%s_%s_%06d_%06d_%1da%04dx%04d_%s_%04d0000_%s" \
#                %(indir, parmnm, lvltyp, lev1, lev2, inest, im, jm, dtg, tau, outtyp)
#
#        #  print "Reading %s"%filename
#            num_bytes = im*jm*4
#
#            offset = 0
#
#        #  binary file read
#            if os.path.isfile(filename):
#                f = open( filename, 'rb' )
#                f.seek( offset )
#                data = np.fromstring(f.read(num_bytes), dtype='float32')
#        # COAMPS irsat values are little_endian all others are big
#                if sys.byteorder == 'little':
#                    if parmnm != 'irrcmp':
#                        data = data.byteswap()
#                data = data.reshape(jm, im)
#                data = np.ma.masked_equal(data, -990.99)
#                f.close()
#                istat = 0
#            else:
#                print "MISSING %s"%parmnm
#                print filename
#                data = [[-999.99] * im] * jm
#                istat = -1
#            return data, istat

# Loop through each dataset name found in the dataset_info property above.
        for dsname in self.dataset_info.keys():
            for geoipsvarname, dfvarname in self.dataset_info[dsname].items():
                log.info('    Reading ' + dsname + ' channel "' + dfvarname +
                         '" from file into SciFile channel: "' +
                         geoipsvarname + '"...')
                fillvalue = data.fill_value
                datavars[dsname][geoipsvarname] = np.ma.masked_equal(
                    data, fillvalue)
        # Loop through each dataset name found in the gvar_info property above.
        for dsname in self.gvar_info.keys():
            for geoipsvarname, dfvarname in self.gvar_info[dsname].items():
                if dfvarname == 'latitu':
                    geolog, wxparameter, level_type, lvl1, lvl2, dtg, filetype = seek_field(
                        latitude)
                if dfvarname == 'longit':
                    geolog, wxparameter, level_type, lvl1, lvl2, dtg, filetype = seek_field(
                        longitude)
                    xx, yy = geolog.shape
                    for aa in range(xx):
                        for bb in range(yy):
                            if geolog[aa, bb] > 180:
                                geolog[aa, bb] = geolog[aa, bb] - 360
                fillvalue = geolog.fill_value
                log.info('    Reading ' + dsname + ' channel "' + dfvarname +
                         '" from file into SciFile channel: "' +
                         geoipsvarname + '"...')
                gvars[dsname][geoipsvarname] = np.ma.masked_equal(
                    geolog, fillvalue)
Esempio n. 4
0
class TESTLOCAL_TESTABI_LOCALDATA(LocalDataSite):
    ''' Subclass of LocalDataSite for initiating processing of
            locally available ABI data.

        Data_type and host_type are used as keys for running downloader
            ./downloaders/downloader.py abi local
        host is only used for display purposes for LocalDataSite -
            set to the actual remote site for FTP/HTTP. '''
    data_type = 'testabi'
    host_type = 'testlocal'
    host = 'localdirs '

    # List the base_dirs that are set in utils/satellite_info.py
    # These will show up  for logging purposes when you run
    #   ./downloaders/downloader.py
    sensor_info = SatSensorInfo('goes16','abi')
    for currdir in sensor_info.OrigFNames:
        if 'base_dir' in currdir.keys() and currdir['base_dir']:
            host += ' '+currdir['base_dir']

    def __init__(self,downloadactive=True,bandlist=None,**kwargs):
        ''' Required __init__ method, set up downloader attributes:
                queue parameters
                    * queue set to $DEFAULT_QUEUE by default in downloader.py
                    *       (None if DEFAULT_QUEUE not set)
                    * can set the num cpus and mem per cpu here.
                GeoIPS processing parameters
                    * self.run_geoips defaults to False!
                External processing scripts
                    * self.pp_script : if defined, will run non-GeoIPS processing'''

        super(TESTLOCAL_TESTABI_LOCALDATA,self).__init__(downloadactive,bandlist=bandlist,**kwargs)
        self.run_geoips = True
        self.mp_max_cpus = 8
        self.mp_mem_per_cpu = 25
        #self.pp_script = os.getenv('PROCSDIR')+'/h8/h8_postprocs'

    def get_final_filename(self,file):
        ''' Keep original filename, but use standard path
            The default for this method uses GeoIPS standard
            filename and GeoIPS standard path. '''
        fn = DataFileName(os.path.basename(file))
        sdfn = fn.create_standard(downloadSiteObj=self)
        return os.path.dirname(sdfn.name)+'/'+os.path.basename(file)


    def sort_files(self,filelist):
        # OR_ABI-L1b-RadF-M3C02_G16_s20170642036100_e20170642046467_c20170642046500.nc
        # OR_ABI-L1b-RadC-M3C03_G16_s20171070042189_e20171070044562_c20171070045005.nc
        # OR_SEIS-L1b-EHIS_G16_s20170622315250_e20170622315250_c20170622320253.nc
        # DataFileName way too slow, need to fix that. For now, just 
        # sort directly
        filelist.sort(cmp,key=lambda x:os.path.basename(x).split('_')[3],reverse=True)
        return filelist


    def getfile(self,remotefile,localfile):
        log.info('Just creating symlink from original '+remotefile+' to final '+localfile)
        if not self.downloadactive:
            log.info('      *** nodownload set, not moving pushed file %s ' % remotefile)
            log.info('      ***     to localfile %s' % localfile)
        else:
            log.info('      *** moving pushed file %s ' % remotefile)
            log.info('      ***     to localfile %s' % localfile)
            os.symlink(remotefile,localfile)

    def run_on_files(self,final_file):
        ''' The default for this method runs on every file that 
            is downloaded.  Overriding for ABI to only process when
            a directory contains 16 files. Also allow for limiting
            the frequency we actually try to process if we can't
            keep up '''

        runtype = 'RadF'

        dirname = os.path.dirname(final_file)
        # List all RadF files
        listthesefiles = dirname+'/*{0}*'.format(runtype)

        files = glob(listthesefiles)
        num_files = len(files)
        log.info('  In run_on_files TESTLOCAL_TESTABI '+str(num_files)+' files in directory '+listthesefiles)

        # Limit frequency we actually process 
        #dfn = DataFileName(os.path.basename(final_file)).create_standard()
        #if dfn.datetime.minute != 0 and dfn.datetime.minute != 30: 
        #    log.info('ONLY RUNNING 0 30 MINUTES FOR NOW. Skipping processing')
        #    return []

        # Once we get 16 files, and the current file is RadF, kick off processing 
        if num_files == 16 and runtype in final_file:
            return [final_file]
        else:
            return []

    def getfilelist(self,start_datetime,end_datetime):

        # Data locations are specified in $GEOIPS/utils/satellite_info.py
        # and $GEOIPS/utils/path/datafilename.py 

        files = []
        for dir in self.sensor_info.OrigFNames:
            if 'base_dir' in dir.keys() and dir['base_dir']:
                # Files go in base_dir/YYYYMMDD/OR_*.nc 
                # where basedir is $BIGDATA/incoming
                log.info('    Finding appropriate files in '+dir['base_dir']+'/*/OR_*.nc ...')
                currfiles = glob(dir['base_dir']+'/*/OR_*.nc')
                files += currfiles
        return files
Esempio n. 5
0
    def read(self,
             fname,
             datavars,
             gvars,
             metadata,
             chans=None,
             sector_definition=None):
        fileobj = ncdf.Dataset(str(fname), 'r')

        if chans and not (set(fileobj.variables.keys()) & set(chans)):
            log.info('Did not request any variables from ' + fname +
                     ', only need ' + str(chans) + ', returning empty list')
            return

        #Read the date and time
        # Terascan stores the "pass_date" as days since Jan 1 1900 (inclusive), and
        # "start_time" as seconds since midnight.
        sdt = datetime.strptime('1899-12-31', '%Y-%m-%d') + timedelta(
            days=int(fileobj.getncattr('pass_date')),
            seconds=float(fileobj.getncattr('start_time')))
        if not metadata['top'][
                'start_datetime'] or sdt < metadata['top']['start_datetime']:
            metadata['top']['start_datetime'] = sdt

        satellite = fileobj.getncattr('satellite')
        for sat in all_sats_for_sensor('gvar'):
            si = SatSensorInfo(sat)
            if si.tscan_tle_name == satellite:
                metadata['top']['platform_name'] = si.geoips_satname
        # Terascan stores sensor as gvissr, we want to call it gvar.
        metadata['top']['source_name'] = 'gvar'
        metadata['top']['NO_GRANULE_COMPOSITES'] = True
        # Not sure why I added this.
        metadata['top']['NON_SECTORABLE'] = True

        # Create dummy dataset with metadata if we specifically requested no channels
        if chans == []:
            # Will set up empty dataset in def read
            # Only need varinfo, everything else empty
            return

        log.info('Reading ' + fname + ' Requested channels: ' + str(chans))

        #Read the geolocation data in the native resolution from Terascan.
        log.info('    Reading longitudes...')
        lon = fileobj.variables['longitude'][...]

        log.info('    Reading latitudes...')
        lat = fileobj.variables['latitude'][...]

        log.info('    Reading solar zenith angles...')
        zen = fileobj.variables['sun_zenith'][...]

