def compH_dtn(qray,dray,ddep,constants): # set variables wRq, wRd, qYaw, nYaw = constants # prm = np.array([0,0,0,0,1]) # prm = lsqH_dtn(prm,qray,dray,ddep,constants) # valid = (errH_dtn(prm,qray,dray,ddep,constants)<.001).all() # return prm, valid xd, yq = dray, qray xw = tp(np.dot(wRd,tp(xd))) yw = tp(np.dot(wRq,tp(yq))) z = np.cross(yw,xw) # # compute homography parameters t = geom.normalrows(np.cross(z[0,:],z[1,:])) # homography translation w = np.cross(yw,t) maxidx = np.argmax(w,1) b = z[[0,1],maxidx]/w[[0,1],maxidx] ka_init = np.array([0,np.pi+np.mean(np.arctan2(xw[:,0],xw[:,2]))]) errf = lambda prm,argb,argx: argb+prm[0]*(argx[:,0]*np.sin(prm[1])+argx[:,2]*np.cos(prm[1])) k, a = tuple( opt.leastsq(errf,ka_init,args=(b,xw),warning=False)[0] ) t = k*t if np.mean(np.inner(xw-yw,t)) < 0: t, a = -t, a+np.pi dep = np.mean(ddep*np.inner(xw,[-np.sin(a),0,-np.cos(a)])) prm = np.append(t,[180/np.pi*a,dep]) valid = (errH_dtn(prm,qray,dray,ddep,constants)<.01).all() return prm, valid
def compH_dtq(qray,dray,ddep,constants): # set variables Rpr, wRd, qYaw, nYaw = constants pr = geom.YPRfromR(Rpr)[1:] # pitch and roll dRq = np.dot(tp(wRd),geom.RfromYPR(qYaw,pr[0],pr[1])) xd, yq = dray, qray yd = tp(np.dot(dRq,tp(yq))) xw = tp(np.dot(wRd,tp(xd))) tn = np.cross(yd,xd) n = nYaw * np.pi/180 # homography normal bearing # compute homography parameters based off guessed yaw t = geom.normalrows(np.cross(tn[0,:],tn[1,:])) # homography translation m = geom.vecnorm(tn)/(geom.vecnorm(np.cross(yd,t))*geom.vecnorm(xw[:,[0,2]])) f = np.arctan2(xw[:,0],xw[:,2]) k = np.mean( m / np.cos(n-f) ) valid = np.std( m/(k*np.cos(n-f)) ) < 0.1 fe = np.mod(n-np.mean(f),2*np.pi) if np.abs(fe) < np.pi/2: n = np.mod(n+np.pi,2*np.pi) if np.mean(np.inner(xd-yd,t)) < 0: t = -t # compute plane depth nd = -np.dot(tp(wRd),[np.sin(n),0,np.cos(n)]) dep = ddep*np.inner(dray,nd) pd = np.mean(dep) valid = valid and np.std(dep/pd) < 0.1 # set parameters and refine prm = np.append(np.abs(k)*np.dot(wRd,t),[qYaw,pd]) if valid: prm = lsqH_dtq(prm,qray,dray,ddep,constants) valid = valid and geom.vecnorm(prm[:3]) < 5 return prm, valid
def esserrf_tq(prm, qray, dray, pr, wRd, domidx): # set variables dRq = np.dot(tp(wRd), geom.RfromYPR(prm[2], pr[0], pr[1])) td = np.dot(tp(wRd), geom.normalrows(np.insert(prm[:2], domidx, 1))) E = np.dot(tp(dRq), geom.xprodmat(td)) # Compute homography error return np.sum(qray * tp(np.dot(E, tp(dray))), 1)
def LfromLSD(path, img, Kcal): # load lines; if not already generated, run LSD if not os.path.isdir(os.path.dirname(path)): os.path.mkdir(os.path.dirname(path)) if not os.path.isfile(path): callLSD(path, img) lines = loadLines(path) # map the line segment endpoints to the image frame nlines = lines.shape[0] Kinv = alg.inv(Kcal) end1 = tp( np.dot( Kinv , np.concatenate( ([lines[:,0]],[lines[:,1]],[np.ones(nlines)]) , 0 ) ) ) end2 = tp( np.dot( Kinv , np.concatenate( ([lines[:,2]],[lines[:,3]],[np.ones(nlines)]) , 0 ) ) ) # convert to midpoints, equations, and lengths lineqs = np.zeros((nlines,3)) lineqs[:,0] , lineqs[:,1] = end2[:,1]-end1[:,1] , end1[:,0]-end2[:,0] lineqs[:,2] = -np.sum(lineqs*end1,1) lineqs = geom.normalrows(lineqs) lengths = geom.vecnorm(end1-end2) midpts = (end1+end2)/2.0 # remove lines that are too vertical mask = np.abs(lineqs[:,1]/lineqs[:,0]) > np.tan(10*np.pi/180) midpts, lineqs, lengths = midpts[mask,:], lineqs[mask,:], lengths[mask] return midpts, lineqs, lengths
def esserrf_tq(prm,qray,dray,pr,wRd,domidx): # set variables dRq = np.dot(tp(wRd),geom.RfromYPR(prm[2],pr[0],pr[1])) td = np.dot(tp(wRd),geom.normalrows(np.insert(prm[:2],domidx,1))) E = np.dot(tp(dRq),geom.xprodmat(td)) # Compute homography error return np.sum( qray * tp(np.dot(E,tp(dray))) , 1 )
def compH_dtqn(qray,dray,ddep,constants): # set variables Rpr, wRd, qYaw, nYaw = constants pr = geom.YPRfromR(Rpr)[1:] # pitch and roll dRq = np.dot(tp(wRd),geom.RfromYPR(qYaw,pr[0],pr[1])) xd, yq = dray, qray yd = tp(np.dot(dRq,tp(yq))) xw = tp(np.dot(wRd,tp(xd))) tn = np.cross(yd,xd) # no renormalization to bias more confident planes # compute homography parameters teig = alg.eig(np.dot(tp(tn),tn)) nullidx = np.argmin(teig[0]) valid = teig[0][nullidx] < 1e-2 t = geom.normalrows(teig[1][:,nullidx]) # homography translation m = geom.vecnorm(tn)/(geom.vecnorm(np.cross(yd,t))*geom.vecnorm(xw[:,[0,2]])) f = np.arctan2(xw[:,0],xw[:,2]) errf = lambda prm,argm,argf: prm[0]-argm/np.cos(prm[1]-argf) kn_init = np.array([1.2*np.mean(m),np.mean(f)]) k, n = tuple( opt.leastsq(errf,kn_init,args=(m,f),warning=False)[0] ) valid = valid and np.std( m/(k*np.cos(n-f)) ) < 0.1 fe = np.mod(n-np.mean(f),2*np.pi) if np.abs(fe) < np.pi/2: n = np.mod(n+np.pi,2*np.pi) if np.mean(np.inner(xd-yd,t)) < 0: t = -t # compute plane depth nd = -np.dot(tp(wRd),[np.sin(n),0,np.cos(n)]) dep = ddep*np.inner(dray,nd) pd = np.mean(dep) valid = valid and np.std(dep/pd) < 0.1 # set parameters and refine prm = np.append(np.abs(k)*np.dot(wRd,t),[qYaw,180/np.pi*n,pd]) if valid: prm = lsqH_dtqn(prm,qray,dray,ddep,constants) valid = valid and geom.vecnorm(prm[:3]) < 5 return prm, valid