        # Find which dataset this channel should be in
        for dslabel in self.dataset_info.keys():
            if set(fileobj.variables.keys()) & set(self.dataset_info[dslabel]):
                datasettag = dslabel

        alldata = []
        #Read the actual data
        for chn in fileobj.variables.keys():
            if chans != None and chn not in chans:
                if chn not in ['latitude', 'longitude', 'sun_zenith']:
                    log.info('    Did not request variable ' + chn +
                             ', skipping...')
                continue

            if 'Latitude' not in gvars[datasettag].keys():
                gvars[datasettag]['Latitude'] = lat
                gvars[datasettag]['Longitude'] = lon
                gvars[datasettag]['SunZenith'] = zen

            log.info('    Reading ' + datasettag + ' data: ' + chn + '...')
            data = fileobj.variables[chn][...]
            if hasattr(data, 'fill_value'):
                datavars[datasettag][chn] = data
            else:
                # I think if there are no masked values, tdfnc does not create a
                # mask.  So this should work fine... Just nothing will get masked...
                if data.min() > -32768:
                    maskval = -32768
                else:
                    maskval = 100 * data.min()
                datavars[datasettag][chn] = np.ma.masked_equal(data, maskval)

        fileobj.close()

        return
Esempio n. 6
0
def process_overpass(
    satellite,
    sensor,
    productlist,
    sectorlist,
    sectorfiles,
    extra_dirs,
    sector_file,
    datelist,
    hourlist=None,
    data_outpath=None,
    product_outpath=None,
    list=False,
    clean=False,
    forceclean=False,
    download=False,
    queue=None,
    mp_max_cpus=1,
    allstatic=True,
    alldynamic=True,
    tc=False,
    volcano=False,
    quiet=False,
    start_datetime=None,
    end_datetime=None,
):

    if quiet:
        log.setLevel(35)

    log.interactive('')

    opasses = []
    old_opasses = []
    overall_start_dt = None
    overall_end_dt = None
    single = False
    both = False
    if sectorlist:
        single = True
        both = False
    if hourlist == None:
        for datestr in datelist:
            if sectorlist:
                log.interactive(
                    'Checking for overpasses $GEOIPS/geoips/process_overpass.py '
                    + satellite + ' ' + sensor + ' ' + datestr + ' -s "' +
                    ' '.join(sectorlist) + '" --all')
            else:
                log.interactive(
                    'Checking for overpasses $GEOIPS/geoips/process_overpass.py '
                    + satellite + ' ' + sensor + ' ' + datestr + ' --all')
            sys.stdout.write('.')
            sys.stdout.flush()
            start_dt = datetime.strptime(datestr + '0000', '%Y%m%d%H%M')
            end_dt = datetime.strptime(datestr + '2359', '%Y%m%d%H%M')
            opasses.extend(
                pass_prediction([satellite], [sensor],
                                sector_file,
                                sectorlist,
                                start_dt - timedelta(minutes=15),
                                end_dt + timedelta(minutes=15),
                                single=single,
                                both=both,
                                force=True,
                                quiet=quiet))
        sys.stdout.write('\n')
        if opasses and len(opasses) < 200 and len(opasses) != 0:
            log.interactive('Available overpasses: ' + bigindent +
                            bigindent.join(sorted(str(val)
                                                  for val in opasses)) + '\n')
        elif opasses:
            log.interactive(
                str(len(opasses)) + ' available overpasses, not listing\n')

        return opasses
    else:
        hourstart = hourlist[0]
        if len(hourlist) == 1:
            hourend = hourlist[0]
        else:
            hourend = hourlist[-1]
        for datestr in datelist:
            if sectorlist and hourlist:
                log.interactive(
                    'Checking for overpasses for $GEOIPS/geoips/process_overpass.py '
                    + satellite + ' ' + sensor + ' ' + datestr + ' -H "' +
                    ' '.join(hourlist) + '" -s "' + ' '.join(sectorlist) +
                    '" --all')
            else:
                log.interactive(
                    'Checking for overpasses for $GEOIPS/geoips/process_overpass.py '
                    + satellite + ' ' + sensor + ' ' + datestr + ' --all')
            sys.stdout.write('.')
            sys.stdout.flush()
            start_dt = datetime.strptime(datestr + hourstart + '00',
                                         '%Y%m%d%H%M')
            start_dt = start_dt - timedelta(minutes=15)
            if overall_start_dt == None or overall_start_dt > start_dt:
                overall_start_dt = start_dt
            end_dt = datetime.strptime(datestr + hourend + '59', '%Y%m%d%H%M')
            end_dt = end_dt + timedelta(minutes=15)
            if overall_end_dt == None or overall_end_dt < end_dt:
                overall_end_dt = end_dt
            opasses.extend(
                pass_prediction([satellite], [sensor],
                                sector_file,
                                sectorlist,
                                start_dt,
                                end_dt,
                                single=single,
                                force=True,
                                quiet=quiet))

    sys.stdout.write('\n')

    if opasses and len(opasses) < 20:
        log.interactive('Available overpasses: ' + bigindent +
                        bigindent.join(sorted(str(val)
                                              for val in opasses)) + '\n\n')
    elif opasses:
        log.interactive(
            str(len(opasses)) + ' available overpasses, not listing\n\n')

    # Start 8h before start time to make sure we can get the
    # sector file entry before
    if sensor != 'modis':
        overall_start_dt = overall_start_dt - timedelta(minutes=480)
    log.info('Overall start and end times: ' + str(overall_start_dt) + ' to ' +
             str(overall_end_dt))

    if download == True:
        log.interactive('queue: ' + str(queue) + '\n\n')
        data_type = default_data_type[sensor]
        host_type = default_host_type[data_type]
        #Can't we do something to minimize the copypaste done here?  Hard to maintain...
        if (data_type, host_type) in non_qsubbed:
            for opass in opasses:
                log.info('sectorfiles: ' + str(sectorfiles))
                sector_file = sectorfile.open(allstatic=allstatic,
                                              alldynamic=alldynamic,
                                              tc=tc,
                                              start_datetime=opass.startdt -
                                              timedelta(hours=6),
                                              end_datetime=opass.enddt,
                                              one_per_sector=True)
                if not sectorfiles:
                    currsectorfiles = sector_file.names
                else:
                    currsectorfiles = sectorfiles
                log.info('currsectorfiles: ' + str(currsectorfiles))
                log.interactive('Downloading opass: '******'\n\n')
                si = SatSensorInfo(satellite, sensor)
                # If they are very long files (ie, full orbit), make
                # sure we get the file before the overpass time
                startdt = opass.startdt - timedelta(minutes=si.mins_per_file)
                downloader(
                    data_type,
                    host_type,
                    sector_file=sector_file,
                    sectorlist=sectorlist,
                    sectorfiles=currsectorfiles,
                    productlist=productlist,
                    data_outpath=data_outpath,
                    product_outpath=product_outpath,
                    start_datetime=startdt,
                    end_datetime=opass.enddt,
                    queue=queue,
                    allstatic=allstatic,
                    alldynamic=alldynamic,
                    tc=tc,
                    volcano=volcano,
                    #max_connections=8,
                    max_wait_seconds=None,
                )
                time.sleep(5)
        else:
            log.interactive(sectorfiles)
            downloader(
                data_type,
                host_type,
                sector_file=sector_file,
                sectorlist=sectorlist,
                sectorfiles=sectorfiles,
                productlist=productlist,
                data_outpath=data_outpath,
                product_outpath=product_outpath,
                start_datetime=overall_start_dt,
                end_datetime=overall_end_dt,
                queue=queue,
                allstatic=allstatic,
                alldynamic=alldynamic,
                tc=tc,
                opasses=opasses,
                #max_connections=8,
                max_wait_seconds=None,
            )
            time.sleep(5)

    all_files = []
    # Reverse=True for newest first
    all_files = sorted(find_available_data_files(opasses, start_dt, satellite,
                                                 sensor, extra_dirs),
                       reverse=True)
    log.info('Done sorting default')
    #shell()
    if productlist and 'near-constant-contrast' in productlist:
        log.info('    Checking near-constant-contrast files')
        # Reverse=True for newest first
        all_files = sorted(find_available_data_files(opasses,
                                                     start_dt,
                                                     satellite,
                                                     sensor,
                                                     extra_dirs,
                                                     prodtype='ncc'),
                           reverse=True)

    file_str = '\n\t'.join(all_files)
    log.info('Files found current search time for %s: \n\t%s' %
             (str(opasses), file_str))

    if not all_files:
        log.info('No files available in directories listed above')
        log.info(
            'To check alternate directories, you can call (replace /sb2/viirs and /sb1/viirs with the paths where data files are available): '
        )
        infostr = ''
        if productlist:
            infostr += '-p ' + "'" + ' '.join(productlist) + "'"
        if sectorlist:
            infostr += '-s ' + "'" + ' '.join(sectorlist) + "'"
        log.info(
            "process_overpass.py %s %s '%s' -d '/sb2/viirs /sb1/viirs' %s -H '%s'"
            % (satellite, sensor, ' '.join(datelist), infostr,
               ' '.join(hourlist)))

        return None

    try:
        for opass in opasses:
            currdatelist = []
            day_count = (opass.enddt - opass.startdt).days + 1
            for dt in (opass.startdt + timedelta(n) for n in range(day_count)):
                currdatelist.append(dt.strftime('%Y%m%d'))
            log.info('Checking for existing products to clean... clean: ' +
                     str(clean) + ' forceclean: ' + str(forceclean))
            find_existing_products(sensor, sector_file,
                                   opass.actualsectornames, productlist,
                                   currdatelist, clean, forceclean)
    except ProductError, resp:
        log.error(str(resp) + ' Check spelling?')
Esempio n. 7
0
    def read(self,
             fname,
             datavars,
             gvars,
             metadata,
             chans=None,
             sector_definition=None):

        f1 = open(fname, 'rb')

        #READ HEARDER
        sw_rev = np.fromstring(f1.read(2),
                               dtype=np.dtype('short')).byteswap()[0]
        endian, fileid = np.fromstring(f1.read(2),
                                       dtype=np.dtype('int8')).byteswap()
        rev = np.fromstring(f1.read(4), dtype=np.dtype('int32')).byteswap()
        year = np.fromstring(f1.read(4), dtype=np.dtype('int32')).byteswap()
        jday = np.fromstring(f1.read(2), dtype=np.dtype('short')).byteswap()
        hour, minu = np.fromstring(f1.read(2),
                                   dtype=np.dtype('int8')).byteswap()
        satid, nsdr = np.fromstring(f1.read(4),
                                    dtype=np.dtype('short')).byteswap()
        spare1, spare2, spare3 = np.fromstring(
            f1.read(3), dtype=np.dtype('int8')).byteswap()
        proc_stat_flags = np.fromstring(f1.read(1),
                                        dtype=np.dtype('int8')).byteswap()
        spare4 = np.fromstring(f1.read(4), dtype=np.dtype('int32')).byteswap()
        #Need to set up time to be read in by the metadata (year and jday are arrays)
        time = '%04d%03d%02d%02d' % (year[0], jday[0], hour, minu)
        nbytes = 28  #bytes that have been read in
        #Read scan records at 512-byte boundaries
        nfiller = 512 - (
            nbytes % 512
        )  # skip nfiller bytes so that the scan header will start at the 513th byte of the data records,
        filler_bytes = np.fromstring(f1.read(nfiller),
                                     dtype=np.dtype('int8')).byteswap()

        # Rev 6A of the SSMIS SDR software changed the scalling of channel 12-16 to 100 (it was 10 before this change)
        #     effective with orbit rev 12216 for F-16 and thereafter for all future satellites
        rev6a = 1
        if satid == 1 and rev[0] < 12216:
            rev6a = 0

        if satid == 1:
            satid = 'f16'
        elif satid == 2:
            satid = 'f17'
        elif satid == 3:
            satid = 'f18'
        elif satid == 4:
            satid = 'f19'
        else:
            return False

        #Enter metadata
        metadata['top']['start_datetime'] = datetime.strptime(time, '%Y%j%H%M')
        metadata['top']['end_datetime'] = datetime.strptime(time, '%Y%j%H%M')
        metadata['top']['dataprovider'] = 'DMSP'
        metadata['top']['filename_datetime'] = metadata['top'][
            'start_datetime']
        metadata['top']['platform_name'] = satid
        metadata['top']['source_name'] = 'ssmis'
        si = SatSensorInfo(metadata['top']['platform_name'],
                           metadata['top']['source_name'])
        if not si:
            from ..scifileexceptions import SciFileError
            raise SciFileError(
                'Unrecognized platform and source name combination: ' +
                metadata['top']['platform_name'] + ' ' +
                metadata['top']['source_name'])

        dfn = DataFileName(os.path.basename(fname))
        if dfn:
            sdfn = dfn.create_standard()
            metadata['top']['filename_datetime'] = sdfn.datetime

        # Tells driver to NOT try to sector this data.
        metadata['top']['NON_SECTORABLE'] = True

        if chans == []:
            return

        bad_value = -999

        for nn in range(nsdr):  #loop number of sdr data records
            log.info('    Reading sdr #' + str(nn) + ' of ' + str(nsdr))
            nbytes = 0

            #SCAN HEADER
            syncword = np.fromstring(f1.read(4),
                                     dtype=np.dtype('int32')).byteswap()
            scan_year = np.fromstring(f1.read(4),
                                      dtype=np.dtype('int32')).byteswap()
            scan_jday = np.fromstring(f1.read(2),
                                      dtype=np.dtype('short')).byteswap()
            scan_hour, scan_minu = np.fromstring(
                f1.read(2), dtype=np.dtype('int8')).byteswap()
            scan = np.fromstring(f1.read(4),
                                 dtype=np.dtype('int32')).byteswap()
            nscan_imager, nscan_enviro, nscan_las, nscan_uas = np.fromstring(
                f1.read(4), dtype=np.dtype('int8')).byteswap()
            start_scantime_imager = np.fromstring(
                f1.read(112), dtype=np.dtype('int32')).byteswap()
            scenecounts_imager = np.fromstring(
                f1.read(28), dtype=np.dtype('uint8')).byteswap()
            start_scantime_enviro = np.fromstring(
                f1.read(96), dtype=np.dtype('int32')).byteswap()
            scenecounts_enviro = np.fromstring(
                f1.read(24), dtype=np.dtype('uint8')).byteswap()
            start_scantime_las = np.fromstring(
                f1.read(32), dtype=np.dtype('int32')).byteswap()
            scenecounts_las = np.fromstring(
                f1.read(8), dtype=np.dtype('uint8')).byteswap()
            start_scantime_uas = np.fromstring(
                f1.read(16), dtype=np.dtype('int32')).byteswap()
            scenecounts_uas = np.fromstring(
                f1.read(4), dtype=np.dtype('uint8')).byteswap()
            spare = np.fromstring(f1.read(20),
                                  dtype=np.dtype('int32')).byteswap()
            nbytes += 360  #total bytes of the scan header
            nscan0 = scan - 1
            #-----------------------------------------------------------------------------------------
            try:
                imager_read = np.ma.zeros((nscan_imager, 180))
                np.ma.masked_all_like(imager_read)
            except:
                print 'Shell dropped for imager_read'
            if scenecounts_imager[0] < 0:
                print "IMAGER is negative"
            lt = np.ma.masked_values(imager_read, bad_value)
            lg = np.ma.masked_values(imager_read, bad_value)
            ch08 = np.ma.masked_values(imager_read, bad_value)
            ch09 = np.ma.masked_values(imager_read, bad_value)
            ch10 = np.ma.masked_values(imager_read, bad_value)
            ch11 = np.ma.masked_values(imager_read, bad_value)
            ch17 = np.ma.masked_values(imager_read, bad_value)
            ch18 = np.ma.masked_values(imager_read, bad_value)
            surf = np.ma.masked_values(imager_read, bad_value)
            rain = np.ma.masked_values(imager_read, bad_value)