def compH_dt(qray,dray,ddep,constants): # set variables wRq, wRd, qYaw, nYaw = constants # prm = np.array([0,0,0,1]) # prm = lsqH_dt(prm,qray,dray,ddep,constants) # valid = (errH_dt(prm,qray,dray,ddep,constants)<.001).all() # return prm, valid xd, yq = dray, qray xw = tp(np.dot(wRd,tp(xd))) yw = tp(np.dot(wRq,tp(yq))) z = np.cross(yw,xw) a = nYaw * np.pi/180 # homography normal bearing # # compute homography parameters t = geom.normalrows(np.cross(z[0,:],z[1,:])) # homography translation w = np.cross(yw,t) maxidx = np.argmax(w,1) b = z[[0,1],maxidx]/w[[0,1],maxidx] # b = np.mean(z/w,1) k = np.mean(-b/(xw[:,0]*np.sin(a)+xw[:,2]*np.cos(a))) t = k*t if np.mean(np.inner(xw-yw,t)) < 0: t, a = -t, a+np.pi dep = np.mean(ddep*np.inner(xw,[-np.sin(a),0,-np.cos(a)])) prm = np.append(t,dep) valid = (errH_dt(prm,qray,dray,ddep,constants)<.01).all() return prm, valid
def planefrom3d(C, Q, dbmatch, domplane, Kdinv, wRd): if domplane == -1: return np.nan * np.zeros(5) # get 3d points on plane planes = np.asarray( Image.open(os.path.join(C.hiresdir, dbmatch + '-planes.png'))) depths = np.asarray( Image.open(os.path.join(C.hiresdir, dbmatch + '-depth.png'))) y, x = np.nonzero(planes == domplane) npts = len(x) pray = geom.normalrows( tp( np.dot( wRd, np.dot(Kdinv, np.concatenate(([x], [y], [np.ones(npts)]), 0))))) pdep = depths[y, x] / 100.0 p3d = np.append(geom.vecmul(pray, pdep), tp(np.array([np.ones(len(pray))])), 1) xz_pts = p3d[:, [0, 2, 3]] # RANSAC solve threshold, g = 2, np.array([0, 1, 0]) # meters bprm, bnumi, bmask = np.zeros(3), 0, np.bool_(np.zeros(npts)) for i in range(1000): i1 = rnd.randint(0, npts) i2 = rnd.randint(0, npts - 1) i2 = i2 if i2 < i1 else i2 + 1 i3 = rnd.randint(0, npts - 2) i3 = i3 if i3 < min(i1, i2) else (i3 + 1 if i3 + 1 < max(i1, i2) else i3 + 2) inlpts = xz_pts[[i1, i2, i3], :] prm = geom.smallestSingVector(inlpts) prm = prm / geom.vecnorm(prm[:2]) prm = -prm if prm[2] < 0 else prm errs = np.abs(np.inner(xz_pts, prm)) inlmask = errs < threshold numi = np.sum(inlmask) if numi > bnumi and float(numi) / npts > 0.5: bprm, bmask, bnumi = prm, inlmask, numi prm, numi, mask = bprm, bnumi, bmask # guided matching for i in range(10): if numi == 0: break prm = geom.smallestSingVector(xz_pts[mask, :]) prm = prm / geom.vecnorm(prm[:2]) prm = -prm if prm[2] < 0 else prm errs = np.abs(np.inner(xz_pts, prm)) mask = errs < threshold numi = np.sum(mask) # get error err = np.mean(np.abs(np.inner(xz_pts[mask, :], prm))) return np.array([prm[0], 0, prm[1], prm[2], err])
def compE_t(qray,dray,constants): # set variables wRq, wRd, qYaw = constants xd, yq = dray, qray yw = tp(np.dot(wRq,tp(yq))) xw = tp(np.dot(wRd,tp(xd))) tn = np.cross(yw,xw) # compute essential matrix parameters based off guessed yaw t = geom.normalrows(np.cross(tn[0,:],tn[1,:])) # homography translation return t, -1, True
def lsqE_t(prm,qray,dray,constants,domidx): # set variables wRq, wRd, qYaw = constants xd, yq = dray, qray yw = tp(np.dot(wRq,tp(yq))) xw = tp(np.dot(wRd,tp(xd))) tn = np.cross(yw,xw) # no renormalization to bias more confident planes # compute essential matrix parameters based off guessed yaw teig = alg.eig(np.dot(tp(tn),tn)) return geom.normalrows(teig[1][:,np.argmin(teig[0])]) # essential matrix translation
def compE_t(qray, dray, constants): # set variables wRq, wRd, qYaw = constants xd, yq = dray, qray yw = tp(np.dot(wRq, tp(yq))) xw = tp(np.dot(wRd, tp(xd))) tn = np.cross(yw, xw) # compute essential matrix parameters based off guessed yaw t = geom.normalrows(np.cross(tn[0, :], tn[1, :])) # homography translation return t, -1, True
def lsqE_t(prm, qray, dray, constants, domidx): # set variables wRq, wRd, qYaw = constants xd, yq = dray, qray yw = tp(np.dot(wRq, tp(yq))) xw = tp(np.dot(wRd, tp(xd))) tn = np.cross(yw, xw) # no renormalization to bias more confident planes # compute essential matrix parameters based off guessed yaw teig = alg.eig(np.dot(tp(tn), tn)) return geom.normalrows( teig[1][:, np.argmin(teig[0])]) # essential matrix translation
def planefrom3d(C, Q, dbmatch, domplane, Kdinv, wRd): if domplane == -1: return np.nan * np.zeros(5) # get 3d points on plane planes = np.asarray( Image.open( os.path.join(C.hiresdir,dbmatch+'-planes.png') ) ) depths = np.asarray( Image.open( os.path.join(C.hiresdir,dbmatch+'-depth.png') ) ) y, x = np.nonzero(planes==domplane) npts = len(x) pray = geom.normalrows( tp( np.dot( wRd , np.dot( Kdinv , np.concatenate( ([x],[y],[np.ones(npts)]) , 0 ) ) ) ) ) pdep = depths[y,x]/100.0 p3d = np.append( geom.vecmul(pray,pdep) , tp(np.array([np.ones(len(pray))])) , 1 ) xz_pts = p3d[:,[0,2,3]] # RANSAC solve threshold, g = 2, np.array([0,1,0]) # meters bprm, bnumi, bmask = np.zeros(3), 0, np.bool_(np.zeros(npts)) for i in range(1000): i1 = rnd.randint(0,npts) i2 = rnd.randint(0,npts-1) i2 = i2 if i2<i1 else i2+1 i3 = rnd.randint(0,npts-2) i3 = i3 if i3<min(i1,i2) else ( i3+1 if i3+1<max(i1,i2) else i3+2 ) inlpts = xz_pts[[i1,i2,i3],:] prm = geom.smallestSingVector(inlpts) prm = prm / geom.vecnorm(prm[:2]) prm = -prm if prm[2]<0 else prm errs = np.abs(np.inner(xz_pts,prm)) inlmask = errs < threshold numi = np.sum(inlmask) if numi > bnumi and float(numi)/npts > 0.5: bprm, bmask, bnumi = prm, inlmask, numi prm, numi, mask = bprm, bnumi, bmask # guided matching for i in range(10): if numi == 0: break prm = geom.smallestSingVector(xz_pts[mask,:]) prm = prm / geom.vecnorm(prm[:2]) prm = -prm if prm[2]<0 else prm errs = np.abs(np.inner(xz_pts,prm)) mask = errs < threshold numi = np.sum(mask) # get error err = np.mean(np.abs(np.inner(xz_pts[mask,:],prm))) return np.array([prm[0],0,prm[1],prm[2],err])
def compE_tq(qray, dray, constants): # set variables Rpr, wRd, qYaw = constants pr = geom.YPRfromR(Rpr)[1:] # pitch and roll wRq = geom.RfromYPR(qYaw, pr[0], pr[1]) xd, yq = dray, qray yw = tp(np.dot(wRq, tp(yq))) xw = tp(np.dot(wRd, tp(xd))) tn = np.cross(yw, xw) # no renormalization to bias more confident planes # compute essential matrix parameters based off guessed yaw teig = alg.eig(np.dot(tp(tn), tn)) nullidx = np.argmin(teig[0]) valid = teig[0][nullidx] / teig[0][np.argmax(teig[0])] < 1e-2 t = geom.normalrows(teig[1][:, nullidx]) # essential matrix translation domidx = np.argmax(t) prm = np.append(np.delete(t / t[domidx], domidx), qYaw) if valid: prm = lsqE_tq(prm, qray, dray, constants, domidx) return prm, domidx, valid
def compE_tq(qray,dray,constants): # set variables Rpr, wRd, qYaw = constants pr = geom.YPRfromR(Rpr)[1:] # pitch and roll wRq = geom.RfromYPR(qYaw,pr[0],pr[1]) xd, yq = dray, qray yw = tp(np.dot(wRq,tp(yq))) xw = tp(np.dot(wRd,tp(xd))) tn = np.cross(yw,xw) # no renormalization to bias more confident planes # compute essential matrix parameters based off guessed yaw teig = alg.eig(np.dot(tp(tn),tn)) nullidx = np.argmin(teig[0]) valid = teig[0][nullidx]/teig[0][np.argmax(teig[0])] < 1e-2 t = geom.normalrows(teig[1][:,nullidx]) # essential matrix translation domidx = np.argmax(t) prm = np.append( np.delete(t/t[domidx],domidx) , qYaw ) if valid: prm = lsqE_tq(prm,qray,dray,constants,domidx) return prm, domidx, valid
def compH_tn(qray,dray,ddep,constants): # set variables wRq, wRd, qYaw, nYaw = constants dRq = np.dot(tp(wRd),wRq) xd, yq = dray, qray yd = tp(np.dot(dRq,tp(yq))) xw = tp(np.dot(wRd,tp(xd))) tn = np.cross(yd,xd) # compute homography parameters t = geom.normalrows(np.cross(tn[0,:],tn[1,:])) # homography translation m = geom.vecnorm(tn)/(geom.vecnorm(np.cross(yd,t))*geom.vecnorm(xw[:,[0,2]])) f = np.arctan2(xw[:,0],xw[:,2]) errf = lambda prm,argm,argf: prm[0]-argm/np.cos(prm[1]-argf) kn_init = np.array([1.2*np.mean(m),np.mean(f)]) k, n = tuple( opt.leastsq(errf,kn_init,args=(m,f),warning=False)[0] ) valid = np.std( m/(k*np.cos(n-f)) ) < 0.1 fe = np.mod(n-np.mean(f),2*np.pi) if np.abs(fe) < np.pi/2: n = np.mod(n+np.pi,2*np.pi) if np.mean(np.inner(xd-yd,t)) < 0: t = -t # set parameters and refine prm = np.append(k*np.dot(wRd,t),180/np.pi*n) valid = valid and geom.vecnorm(prm[:3]) < 5 return prm, valid
def compH_t(qray,dray,ddep,constants): # set variables wRq, wRd, qYaw, nYaw = constants dRq = np.dot(tp(wRd),wRq) xd, yq = dray, qray yd = tp(np.dot(dRq,tp(yq))) xw = tp(np.dot(wRd,tp(xd))) tn = np.cross(yd,xd) n = nYaw * np.pi/180 # homography normal bearing # compute homography parameters t = geom.normalrows(np.cross(tn[0,:],tn[1,:])) # homography translation m = geom.vecnorm(tn)/(geom.vecnorm(np.cross(yd,t))*geom.vecnorm(xw[:,[0,2]])) f = np.arctan2(xw[:,0],xw[:,2]) errf = lambda prm,argm,argf,argn: prm[0]-argm/np.cos(argn-argf) k_init = np.mean( m / np.cos(n-f) ) k = tuple( opt.leastsq(errf,k_init,args=(m,f,n),warning=False)[0] ) # k = np.mean( m / np.cos(n-f) ) valid = np.std( m/(k*np.cos(n-f)) ) < 0.1 if np.mean(np.inner(xd-yd,t)) < 0: t = -t # set parameters and refine prm = np.abs(k)*np.dot(wRd,t) valid = valid and geom.vecnorm(prm[:3]) < 5 return prm, valid