            #IMAGER READ DATA
            for ii in range(nscan_imager):
                if start_scantime_imager[ii] == -999:
                    print 'value of imager scan is %d' % ii
                    continue
                for jj in range(scenecounts_imager[ii]):
                    imager_lat, imager_lon, imager_scene = np.fromstring(
                        f1.read(6), dtype=np.dtype('short')).byteswap()
                    imager_surf, imager_rain = np.fromstring(
                        f1.read(2), dtype=np.dtype('int8')).byteswap()
                    imager_ch08, imager_ch09, imager_ch10, imager_ch11, imager_ch17, imager_ch18 = np.fromstring(
                        f1.read(12), dtype=np.dtype('short')).byteswap()
                    nbytes += 20
                    k = 180 * (nscan0 + ii) + jj
                    lat = 0.01 * imager_lat
                    lon = 0.01 * imager_lon
                    try:
                        lt[ii][jj] = lat
                        lg[ii][jj] = lon
                        ch08[ii][jj] = imager_ch08  #150    Ghz
                        ch09[ii][jj] = imager_ch09  #183+-7
                        ch10[ii][jj] = imager_ch10  #183+-3
                        ch11[ii][jj] = imager_ch11  #183+-1
                        ch17[ii][jj] = imager_ch17  #91V
                        ch18[ii][jj] = imager_ch18  #91H
                        surf[ii][jj] = imager_surf
                        rain[ii][jj] = imager_rain
                    except:
                        print 'Failed setting arrays in scan_imager'

            if 'Latitude' not in gvars['IMAGER'].keys():
                gvars['IMAGER']['Latitude'] = lt
                gvars['IMAGER']['Longitude'] = lg
                datavars['IMAGER']['ch08'] = ch08
                datavars['IMAGER']['ch09'] = ch09
                datavars['IMAGER']['ch10'] = ch10
                datavars['IMAGER']['ch11'] = ch11
                datavars['IMAGER']['ch17'] = ch17
                datavars['IMAGER']['ch18'] = ch18
                datavars['IMAGER']['surface'] = surf
                datavars['IMAGER']['rain'] = rain
            else:
                gvars['IMAGER']['Latitude'] = np.ma.vstack(
                    (gvars['IMAGER']['Latitude'], lt))
                gvars['IMAGER']['Longitude'] = np.ma.vstack(
                    (gvars['IMAGER']['Longitude'], lg))
                datavars['IMAGER']['ch08'] = np.ma.vstack(
                    (datavars['IMAGER']['ch08'], ch08))
                datavars['IMAGER']['ch09'] = np.ma.vstack(
                    (datavars['IMAGER']['ch09'], ch09))
                datavars['IMAGER']['ch10'] = np.ma.vstack(
                    (datavars['IMAGER']['ch10'], ch10))
                datavars['IMAGER']['ch11'] = np.ma.vstack(
                    (datavars['IMAGER']['ch11'], ch11))
                datavars['IMAGER']['ch17'] = np.ma.vstack(
                    (datavars['IMAGER']['ch17'], ch17))
                datavars['IMAGER']['ch18'] = np.ma.vstack(
                    (datavars['IMAGER']['ch18'], ch18))
                datavars['IMAGER']['surface'] = np.ma.vstack(
                    (datavars['IMAGER']['surface'], surf))
                datavars['IMAGER']['rain'] = np.ma.vstack(
                    (datavars['IMAGER']['rain'], rain))
                gvars['IMAGER']['Latitude'] = np.ma.masked_values(
                    gvars['IMAGER']['Latitude'], bad_value)
                gvars['IMAGER']['Longitude'] = np.ma.masked_values(
                    gvars['IMAGER']['Longitude'], bad_value)
                datavars['IMAGER']['ch08'] = np.ma.masked_values(
                    datavars['IMAGER']['ch08'], bad_value)
                datavars['IMAGER']['ch09'] = np.ma.masked_values(
                    datavars['IMAGER']['ch09'], bad_value)
                datavars['IMAGER']['ch10'] = np.ma.masked_values(
                    datavars['IMAGER']['ch10'], bad_value)
                datavars['IMAGER']['ch11'] = np.ma.masked_values(
                    datavars['IMAGER']['ch11'], bad_value)
                datavars['IMAGER']['ch17'] = np.ma.masked_values(
                    datavars['IMAGER']['ch17'], bad_value)
                datavars['IMAGER']['ch18'] = np.ma.masked_values(
                    datavars['IMAGER']['ch18'], bad_value)
                datavars['IMAGER']['surface'] = np.ma.masked_values(
                    datavars['IMAGER']['surface'], bad_value)
                datavars['IMAGER']['rain'] = np.ma.masked_values(
                    datavars['IMAGER']['rain'], bad_value)
#-----------------------------------------------------------------------------------------
            enviro_read = np.ma.zeros((nscan_enviro, 90))
            np.ma.masked_all_like(enviro_read)
            if scenecounts_enviro[0] < 0:
                print "ENVIRO is negative"
            lt = np.ma.masked_equal(enviro_read, bad_value)
            lg = np.ma.masked_equal(enviro_read, bad_value)
            ch12 = np.ma.masked_equal(enviro_read, bad_value)
            ch13 = np.ma.masked_equal(enviro_read, bad_value)
            ch14 = np.ma.masked_equal(enviro_read, bad_value)
            ch15 = np.ma.masked_equal(enviro_read, bad_value)
            ch16 = np.ma.masked_equal(enviro_read, bad_value)
            ch15_5x5 = np.ma.masked_equal(enviro_read, bad_value)
            ch16_5x5 = np.ma.masked_equal(enviro_read, bad_value)
            ch17_5x5 = np.ma.masked_equal(enviro_read, bad_value)
            ch18_5x5 = np.ma.masked_equal(enviro_read, bad_value)
            ch17_5x4 = np.ma.masked_equal(enviro_read, bad_value)
            ch18_5x4 = np.ma.masked_equal(enviro_read, bad_value)

            #ENVIRO READ DATA
            for ii in range(nscan_enviro):
                if ii % 2 == 0:  #for odd scan numbers
                    if start_scantime_enviro[ii] == -999:
                        print 'value of enviro odd scan is %d' % ii
                        continue
                    for jj in range(scenecounts_enviro[ii]):
                        enviroodd_lat, enviroodd_lon, enviroodd_scene = np.fromstring(
                            f1.read(6), dtype=np.dtype('short')).byteswap()
                        enviroodd_seaice, enviroodd_surf = np.fromstring(
                            f1.read(2), dtype=np.dtype('int8')).byteswap()
                        enviroodd_ch12, enviroodd_ch13, enviroodd_ch14, enviroodd_ch15, enviroodd_ch16, enviroodd_ch15_5x5, enviroodd_ch16_5x5, enviroodd_ch17_5x5, enviroodd_ch18_5x5, enviroodd_ch17_5x4, enviroodd_ch18_5x4 = np.fromstring(
                            f1.read(22), dtype=np.dtype('short')).byteswap()
                        enviroodd_rain1, enviroodd_rain2 = np.fromstring(
                            f1.read(2), dtype=np.dtype('int8')).byteswap()
                        edr_bitflags = np.fromstring(
                            f1.read(4), dtype=np.dtype('int32')).byteswap()
                        nbytes += 36
                        lat = 0.01 * enviroodd_lat
                        lon = 0.01 * enviroodd_lon
                        lt[ii][jj] = lat
                        lg[ii][jj] = lon
                        if rev6a == 1:
                            ch12[ii][jj] = enviroodd_ch12  #19H
                            ch13[ii][jj] = enviroodd_ch13  #19V
                            ch14[ii][jj] = enviroodd_ch14  #22V
                            ch15[ii][jj] = enviroodd_ch15  #37H
                            ch16[ii][jj] = enviroodd_ch16  #37V
                            ch15_5x5[ii][jj] = enviroodd_ch15_5x5
                            ch16_5x5[ii][jj] = enviroodd_ch16_5x5
                            ch17_5x5[ii][jj] = enviroodd_ch17_5x5
                            ch18_5x5[ii][jj] = enviroodd_ch18_5x5
                            ch17_5x4[ii][jj] = enviroodd_ch17_5x4
                            ch18_5x4[ii][jj] = enviroodd_ch18_5x4
                        else:
                            ch12[ii][jj] = 10 * enviroodd_ch12
                            ch13[ii][jj] = 10 * enviroodd_ch13
                            ch14[ii][jj] = 10 * enviroodd_ch14
                            ch15[ii][jj] = 10 * enviroodd_ch15
                            ch16[ii][jj] = 10 * enviroodd_ch16
                            ch15_5x5[ii][jj] = 10 * enviroodd_ch15_5x5
                            ch16_5x5[ii][jj] = 10 * enviroodd_ch16_5x5
                            ch17_5x5[ii][jj] = 10 * enviroodd_ch17_5x5
                            ch18_5x5[ii][jj] = 10 * enviroodd_ch18_5x5
                            ch17_5x4[ii][jj] = 10 * enviroodd_ch17_5x4
                            ch18_5x4[ii][jj] = 10 * enviroodd_ch18_5x4