print 'Number of inliers / total correspondences : %d / %d' % ( matches['numi'], matches['nmat']) for idx in match_idx: start = scale * matches['q2d'][idx, :] stop = matches['d2d'][idx, :] stop[0] += off xdrawcircle(start, 'red') xdrawline((start, stop), 'green', width=3) xdrawcircle(stop, 'red') ### draw homography boxes ### # compute box center and corners pd = matches['iprm'][-1] tw = pose[5] * pose[:3] cd, xd = np.array([.4, -.1, 1]), geom.normalrows(np.array([.5, -.2, 1])) cw, xw = np.dot(wRd, cd), np.dot(wRd, xd) nw = -np.array( [np.sin(pose[4] * np.pi / 180), 0, np.cos(pose[4] * np.pi / 180)]) cw, xw = pd / np.dot(nw, cw) * cw, pd / np.dot(nw, xw) * xw trw, brw, tlw, blw = xw.copy(), xw.copy(), 2 * cw - xw, 2 * cw - xw brw[1], tlw[1] = blw[1], trw[1] trq, brq, tlq, blq = np.dot(tp(wRq), trw - tw), np.dot(tp(wRq), brw - tw), np.dot( tp(wRq), tlw - tw), np.dot(tp(wRq), blw - tw) trd, brd, tld, bld = np.dot(tp(wRd), trw), np.dot(tp(wRd), brw), np.dot( tp(wRd), tlw), np.dot(tp(wRd), blw) # draw query box trp, brp, tlp, blp = np.dot(Kq, trq), np.dot(Kq, brq), np.dot(Kq,
def constrainedEssMatrix(matches, wRd, wRq, qYaw=np.nan, runflag=0, maxerr=.05, maxiter=1000): print 'Solving constrained essential matrix...' start = time.time() # Homography parameters to solve for: # translation: 2 parameters (never known) # normal yaw: 1 parameter (may be known) # query yaw: 1 parameter (may be known) # Set the different run conditions to be used in the RANSAC loop # Note that if qYaw is unknown, then wRq is assumed just pitch and roll (yaw=0) if runflag == 0: # qYaw unknown nprm, nrand = 3, 3 compE, lsqE, errE = compE_tq, lsqE_tq, errE_tq else: # runflag == 1: qYaw known nprm, nrand = 2, 2 compE, lsqE, errE = compE_t, lsqE_t, errE_t # Set variables nmat, numq = matches['nmat'], matches['numq'] constants = (wRq, wRd, qYaw) bprm, bmask, bnumi, bdomidx, berr = np.zeros(nprm), np.zeros( nmat), 0, -1, np.inf qray, dray, qidx = matches['qray'], matches['dray'], matches['qidx'] # Ransac loop to eliminate outliers with essential matrix # Solves essential matrix iter = 0 while iter < maxiter: iter += 1 q, d = randsamples(nrand, nmat, qray, dray) prm, domidx, valid = compE(q, d, constants) if not valid: continue errs = errE(prm, qray, dray, constants, domidx) imask, numi = getInliers(errs, maxerr, qidx, numq, nmat) if numi >= bnumi: bprm, bmask, bnumi, bdomidx = prm, imask, numi, domidx # Guided matching numi, imask, prm, domidx = bnumi, bmask, bprm, bdomidx last_numi, iter, maxgm = 0, 0, 100 while last_numi != numi and iter < maxgm: last_numi, iter = numi, iter + 1 q, d = qray[imask, :], dray[imask, :] prm = lsqE(prm, q, d, constants, domidx) errs = errE(prm, qray, dray, constants, domidx) imask, numi = getInliers(errs, maxerr, qidx, numq, nmat) # Set output parameters matches['iprm'] = prm matches['imask'] = imask matches['ierr'] = geom.vecnorm( errE(prm, qray[imask, :], dray[imask, :], constants, domidx)) * numq / numi if numi != 0 else np.inf matches['numi'] = sum(imask) # Print output state if matches['numi'] == 0: print 'Constrained homography failed.' pose = np.nan * np.zeros(4) else: print 'Result from error metric choosing best inlier set: %f' % matches[ 'ierr'] print 'Number of inliers / total correspondences: ' + str( matches['numi']) + ' / ' + str(nmat) if runflag == 0: qYaw = prm[3] pose = np.append(geom.normalrows(prm[:3]), qYaw) print 'Constrained homography took %.1f seconds.' % (time.time() - start) return matches, pose
def constrainedEssMatrix(matches, wRd, wRq, qYaw=np.nan, runflag=0, maxerr=.05, maxiter=1000): print 'Solving constrained essential matrix...' start = time.time() # Homography parameters to solve for: # translation: 2 parameters (never known) # normal yaw: 1 parameter (may be known) # query yaw: 1 parameter (may be known) # Set the different run conditions to be used in the RANSAC loop # Note that if qYaw is unknown, then wRq is assumed just pitch and roll (yaw=0) if runflag == 0: # qYaw unknown nprm, nrand = 3, 3 compE, lsqE, errE = compE_tq, lsqE_tq, errE_tq else: # runflag == 1: qYaw known nprm, nrand = 2, 2 compE, lsqE, errE = compE_t, lsqE_t, errE_t # Set variables nmat, numq = matches['nmat'], matches['numq'] constants = (wRq,wRd,qYaw) bprm, bmask, bnumi, bdomidx, berr = np.zeros(nprm), np.zeros(nmat), 0, -1, np.inf qray, dray, qidx = matches['qray'], matches['dray'], matches['qidx'] # Ransac loop to eliminate outliers with essential matrix # Solves essential matrix iter = 0 while iter < maxiter: iter += 1 q, d = randsamples(nrand, nmat, qray, dray) prm, domidx, valid = compE(q,d,constants) if not valid: continue errs = errE(prm,qray,dray,constants,domidx) imask, numi = getInliers(errs,maxerr,qidx,numq,nmat) if numi >= bnumi: bprm, bmask, bnumi, bdomidx = prm, imask, numi, domidx # Guided matching numi, imask, prm, domidx = bnumi, bmask, bprm, bdomidx last_numi, iter, maxgm = 0, 0, 100 while last_numi != numi and iter < maxgm: last_numi, iter = numi, iter+1 q, d = qray[imask,:], dray[imask,:] prm = lsqE(prm,q,d,constants,domidx) errs = errE(prm,qray,dray,constants,domidx) imask, numi = getInliers(errs,maxerr,qidx,numq,nmat) # Set output parameters matches['iprm'] = prm matches['imask'] = imask matches['ierr'] = geom.vecnorm(errE(prm,qray[imask,:],dray[imask,:],constants,domidx)) * numq / numi if numi!=0 else np.inf matches['numi'] = sum(imask) # Print output state if matches['numi'] == 0: print 'Constrained homography failed.' pose = np.nan * np.zeros(4) else: print 'Result from error metric choosing best inlier set: %f' % matches['ierr'] print 'Number of inliers / total correspondences: ' + str(matches['numi']) + ' / ' + str(nmat) if runflag == 0: qYaw = prm[3] pose = np.append( geom.normalrows(prm[:3]) , qYaw ) print 'Constrained homography took %.1f seconds.' % (time.time()-start) return matches, pose
def VPNfromDatabase(C, Q, dimg, vp_threshold): main_bias, off_bias = 1, 0 if off_bias == 0: dname = os.path.basename(dimg) himg, dinfo, dpath = os.path.join(C.hiresdir, dname[:-4] + '.jpg'), \ os.path.join(C.hiresdir, dname[:-4] + '.info'), \ os.path.join(C.hiresdir, dname[:-4] + '.lsd') dsource = render_tags.EarthmineImageInfo(himg,dinfo) Kd, wRd = viewparam(dsource,np.nan) dmid, deqs, dlen = LfromLSD(dpath,himg,Kd) dvps, dcon, dcent, dseeds = VPfromSeeds(dmid, deqs, dlen, wRd, vp_threshold) vps, conf, cent = tp(np.dot(wRd,tp(dvps))), dcon, dcent nvps = len(conf) if nvps == 0: return np.zeros((0,3)), np.zeros((0,3)), np.zeros(0), np.zeros(0) # return if no vanishing points else: # get 3 database images dname = os.path.basename(dimg) view = int(dname[-6:-4]) if view < 6: # right side of street limg, linfo, lpath = os.path.join(C.hiresdir, dname[:-6] + '02.jpg'), \ os.path.join(C.hiresdir, dname[:-6] + '02.info'), \ os.path.join(C.hiresdir, 'lsd', dname[:-6] + '02.lsd') cimg, cinfo, cpath = os.path.join(C.hiresdir, dname[:-6] + '03.jpg'), \ os.path.join(C.hiresdir, dname[:-6] + '03.info'), \ os.path.join(C.hiresdir, 'lsd', dname[:-6] + '03.lsd') rimg, rinfo, rpath = os.path.join(C.hiresdir, dname[:-6] + '04.jpg'), \ os.path.join(C.hiresdir, dname[:-6] + '04.info'), \ os.path.join(C.hiresdir, 'lsd', dname[:-6] + '04.lsd') else: # left side of street limg, linfo, lpath = os.path.join(C.hiresdir, dname[:-6] + '08.jpg'), \ os.path.join(C.hiresdir, dname[:-6] + '08.info'), \ os.path.join(C.hiresdir, 'lsd', dname[:-6] + '08.lsd') cimg, cinfo, cpath = os.path.join(C.hiresdir, dname[:-6] + '09.jpg'), \ os.path.join(C.hiresdir, dname[:-6] + '09.info'), \ os.path.join(C.hiresdir, 'lsd', dname[:-6] + '09.lsd') rimg, rinfo, rpath = os.path.join(C.hiresdir, dname[:-6] + '10.jpg'), \ os.path.join(C.hiresdir, dname[:-6] + '10.info'), \ os.path.join(C.hiresdir, 'lsd', dname[:-6] + '10.lsd') lsource = render_tags.EarthmineImageInfo(limg, linfo) csource = render_tags.EarthmineImageInfo(cimg, cinfo) rsource = render_tags.EarthmineImageInfo(rimg, rinfo) # extract view parameters Kl, wRl = viewparam(lsource,np.nan) Kc, wRc = viewparam(csource,np.nan) Kr, wRr = viewparam(rsource,np.nan) # get lines for each database image; image frame equations and segment lengths lmid, leqs, llen = LfromLSD(lpath, limg, Kl) cmid, ceqs, clen = LfromLSD(cpath, cimg, Kc) rmid, reqs, rlen = LfromLSD(rpath, rimg, Kr) # get candidate vanishing points from lines lvps, lcon, lcent, lseeds = VPfromSeeds(lmid, leqs, llen, wRl, vp_threshold) cvps, ccon, ccent, cseeds = VPfromSeeds(cmid, ceqs, clen, wRc, vp_threshold) rvps, rcon, rcent, rseeds = VPfromSeeds(rmid, reqs, rlen, wRr, vp_threshold) ##### combine candidate vanishing points and into an estimate of ##### ##### the building faces' horizontal vanishing points and normals ##### # increase the confidence of vps from the matched view and if view==2 or view==8 : lcon, ccon, rcon, ccent, rcent, ndvps, seedlens = main_bias*lcon, off_bias*ccon, off_bias*rcon, 0*ccent, 0*rcent, len(lvps), lseeds elif view==3 or view==9 : lcon, ccon, rcon, lcent, rcent, ndvps, seedlens = off_bias*lcon, main_bias*ccon, off_bias*rcon, 0*lcent, 0*rcent, len(cvps), cseeds elif view==4 or view==10 : lcon, ccon, rcon, lcent, ccent, ndvps, seedlens = off_bias*lcon, off_bias*ccon, main_bias*rcon, 0*lcent, 0*ccent, len(rvps), rseeds # map the vanishing points to the world frame (EDN - east/down/north) and combine all vps lvps, cvps, rvps = tp(np.dot(wRl,tp(lvps))), tp(np.dot(wRc,tp(cvps))), tp(np.dot(wRr,tp(rvps))) vps, conf, cent = np.concatenate( (lvps,cvps,rvps) , 0 ), np.concatenate((lcon,ccon,rcon)), np.concatenate( (lcent,ccent,rcent) , 0 ) nvps = len(conf) if nvps == 0: return np.zeros((0,3)), np.zeros((0,3)), np.zeros(0), np.zeros(0) # return if no vanishing points # get normals and remove vanishing points indicating more than a ~18 degree incline normals = np.cross(vps,[0,1,0]) mask = geom.vecnorm(normals) > 0.95 vps, cent, normals, conf = vps[mask,:], cent[mask,:], geom.normalrows(normals[mask,:]), conf[mask] nvps = len(conf) # sort vanishing points by confidence sort = np.argsort(conf) vps, cent, conf = vps[sort[::-1],:], cent[sort[::-1],:], conf[sort[::-1]] # combine all vanishing points minconf = 0.2 # average 20% of line length in each image OR 50% of line length in retrieved image bvps, bcenters, bnorms, bconfs = np.zeros((0,3)), np.zeros((0,3)), np.zeros(0), np.zeros(0) while len(conf)!