                if ii % 2 == 1:  # for even scan numbers
                    if start_scantime_enviro[ii] == -999:
                        print 'value of enviro even scan is %d' % ii
                        continue
                    for jj in range(scenecounts_enviro[ii]):
                        enviroeven_lat, enviroeven_lon, enviroeven_scene = np.fromstring(
                            f1.read(6), dtype=np.dtype('short')).byteswap()
                        enviroeven_seaice, enviroeven_surf = np.fromstring(
                            f1.read(2), dtype=np.dtype('int8')).byteswap()
                        enviroeven_ch12, enviroeven_ch13, enviroeven_ch14, enviroeven_ch15, enviroeven_ch16 = np.fromstring(
                            f1.read(10), dtype=np.dtype('short')).byteswap()
                        nbytes += 18
                        lat = 0.01 * enviroeven_lat
                        lon = 0.01 * enviroeven_lon
                        lt[ii][jj] = lat
                        lg[ii][jj] = lon
                        if rev6a == 1:
                            ch12[ii][jj] = enviroeven_ch12
                            ch13[ii][jj] = enviroeven_ch13
                            ch14[ii][jj] = enviroeven_ch14
                            ch15[ii][jj] = enviroeven_ch15
                            ch16[ii][jj] = enviroeven_ch16
                        else:
                            ch12[ii][jj] = 10 * enviroeven_ch12
                            ch13[ii][jj] = 10 * enviroeven_ch13
                            ch14[ii][jj] = 10 * enviroeven_ch14
                            ch15[ii][jj] = 10 * enviroeven_ch15
                            ch16[ii][jj] = 10 * enviroeven_ch16

            if 'Latitude' not in gvars['ENVIRO'].keys():
                gvars['ENVIRO']['Latitude'] = lt
                gvars['ENVIRO']['Longitude'] = lg
                datavars['ENVIRO']['ch12'] = ch12
                datavars['ENVIRO']['ch13'] = ch13
                datavars['ENVIRO']['ch14'] = ch14
                datavars['ENVIRO']['ch15'] = ch15
                datavars['ENVIRO']['ch16'] = ch16
                datavars['ENVIRO']['ch15_5x5'] = ch15_5x5
                datavars['ENVIRO']['ch16_5x5'] = ch16_5x5
                datavars['ENVIRO']['ch17_5x5'] = ch17_5x5
                datavars['ENVIRO']['ch18_5x5'] = ch18_5x5
                datavars['ENVIRO']['ch17_5x4'] = ch17_5x4
                datavars['ENVIRO']['ch18_5x4'] = ch18_5x4
            else:
                gvars['ENVIRO']['Latitude'] = np.ma.vstack(
                    (gvars['ENVIRO']['Latitude'], lt))
                gvars['ENVIRO']['Longitude'] = np.ma.vstack(
                    (gvars['ENVIRO']['Longitude'], lg))
                datavars['ENVIRO']['ch12'] = np.ma.vstack(
                    (datavars['ENVIRO']['ch12'], ch12))
                datavars['ENVIRO']['ch13'] = np.ma.vstack(
                    (datavars['ENVIRO']['ch13'], ch13))
                datavars['ENVIRO']['ch14'] = np.ma.vstack(
                    (datavars['ENVIRO']['ch14'], ch14))
                datavars['ENVIRO']['ch15'] = np.ma.vstack(
                    (datavars['ENVIRO']['ch15'], ch15))
                datavars['ENVIRO']['ch16'] = np.ma.vstack(
                    (datavars['ENVIRO']['ch16'], ch16))
                datavars['ENVIRO']['ch15_5x5'] = np.ma.vstack(
                    (datavars['ENVIRO']['ch15_5x5'], ch15_5x5))
                datavars['ENVIRO']['ch16_5x5'] = np.ma.vstack(
                    (datavars['ENVIRO']['ch16_5x5'], ch16_5x5))
                datavars['ENVIRO']['ch17_5x5'] = np.ma.vstack(
                    (datavars['ENVIRO']['ch17_5x5'], ch17_5x5))
                datavars['ENVIRO']['ch18_5x5'] = np.ma.vstack(
                    (datavars['ENVIRO']['ch18_5x5'], ch18_5x5))
                datavars['ENVIRO']['ch17_5x4'] = np.ma.vstack(
                    (datavars['ENVIRO']['ch17_5x4'], ch17_5x4))
                datavars['ENVIRO']['ch18_5x4'] = np.ma.vstack(
                    (datavars['ENVIRO']['ch18_5x4'], ch18_5x4))
                gvars['ENVIRO']['Latitude'] = np.ma.masked_equal(
                    gvars['ENVIRO']['Latitude'], bad_value)
                gvars['ENVIRO']['Longitude'] = np.ma.masked_equal(
                    gvars['ENVIRO']['Longitude'], bad_value)
                datavars['ENVIRO']['ch12'] = np.ma.masked_equal(
                    datavars['ENVIRO']['ch12'], bad_value)
                datavars['ENVIRO']['ch13'] = np.ma.masked_equal(
                    datavars['ENVIRO']['ch13'], bad_value)
                datavars['ENVIRO']['ch14'] = np.ma.masked_equal(
                    datavars['ENVIRO']['ch14'], bad_value)
                datavars['ENVIRO']['ch15'] = np.ma.masked_equal(
                    datavars['ENVIRO']['ch15'], bad_value)
                datavars['ENVIRO']['ch16'] = np.ma.masked_equal(
                    datavars['ENVIRO']['ch16'], bad_value)
                datavars['ENVIRO']['ch15_5x5'] = np.ma.masked_equal(
                    datavars['ENVIRO']['ch15_5x5'], bad_value)
                datavars['ENVIRO']['ch16_5x5'] = np.ma.masked_equal(
                    datavars['ENVIRO']['ch16_5x5'], bad_value)
                datavars['ENVIRO']['ch17_5x5'] = np.ma.masked_equal(
                    datavars['ENVIRO']['ch17_5x5'], bad_value)
                datavars['ENVIRO']['ch18_5x5'] = np.ma.masked_equal(
                    datavars['ENVIRO']['ch18_5x5'], bad_value)
                datavars['ENVIRO']['ch17_5x4'] = np.ma.masked_equal(
                    datavars['ENVIRO']['ch17_5x4'], bad_value)
                datavars['ENVIRO']['ch18_5x4'] = np.ma.masked_equal(
                    datavars['ENVIRO']['ch18_5x4'], bad_value)
#-----------------------------------------------------------------------------------------
            las_read = np.ma.zeros((nscan_las, 60))
            np.ma.masked_all_like(las_read)
            if scenecounts_las[0] < 0:
                print "LAS is negative"
            lt = np.ma.masked_equal(las_read, bad_value)
            lg = np.ma.masked_equal(las_read, bad_value)
            ch01_3x3 = np.ma.masked_equal(las_read, bad_value)
            ch02_3x3 = np.ma.masked_equal(las_read, bad_value)
            ch03_3x3 = np.ma.masked_equal(las_read, bad_value)
            ch04_3x3 = np.ma.masked_equal(las_read, bad_value)
            ch05_3x3 = np.ma.masked_equal(las_read, bad_value)
            ch06_3x3 = np.ma.masked_equal(las_read, bad_value)
            ch07_3x3 = np.ma.masked_equal(las_read, bad_value)
            ch08_5x5 = np.ma.masked_equal(las_read, bad_value)
            ch09_5x5 = np.ma.masked_equal(las_read, bad_value)
            ch10_5x5 = np.ma.masked_equal(las_read, bad_value)
            ch11_5x5 = np.ma.masked_equal(las_read, bad_value)
            ch18_5x5 = np.ma.masked_equal(las_read, bad_value)
            ch24_3x3 = np.ma.masked_equal(las_read, bad_value)
            height_1000mb = np.ma.masked_equal(las_read, bad_value)
            surf = np.ma.masked_equal(las_read, bad_value)

            #LAS READ DATA
            for ii in range(nscan_las):
                if start_scantime_las[ii] == -999:
                    print 'value of las scan is %d' % ii
                    continue
                for jj in range(scenecounts_las[ii]):
                    try:
                        las_lati, las_long, las_ch01_3x3, las_ch02_3x3, las_ch03_3x3, las_ch04_3x3, las_ch05_3x3, las_ch06_3x3, las_ch07_3x3, las_ch08_5x5, las_ch09_5x5, las_ch10_5x5, las_ch11_5x5, las_ch18_5x5, las_ch24_3x3, las_height_1000mb, las_surf = np.fromstring(
                            f1.read(34), dtype=np.dtype('short')).byteswap()
                        las_tqflag, las_hqflag = np.fromstring(
                            f1.read(2), dtype=np.dtype('int8')).byteswap()
                        las_terrain, las_scene = np.fromstring(
                            f1.read(4), dtype=np.dtype('short')).byteswap()
                    except:
                        continue
                    lat = 0.01 * las_lati
                    lon = 0.01 * las_long
                    nbytes += 40
                    lt[ii][jj] = lat
                    lg[ii][jj] = lon
                    ch01_3x3[ii][jj] = las_ch01_3x3  #50.3 V
                    ch02_3x3[ii][jj] = las_ch02_3x3  #52.8 V
                    ch03_3x3[ii][jj] = las_ch03_3x3  #53.60V
                    ch04_3x3[ii][jj] = las_ch04_3x3  #54.4 V
                    ch05_3x3[ii][jj] = las_ch05_3x3  #55.5 V
                    ch06_3x3[ii][jj] = las_ch06_3x3  #57.3 RCP
                    ch07_3x3[ii][jj] = las_ch07_3x3  #59.4 RCP
                    ch08_5x5[ii][jj] = las_ch08_5x5  #150 H
                    ch09_5x5[ii][jj] = las_ch09_5x5  #183.31+-7 H
                    ch10_5x5[ii][jj] = las_ch10_5x5  #183.31+-3 H
                    ch11_5x5[ii][jj] = las_ch11_5x5  #183.31+-1 H
                    ch18_5x5[ii][jj] = las_ch18_5x5  #91 H
                    ch24_3x3[ii][jj] = las_ch24_3x3  #60.79+-36+-0.05 RCP
                    height_1000mb[ii][jj] = las_height_1000mb
                    surf[ii][jj] = las_surf

            if 'Latitude' not in gvars['LAS'].keys():
                gvars['LAS']['Latitude'] = lt
                gvars['LAS']['Longitude'] = lg
                datavars['LAS']['ch01_3x3'] = ch01_3x3
                datavars['LAS']['ch02_3x3'] = ch02_3x3
                datavars['LAS']['ch03_3x3'] = ch03_3x3
                datavars['LAS']['ch04_3x3'] = ch04_3x3
                datavars['LAS']['ch05_3x3'] = ch05_3x3
                datavars['LAS']['ch06_3x3'] = ch06_3x3
                datavars['LAS']['ch07_3x3'] = ch07_3x3
                datavars['LAS']['ch08_5x5'] = ch08_5x5
                datavars['LAS']['ch09_5x5'] = ch09_5x5
                datavars['LAS']['ch10_5x5'] = ch10_5x5
                datavars['LAS']['ch11_5x5'] = ch11_5x5
                datavars['LAS']['ch18_5x5'] = ch18_5x5
                datavars['LAS']['ch24_3x3'] = ch24_3x3
                datavars['LAS']['height_1000mb'] = height_1000mb
                datavars['LAS']['surf'] = surf
            else:
                gvars['LAS']['Latitude'] = np.ma.vstack(
                    (gvars['LAS']['Latitude'], lt))
                gvars['LAS']['Longitude'] = np.ma.vstack(
                    (gvars['LAS']['Longitude'], lg))
                datavars['LAS']['ch01_3x3'] = np.ma.vstack(
                    (datavars['LAS']['ch01_3x3'], ch01_3x3))
                datavars['LAS']['ch02_3x3'] = np.ma.vstack(
                    (datavars['LAS']['ch02_3x3'], ch02_3x3))
                datavars['LAS']['ch03_3x3'] = np.ma.vstack(
                    (datavars['LAS']['ch03_3x3'], ch03_3x3))
                datavars['LAS']['ch04_3x3'] = np.ma.vstack(
                    (datavars['LAS']['ch04_3x3'], ch04_3x3))
                datavars['LAS']['ch05_3x3'] = np.ma.vstack(
                    (datavars['LAS']['ch05_3x3'], ch05_3x3))
                datavars['LAS']['ch06_3x3'] = np.ma.vstack(
                    (datavars['LAS']['ch06_3x3'], ch06_3x3))
                datavars['LAS']['ch07_3x3'] = np.ma.vstack(
                    (datavars['LAS']['ch07_3x3'], ch07_3x3))
                datavars['LAS']['ch08_5x5'] = np.ma.vstack(
                    (datavars['LAS']['ch08_5x5'], ch08_5x5))
                datavars['LAS']['ch09_5x5'] = np.ma.vstack(
                    (datavars['LAS']['ch09_5x5'], ch09_5x5))
                datavars['LAS']['ch10_5x5'] = np.ma.vstack(
                    (datavars['LAS']['ch10_5x5'], ch10_5x5))
                datavars['LAS']['ch11_5x5'] = np.ma.vstack(
                    (datavars['LAS']['ch11_5x5'], ch11_5x5))
                datavars['LAS']['ch18_5x5'] = np.ma.vstack(
                    (datavars['LAS']['ch18_5x5'], ch18_5x5))
                datavars['LAS']['ch24_3x3'] = np.ma.vstack(
                    (datavars['LAS']['ch24_3x3'], ch24_3x3))
                datavars['LAS']['height_1000mb'] = np.ma.vstack(
                    (datavars['LAS']['height_1000mb'], height_1000mb))
                datavars['LAS']['surf'] = np.ma.vstack(
                    (datavars['LAS']['surf'], surf))
                gvars['LAS']['Latitude'] = np.ma.masked_equal(
                    gvars['LAS']['Latitude'], bad_value)
                gvars['LAS']['Longitude'] = np.ma.masked_equal(
                    gvars['LAS']['Longitude'], bad_value)
                datavars['LAS']['ch01_3x3'] = np.ma.masked_equal(
                    datavars['LAS']['ch01_3x3'], bad_value)
                datavars['LAS']['ch02_3x3'] = np.ma.masked_equal(
                    datavars['LAS']['ch02_3x3'], bad_value)
                datavars['LAS']['ch03_3x3'] = np.ma.masked_equal(
                    datavars['LAS']['ch03_3x3'], bad_value)
                datavars['LAS']['ch04_3x3'] = np.ma.masked_equal(
                    datavars['LAS']['ch04_3x3'], bad_value)
                datavars['LAS']['ch05_3x3'] = np.ma.masked_equal(
                    datavars['LAS']['ch05_3x3'], bad_value)
                datavars['LAS']['ch06_3x3'] = np.ma.masked_equal(
                    datavars['LAS']['ch06_3x3'], bad_value)
                datavars['LAS']['ch07_3x3'] = np.ma.masked_equal(
                    datavars['LAS']['ch07_3x3'], bad_value)
                datavars['LAS']['ch08_5x5'] = np.ma.masked_equal(
                    datavars['LAS']['ch08_5x5'], bad_value)
                datavars['LAS']['ch09_5x5'] = np.ma.masked_equal(
                    datavars['LAS']['ch09_5x5'], bad_value)
                datavars['LAS']['ch10_5x5'] = np.ma.masked_equal(
                    datavars['LAS']['ch10_5x5'], bad_value)
                datavars['LAS']['ch11_5x5'] = np.ma.masked_equal(
                    datavars['LAS']['ch11_5x5'], bad_value)
                datavars['LAS']['ch18_5x5'] = np.ma.masked_equal(
                    datavars['LAS']['ch18_5x5'], bad_value)
                datavars['LAS']['ch24_3x3'] = np.ma.masked_equal(
                    datavars['LAS']['ch24_3x3'], bad_value)
                datavars['LAS']['height_1000mb'] = np.ma.masked_equal(
                    datavars['LAS']['height_1000mb'], bad_value)
                datavars['LAS']['surf'] = np.ma.masked_equal(
                    datavars['LAS']['surf'], bad_value)
#---------------------------------------------------------------------------------
            uas_read = np.ma.zeros((nscan_uas, 30))
            np.ma.masked_all_like(uas_read)
            if scenecounts_uas[0] < 0:
                print "UAS is negative"
            lt = np.ma.masked_equal(uas_read, bad_value)
            lg = np.ma.masked_equal(uas_read, bad_value)
            ch19_6x6 = np.ma.masked_equal(uas_read, bad_value)
            ch20_6x6 = np.ma.masked_equal(uas_read, bad_value)
            ch21_6x6 = np.ma.masked_equal(uas_read, bad_value)
            ch22_6x6 = np.ma.masked_equal(uas_read, bad_value)
            ch23_6x6 = np.ma.masked_equal(uas_read, bad_value)
            ch24_6x6 = np.ma.masked_equal(uas_read, bad_value)
            sceneu = np.ma.masked_equal(uas_read, bad_value)
            tqflag = np.ma.masked_equal(uas_read, bad_value)

            #UAS READ DATA
            for ii in range(nscan_uas):
                if start_scantime_uas[ii] == -999:
                    print 'value of uas scan is %d' % ii
                    continue
                for jj in range(scenecounts_uas[ii]):
                    uas_lat, uas_lon, uas_ch19_6x6, uas_ch20_6x6, uas_ch21_6x6, uas_ch22_6x6, uas_ch23_6x6, uas_ch24_6x6, uas_scene, uas_tqflag = np.fromstring(
                        f1.read(20), dtype=np.dtype('short')).byteswap()
                    uas_field, uas_bdotk2 = np.fromstring(
                        f1.read(8), dtype=np.dtype('int32')).byteswap()
                    nbytes += 28
                    lat = 0.01 * uas_lat
                    lon = 0.01 * uas_lon
                    lt[ii][jj] = lat
                    lg[ii][jj] = lon
                    ch19_6x6[ii][jj] = uas_ch19_6x6  #63.28+-0.28 RCP GHz
                    ch20_6x6[ii][jj] = uas_ch20_6x6  #60.79+-0.36 RCP
                    ch21_6x6[ii][jj] = uas_ch21_6x6  #60.79+-0.36+-0.002 RCP
                    ch22_6x6[ii][jj] = uas_ch22_6x6  #60.79+-0.36+-0.0055 RCP
                    ch23_6x6[ii][jj] = uas_ch23_6x6  #60.79+-0.36+-0.0016 RCP
                    ch24_6x6[ii][jj] = uas_ch24_6x6  #60.79+-0.36+-0.050 RCP
                    sceneu[ii][jj] = uas_scene
                    tqflag[ii][jj] = uas_tqflag

            if 'Latitude' not in gvars['UAS'].keys():
                gvars['UAS']['Latitude'] = lt
                gvars['UAS']['Longitude'] = lg
                datavars['UAS']['ch19_6x6'] = ch19_6x6
                datavars['UAS']['ch20_6x6'] = ch20_6x6
                datavars['UAS']['ch21_6x6'] = ch21_6x6
                datavars['UAS']['ch22_6x6'] = ch22_6x6
                datavars['UAS']['ch23_6x6'] = ch23_6x6
                datavars['UAS']['ch24_6x6'] = ch24_6x6
                datavars['UAS']['scene'] = sceneu
                datavars['UAS']['uas_tqflag'] = tqflag
            else:
                gvars['UAS']['Latitude'] = np.ma.vstack(
                    (gvars['UAS']['Latitude'], lt))
                gvars['UAS']['Longitude'] = np.ma.vstack(
                    (gvars['UAS']['Longitude'], lg))
                datavars['UAS']['ch19_6x6'] = np.ma.vstack(
                    (datavars['UAS']['ch19_6x6'], ch19_6x6))
                datavars['UAS']['ch20_6x6'] = np.ma.vstack(
                    (datavars['UAS']['ch20_6x6'], ch20_6x6))
                datavars['UAS']['ch21_6x6'] = np.ma.vstack(
                    (datavars['UAS']['ch21_6x6'], ch21_6x6))
                datavars['UAS']['ch22_6x6'] = np.ma.vstack(
                    (datavars['UAS']['ch22_6x6'], ch22_6x6))
                datavars['UAS']['ch23_6x6'] = np.ma.vstack(
                    (datavars['UAS']['ch23_6x6'], ch23_6x6))
                datavars['UAS']['ch24_6x6'] = np.ma.vstack(
                    (datavars['UAS']['ch24_6x6'], ch24_6x6))
                datavars['UAS']['scene'] = np.ma.vstack(
                    (datavars['UAS']['scene'], sceneu))
                datavars['UAS']['uas_tqflag'] = np.ma.vstack(
                    (datavars['UAS']['uas_tqflag'], tqflag))
                gvars['UAS']['Latitude'] = np.ma.masked_equal(
                    gvars['UAS']['Latitude'], bad_value)
                gvars['UAS']['Longitude'] = np.ma.masked_equal(
                    gvars['UAS']['Longitude'], bad_value)
                datavars['UAS']['ch19_6x6'] = np.ma.masked_equal(
                    datavars['UAS']['ch19_6x6'], bad_value)
                datavars['UAS']['ch20_6x6'] = np.ma.masked_equal(
                    datavars['UAS']['ch20_6x6'], bad_value)
                datavars['UAS']['ch21_6x6'] = np.ma.masked_equal(
                    datavars['UAS']['ch21_6x6'], bad_value)
                datavars['UAS']['ch22_6x6'] = np.ma.masked_equal(
                    datavars['UAS']['ch22_6x6'], bad_value)
                datavars['UAS']['ch23_6x6'] = np.ma.masked_equal(
                    datavars['UAS']['ch23_6x6'], bad_value)
                datavars['UAS']['ch24_6x6'] = np.ma.masked_equal(
                    datavars['UAS']['ch24_6x6'], bad_value)
                datavars['UAS']['scene'] = np.ma.masked_equal(
                    datavars['UAS']['scene'], bad_value)
                datavars['UAS']['uas_tqflag'] = np.ma.masked_equal(
                    datavars['UAS']['uas_tqflag'], bad_value)

            print 'nfiller=', nfiller
            nfiller = 512 - (
                nbytes % 512
            )  # nfiller bytes to be skipped so that the next scan header will start at the 513th byte.
            try:
                filler_bytes = np.fromstring(
                    f1.read(nfiller), dtype=np.dtype('int8')).byteswap()[0]
            except:
                continue
        f1.close()
        #-----------------------------------------------------------------------------------------------------
        # Loop through each dataset name found in the dataset_info property above.
        for dsname in self.dataset_info.keys():
            for geoipsvarname, dfvarname in self.dataset_info[dsname].items():
                log.info('    Reading ' + dsname + ' channel "' + dfvarname +
                         '" from file into SciFile channel: "' +
                         geoipsvarname + '"...')
                #shell()
                data = datavars[dsname][geoipsvarname]
                fillvalue = -999
                datavars[dsname][geoipsvarname] = (
                    np.ma.masked_equal(data, fillvalue) / 100) + 273.15

        # Loop through each dataset name found in the gvar_info property above.
        for dsname in self.gvar_info.keys():
            for geoipsvarname, dfvarname in self.gvar_info[dsname].items():
                log.info('    Reading ' + dsname + ' channel "' + dfvarname +
                         '" from file into SciFile channel: "' +
                         geoipsvarname + '"...')
                #shell()
                data = gvars[dsname][geoipsvarname]
                fillvalue = -999
                gvars[dsname][geoipsvarname] = np.ma.masked_equal(
                    data, fillvalue)
Esempio n. 8
0
def xarray_from_scifile(datafile, area_def=None, dsnames=None, varnames=None, roi=None):
    ''' Create xarray dataset from existing scifile datafile object.  This includes the standard expected attributes

        Args:
            datafile (SciFile) : SciFile object with standard data / metadata fields, used to populate xarray
            dsnames (:obj:`list`, optional) : List of strings indicating desired datasets to include. Default is None,
                                              which indicates including *all* datasets.
            varnames (:obj:`list`, optional) : List of strings indicating desired variables to include. Default is None
                                              which indicates including *all* variables.
            roi (:obj:`int`, optional) : Radius of Influence for interpolation, in meters. Default is None, which
                                              results in attempting to use radius_of_influence from metadata.

        Returns:
            xarray Dataset object with attributes and variables set appropriately
    '''
    import xarray

    xarray_datasets = [xarray.Dataset()]
    for dsname in datafile.datasets.keys():
        if dsnames and dsname not in dsnames:
            continue
        for varname in datafile.datasets[dsname].variables.keys():
            if varnames and varname not in varnames:
                continue
            currvar = datafile.datasets[dsname].variables[varname]
            orig_dims = list(currvar.shape)
            for xarray_dataset in xarray_datasets:
                if len(xarray_dataset.variables.keys()) == 0 or xarray_dataset.dims.values() == orig_dims:
                    xarray_dataset[varname] = xarray.DataArray(currvar)
                    LOG.info('Added %s variable to xarray dataset dims %s', varname, xarray_dataset[varname].dims)
                    if 'timestamp' in varname:
                        from numpy import datetime64
                        xarray_dataset[varname] = (xarray_dataset[varname]*10**9).astype(datetime64)
        for varname in datafile.datasets[dsname].geolocation_variables.keys():
            if varnames and varname not in varnames:
                continue
            xvarname = varname
            if varname == 'Latitude':
                xvarname = 'latitude'
            if varname == 'Longitude':
                xvarname = 'longitude'
            currvar = datafile.datasets[dsname].geolocation_variables[varname]
            orig_dims = list(currvar.shape)
            for xarray_dataset in xarray_datasets:
                if len(xarray_dataset.variables.keys()) == 0 or xarray_dataset.dims.values() == orig_dims:
                    xarray_dataset[xvarname] = xarray.DataArray(currvar)
                    LOG.info('Added %s variable to xarray dataset dims %s', xvarname, xarray_dataset[xvarname].dims)

    for xarray_dataset in xarray_datasets:
        xarray_dataset.attrs['start_datetime'] = datafile.start_datetime
        xarray_dataset.attrs['end_datetime'] = datafile.end_datetime
        xarray_dataset.attrs['source_name'] = datafile.source_name
        xarray_dataset.attrs['platform_name'] = datafile.platform_name
        xarray_dataset.attrs['data_provider'] = datafile.dataprovider
        LOG.info('Added standard attributes to xarray dataset with dims %s', xarray_dataset['latitude'].dims)
    roivar = 'interpolation_radius_of_influence'
    newroi = None
    if roi:
        LOG.info('Added PASSED radius of influence %s to xarray attrs', roi)
        newroi = roi
    elif 'interpolation_radius_of_influence' in datafile.metadata['top'].keys():
        LOG.info('Added scifile READER radius of influence %s to xarray attrs', datafile.metadata['top'][roivar])
        newroi = datafile.metadata['top'][roivar]
    else:
        try:
            from geoips.utils.satellite_info import SatSensorInfo
            sensor_info = SatSensorInfo(datafile.platform_name, datafile.source_name)
            newroi = sensor_info.interpolation_radius_of_influence 
            LOG.info('Added SENSORINFO radius of influence %s to xarray attrs', newroi)
        except (KeyError, AttributeError):
            # If we are registering a non-sat dataset, SatSensorInfo is not defined, and ROI not defined.
            # so open default SatSensorInfo object (which will have default ROI)
            from geoips.utils.satellite_info import SatSensorInfo
            sensor_info = SatSensorInfo()
            newroi = sensor_info.interpolation_radius_of_influence
            LOG.info('        Using DEFAULT SATELLITE_INFO radius of influence: '+str(newroi))
            
    if area_def is not None and hasattr(area_def, 'pixel_size_x') and hasattr(area_def, 'pixel_size_y'):
        if area_def.pixel_size_x > newroi or area_def.pixel_size_y > newroi:
            LOG.info('        Using sector radius of influence: '+str(area_def.pixel_size_x*1.5)+' or '+str(area_def.pixel_size_y*1.5)+', not sensor/product: '+str(newroi))
            newroi = area_def.pixel_size_x * 1.5 if area_def.pixel_size_x > area_def.pixel_size_y else area_def.pixel_size_y * 1.5

    for xarray_dataset in xarray_datasets:
        LOG.info('        Set roi to %s for xarray_dataset with dimensions %s', newroi, xarray_dataset['latitude'].dims)
        xarray_dataset.attrs[roivar] = newroi
    return xarray_datasets
Esempio n. 9
0
    def read(self,
             fname,
             datavars,
             gvars,
             metadata,
             chans=None,
             sector_definition=None):
        # Since the variables are all contained within separate files, we need to allow for
        # a loop to cycle through the files
        df = pg.open(fname)
        temp = None
        for vars in MODEL_GRIB_Reader.dataset_info.values():
            for var in vars.values():
                try:
                    temp = df.select(name=var)[0]  #grabs the first file
                except:
                    if var == '238 (instant)' or var == '133 (instant)' or var == '222 (instant)' or var == '218 (instant)' or var == '221 (instant)':
                        temptemp = df.select()
                        if var in str(temptemp):
                            temp = temptemp[0]
                    continue
        #temp = df.select(name = 'Temperature')[0]

        #print 'Entering IPython shell in '+self.name+' for development purposes'
        #shell()
        dt = '{:08d}{:04d}'.format(temp.validityDate, temp.validityTime)
        print dt

        if not temp:
            log.warning('Unable to read from file ' + fname +
                        ' no matching select for vars')
            return
        if temp.validityDate:
            metadata['top']['start_datetime'] = datetime.strptime(
                dt, '%Y%m%d%H%M')
            metadata['top']['end_datetime'] = datetime.strptime(
                dt, '%Y%m%d%H%M')
        else:
            metadata['top']['start_datetime'] = temp.analDate
            metadata['top']['end_datetime'] = temp.analDate
        metadata['top']['dataprovider'] = temp.centre
        metadata['top']['filename_datetime'] = metadata['top'][
            'start_datetime']
        metadata['top']['platform_name'] = 'model'
        #metadata['top']['source_name'] = 'model'
        metadata['top']['tau'] = temp.startStep
        metadata['top']['level'] = temp.level

        if 'COAMPS' in fname:
            metadata['top']['source_name'] = 'coamps'
        else:
            metadata['top']['source_name'] = 'navgem'

        si = SatSensorInfo(metadata['top']['platform_name'],
                           metadata['top']['source_name'])
        if not si:
            from ..scifileexceptions import SciFileError
            raise SciFileError(
                'Unrecognized platform and source name combination: ' +
                metadata['top']['platform_name'] + ' ' +
                metadata['top']['source_name'])

        dfn = DataFileName(os.path.basename(fname))
        if dfn:
            sdfn = dfn.create_standard()
            metadata['top']['filename_datetime'] = sdfn.datetime

        # Tells driver to NOT try to sector this data.
        metadata['top']['NON_SECTORABLE'] = True
        if chans == []:
            return

        new = None
        # Loop through each dataset name found in the dataset_info property above.
        for dsname in self.dataset_info.keys():
            for geoipsvarname, dfvarname in self.dataset_info[dsname].items():
                try:
                    new = df.select(
                        name=dfvarname)  #,typeOfLevel='isobaricInhPa')
                except:
                    continue
                for newest in new:
                    newest
                    data = newest.values
                    fillvalue = newest.missingValue
                    level = newest.level
                    #shell()
                    if newest.units == str('m s**-1'):
                        data = data * 1.94384

                    log.info('    Reading ' + dsname + ' channel "' +
                             dfvarname +
                             '" from file into SciFile channel: "' +
                             geoipsvarname + str(level) + '" ...')
                    datavars[dsname][geoipsvarname +
                                     str(level)] = np.ma.masked_equal(
                                         data, fillvalue)
                    shape = datavars[dsname][geoipsvarname + str(level)].shape
        if not new:
            log.warning('Unable to read from file ' + fname +
                        ' no matching selects')
            return
        # Loop through each dataset name found in the gvar_info property above.
        for dsname in self.gvar_info.keys():
            for geoipsvarname, dfvarname in self.gvar_info[dsname].items():
                log.info('    Reading ' + dsname + ' channel "' + dfvarname +
                         '" from file into SciFile channel: "' +
                         geoipsvarname + '"...')
                for newest in new:
                    newest
                data = newest[dfvarname]
                fillvalue = newest.missingValue
                #shell()
                if data.size == newest.getNumberOfValues:
                    data = np.reshape(data, shape)
                #if data.shape == (1038240,):
                #    data= np.reshape(data,(721,1440))
                #elif data.shape == (259920,):
                #    data= np.reshape(data,(361,720))
                #elif data.shape == (76454,):
                #    data= np.reshape(data,(254, 301))
                gvars[dsname][geoipsvarname] = np.ma.masked_equal(
                    data, fillvalue)