=0: vp = vps[0,:] mask = np.inner(vps,vp) > np.cos(vp_threshold*np.pi/180) c = np.sum(conf[mask])/(2*off_bias+main_bias) if c > minconf: vp = geom.largestSingVector(geom.vecmul(vps[mask,:],conf[mask])) if np.inner(vps[0,:],vp) < 0: vp = -vp normal = np.cross(vp,[0,1,0]) nyaw = np.mod( 180/np.pi * np.arctan2(normal[0],normal[2]) , 360 ) bvps = np.concatenate( (bvps,[vp]) , 0 ) bnorms, bconfs = np.append(bnorms,nyaw), np.append(bconfs,c) centmask = np.logical_and(mask,cent[:,2]!=0) center = np.mean(cent[centmask,:],0) bcenters = np.concatenate( (bcenters,[center]) , 0 ) keep = np.logical_not(mask) vps, conf, cent = vps[keep,:], conf[keep], cent[keep,:] else: vps, conf, cent = np.delete(vps,0,0), np.delete(conf,0), np.delete(cent,0,0) # sort best vanishing points by confidence if len(bconfs) == 0: return bvps, bcenters, bnorms, bconfs sort = np.argsort(bconfs) bvps, bcenters, bnorms, bconfs = bvps[sort[::-1],:], bcenters[sort[::-1],:], bnorms[sort[::-1]], bconfs[sort[::-1]] return bvps, bcenters, bnorms, bconfs, nvps
def estimate_pose(C, Q, dbmatch, gtStatus=None): # settings param = C.pose_param runflag = param['runflag'] np.seterr(all='ignore') Q.datafile = os.path.join(C.pose_param['resultsdir'], 'data_' + Q.name + '.txt') open(Q.datafile, 'w').close() #####----- PRINT RUN DETAILS -----##### run_info = os.path.join(param['resultsdir'], param['run_info']) open(run_info, 'w').close() with open(run_info, 'a') as ri: if runflag == 11: print >> ri, 'Method: Yaw, planes from VPs. Scale computed with homography.' elif runflag == 10: print >> ri, 'Method: Yaw, planes from VPs. Scale computed after homography.' if param['cheat']: print >> ri, 'Ground truth yaw and plane used (cheating).' print >> ri, 'Inlier base error threshold: %.3f' % param['inlier_error'] print >> ri, 'Base iteration scale: %d' % param['ransac_iter'] #####----- PRINT RUN DETAILS -----##### # get high res db image and sift paths dbinfo = os.path.join(C.hiresdir, dbmatch + '.info') dbimg = os.path.join(C.hiresdir, dbmatch + '.jpg') dbsift = os.path.join(C.hiresdir, dbmatch + 'sift.txt') dbsource = render_tags.EarthmineImageInfo(dbimg, dbinfo) # Set Kd, wRd, and db position wx, wy = dbsource.image.size fov = dbsource.fov Kd = geom.cameramat(wx, wy, fov) Kdinv = alg.inv(Kd) y, p, r = dbsource.yaw, dbsource.pitch, dbsource.roll wRd = geom.RfromYPR(y, p, r) # db camera orientation (camera to world) olat, olon, oalt = dbsource.lat, dbsource.lon, dbsource.alt # database location # get high res query information qname = Q.name qimg = os.path.join(C.querydir, 'hires', qname + '.jpg') qsift = os.path.join(C.querydir, 'hires', qname + 'sift.txt') qsource = render_tags.QueryImageInfo(Q.datasource) glat, glon = qsource.lat, qsource.lon gzx = geom.lltom(olat, olon, glat, glon) timename = qname[-12:-10] + qname[-9:-7] + qname[-6:-4] #+qname[-3:] # Set Kq wx, wy = qsource.image.size fov = qsource.fov Kq = geom.cameramat(wx, wy, fov) Kqinv = alg.inv(Kq) cyaw, p, r = qsource.yaw, qsource.pitch, qsource.roll # cyaw - cell phone yaw # get high res sift rematch matches = highresSift(C, Q, dbmatch) with open(Q.datafile, 'a') as df: print >> df, 'Number of matches | number of queries | ratio: %.0f | %.0f | %.2f' % ( matches['nmat'], matches['numq'], float(matches['nmat']) / matches['numq']) print >> df, '' # Get estimated ground truth query location and normal direction tlat, tlon, tnorm, tyaw = getGTpose(C, Q) qzx = geom.lltom(olat, olon, tlat, tlon) # get query yaw and plane yaw from vanishing point anaylsis yawforvp = tyaw if param['cheat'] else np.nan vyaw, vnorms = vp_analysis.getQNyaws(C, Q, qimg, dbimg, qsource, yawforvp) # get dominant planes dplanes, psizes, planeprms = find_dbplanes(C, Q, dbmatch, Kdinv, wRd) # match vanishing point planes to database planes pyaws, planes, pconfs = combine_planes(runflag, vnorms, dplanes, psizes, planeprms) print 'VP and DB Planes: ' + str(np.int_(pyaws)) + ', ' + str(planes) with open(Q.datafile, 'a') as df: # print >>df, 'Planes detected with vanishing points:' for i in range(len(pconfs)): perr = np.round(np.mod(pyaws[i] - tnorm, 360)) perr = perr if perr < 180 else 360 - perr print >> df, 'Plane Yaw | DB plane | Confidence | Error : %3.0f | %d | %.2f | %.0f' % ( pyaws[i], 0 if planes[i] < 0 else planes[i], pconfs[i], perr) yerr = np.round(np.mod(vyaw - tyaw, 360)) yerr = yerr if yerr < 180 else 360 - yerr print >> df, 'VP Yaw | Confidence | Error : %3.0f | %.2f | %.0f' % ( vyaw, np.nan, yerr) print >> df, 'Cell yaw | True yaw | Plane : %3.0f | %3.0f | %3.0f' % ( cyaw, tyaw, tnorm) print >> df, '' # Set yaw value to be used if runflag >= 10: # vanishing point methods if np.isnan(vyaw): yaw, yawerr = cyaw, 0 else: yaw, yawerr = vyaw, 0 else: yaw, yawerr = cyaw, 0 # set cell phone yaw to use, plane normal wRq = geom.RfromYPR(yaw, p, r) # camera orientation (camera to world) ### --- THIS IS FOR CHEATING --- ### if param['cheat']: if not np.isnan(tnorm): pyaws, planes, pconfs = np.append(pyaws, tnorm), np.append( planes, -1), np.append(pconfs, 1) yaw, yawerr = tyaw, 0 wRq = geom.RfromYPR(yaw, p, r) # camera orientation (camera to world) ### --- THIS IS FOR CHEATING --- ### # print pre-homography data to file vyaw_err = np.round(np.round(np.mod( tyaw - vyaw, 360))) if not np.isnan(vyaw) else np.nan vyaw_err = vyaw_err if vyaw_err < 180 else 360 - vyaw_err dbears = np.mod(180 / np.pi * np.arctan2(planeprms[:, 0], planeprms[:, 2]), 360) print 'Computed / ground truth cell phone yaw: %.0f / %.0f' % (vyaw, tyaw) with open(os.path.join(param['resultsdir'], param['extras_file']), 'a') as extras_file: print >> extras_file, '\t'.join([ timename, '%.0f' % tnorm, '%.0f' % np.round(tyaw), '%.0f' % cyaw, '%.0f' % vyaw, '%.4f' % np.nan, str(vyaw_err) ]) print >> extras_file, '\t'.join(['%.4f' % 0 for vnorm in vnorms]) print >> extras_file, '\t'.join(['%.0f' % vnorm for vnorm in vnorms]) print >> extras_file, '\t'.join(['%.0f' % plane for plane in planes]) print >> extras_file, '\t'.join( ['%.0f' % dplane for dplane in dplanes]) print >> extras_file, '\t'.join(['%.0f' % dbear for dbear in dbears]) print >> extras_file, '\t'.join( ['%.3f' % dnerr for dnerr in planeprms[:, 4]]) # Fill out match information nmat = matches['nmat'] matches['qray'] = geom.normalrows( tp(np.dot(Kqinv, np.append(tp(matches['q2d']), [np.ones(nmat)], 0)))) matches['dray'] = geom.normalrows( tp(np.dot(Kdinv, np.append(tp(matches['d2d']), [np.ones(nmat)], 0)))) matches = match_info(C, Q, matches, dbmatch, wRd) matches_start = matches.copy() # Solve for query pose using constrained image geometry init_matches = initMatches(matches.copy()) matches['numi'], matches['hconf'] = 0, 0 runflag, ntry, planechose = param['runflag'], 0, 0 parameters = (wRq, wRd, yaw, np.nan, runflag, param['inlier_error'], param['ransac_iter'], 10, True) if param['ransac_iter'] == 0: matches = init_matches matches['numi'], matches['hconf'] == 0, 0 pose = np.zeros(6) pose[3:5] = np.nan elif runflag < 10: matches, pose = solveGeom(init_matches, parameters, yawerr) else: ntry = 1 viter = -np.ones(3) parameters = (wRq, wRd, yaw, np.nan, runflag, param['inlier_error'], param['ransac_iter'], 15, True) matches, pose, planechose = solveNorm(C, Q, dbmatch, pyaws, planes, init_matches, parameters, yawerr) viter[0] = matches['viter'] if matches['numi'] == 0 or matches['hconf'] == 0: ntry = 2 parameters = (wRq, wRd, yaw, np.nan, runflag, 3 * param['inlier_error'], param['ransac_iter'], 10, True) matches, pose, planechose = solveNorm(C, Q, dbmatch, pyaws, planes, init_matches, parameters, yawerr) viter[1] = matches['viter'] if matches['numi'] == 0 or matches['hconf'] == 0: ntry, planechose = 3, 0 parameters = (wRq, wRd, yaw, np.nan, 7, 3 * param['inlier_error'], param['ransac_iter'], 10, True) matches, pose = solveYaw(init_matches, parameters, yawerr) viter[2] = matches['viter'] if matches['numi'] == 0 or matches['hconf'] == 0: ntry, planechose = 4, 0 # save matches to disk matches_file = os.path.join(param['resultsdir'], 'matches_' + qname + '.pkl') matches_out = open(matches_file, 'wb') pickle.dump(matches, matches_out) matches_out.close() # extract pose parameters comp_runflag = matches['runflag'] tray = pose[:3] comp_yaw = pose[3] comp_pyaw = pose[4] if runflag >= 0 else np.nan scale = pose[5] if runflag >= 0 else np.nan # Get scaled translation for query location if np.isnan(scale): wRq_pr = geom.YPRfromR(wRq)[1:] comp_wRq = geom.RfromYPR(comp_yaw, wRq_pr[0], wRq_pr[1]) qloc = scalefrom3d(matches, tray, comp_wRq)[0] else: # scale calculated in RANSAC loop qloc = scale * tray # temporarily get yaw error qyaw_error = np.round(abs(np.mod(tyaw - comp_yaw, 360))) qyaw_error = qyaw_error if qyaw_error < 180 else abs(qyaw_error - 360) # compute location errors wrt estimated query locations loc_err = ((qloc[0] - qzx[1])**2 + (qloc[2] - qzx[0])**2)**0.5 gps_err = ((gzx[1] - qzx[1])**2 + (gzx[0] - qzx[0])**2)**0.5 # compute the angle difference between T and ground truth translation tyaw_error = np.round( abs(180 / np.pi * np.arccos( np.abs(qloc[0] * qzx[1] + qloc[2] * qzx[0]) / (alg.norm([qloc[0], qloc[2]]) * alg.norm(qzx))))) # compute the plane normal angle error nyaw_error = np.nan if np.isnan(comp_pyaw) or np.isnan(tnorm) else np.mod( np.round(abs(comp_pyaw - tnorm)), 180) nyaw_error = nyaw_error if nyaw_error < 90 else abs(nyaw_error - 180) # write pose estimation results to file yaw_err = np.nan pose_file = os.path.join(param['resultsdir'], param['pose_file']) with open(pose_file, 'a') as pf: print >>pf, '\t'.join([qname, str(loc_err), str(gps_err), \ str(tyaw_error), str(qyaw_error), str(nyaw_error), str(matches['numi']), \ str(matches['numq']), str(matches['nmat']), str(matches['hconf']), \ str(qloc[0]), str(qloc[2]), str(yaw_err), str(runflag)]) # print post-homography data to file with open(Q.datafile, 'a') as df: print >> df, '' print >> df, '------------------' print >> df, '' if ntry == 1: print >> df, 'Homography solution using low error threshold with restrictions.' elif ntry == 2: print >> df, 'Homography solution using high error threshold with restrictions.' else: print >> df, 'Solution not found. Setting T=0.' if planechose == 0: print >> df, 'Solution formed with unset plane normal.' else: 'Solution chosen with plane normal %d chosen.' % planechose print >> df, 'VP yaw | Computed yaw | Actual Yaw | Error : %3.0f | %3.0f | %3.0f | %3.0f' % ( vyaw, comp_yaw, tyaw, qyaw_error) print >> df, 'Computed Normal | Actual Normal | Error : %3.0f | %3.0f | %3.0f' % ( comp_pyaw, tnorm, nyaw_error) print >> df, 'Translation (x|y|z): %.1f | %.1f | %.1f' % ( qloc[0], qloc[1], qloc[2]) print >> df, 'True position (x|-|z): %.1f | - | %.1f' % (qzx[1], qzx[0]) print >> df, 'Angle error | Location error: %.0f | %.1f' % (tyaw_error, loc_err) print >> df, 'Number of Inliers | Total matches | Ratio: %d | %d | %.2f' % ( matches['numi'], matches['nmat'], np.nan if matches['nmat'] == 0 else float(matches['numi']) / matches['nmat']) print >> df, 'Reprojection error | Homography confidence: %.3f | %.1f' % ( matches['rperr'], matches['hconf']) print >> df, 'Valid Homographies | Iterations | Ratio: %d | %d | %.3f' % ( matches['viter'], matches['niter'], np.nan if matches['niter'] == 0 else float(matches['viter']) / matches['niter']) print >> df, '' print >> df, '------------------' print >> df, '' booleans = [ loc_err<5, loc_err<10, not(5<np.mod(vyaw-tyaw,360)<355), \ not(10<np.mod(vyaw-tyaw,360)<350), \ not(5<np.mod(comp_yaw-tyaw,360)<355), ntry==1, ntry!=3, \ planechose!=0, matches['nmat']!=matches_start['nmat'], \ 0 if planechose==0 else pconfs[planechose-1]>0, comp_yaw-vyaw ] print >> df, '|'.join(['%.0f' % (b) for b in booleans]) # draw matches close = int(loc_err < 5) + int(loc_err < 10) yawclose = int(not (5 < np.mod(vyaw - tyaw, 360) < 355)) + int(not ( 10 < np.mod(vyaw - tyaw, 360) < 350)) imgpath = os.path.join( param['resultsdir'] , qname + ';locerr=%.2f' % (loc_err) + ';locPerf_' + str(close) \ + ';yawPerf_' + str(yawclose) + ';nplanes_' + str(len(pyaws)) + ';plane_' + str(planes[planechose]) + ';try_' + str(ntry) \ + ';tAng=%.0f' % (tyaw_error) + ';qAng=%.0f' % (qyaw_error) + ';nAng=%.0f' % (nyaw_error) + ';' + dbmatch + '.jpg') draw_matches(matches, qimg, dbimg, imgpath) # imgpath = os.path.join( param['resultsdir'] , 'homography;' + qname + ';' + dbmatch + '.jpg') # draw_hom(matches, pose, wRq, wRd, Kq, Kd, qimg, dbimg, imgpath) if C.QUERY == 'oakland1': C.pose_param['draw_tags'] = False if C.pose_param['draw_tags']: draw_tags(C, Q, matches, pose, dbmatch, olat, olon, Kd, Kq) print 'Computed yaw / ground truth yaw : %.0f / %.0f' % (comp_yaw, tyaw) if runflag < 10: print 'Computed normal bearing / ground truth : %.0f / %.0f' % ( comp_pyaw, tnorm) print 'Computed query location relative to db : %.1f, %.1f, %.1f' % tuple( qloc) print 'Ground truth query location relative to db : %.1f, - , %.1f' % ( qzx[1], qzx[0]) input = (wRq, wRd) return qloc, loc_err, matches, input
def constrainedHomography(matches, wRd, wRq, qYaw=np.nan, nYaw=np.nan, runflag=0, maxerr=.01, maxiter=10000, minI=15, yrestrict=True): # Homography parameters to solve for: # translation: 2 parameters (never known, always solved) # normal yaw: 1 parameter (may be known. always solved) # query yaw: 1 parameter (may be known. always solved) # scale factor: 1 parameter (never known, may not solve for this) # Set the different run conditions to be used in the RANSAC loop # Note that if qYaw is unknown, then wRq is assumed just pitch and roll (yaw=0) if runflag == 0: # qYaw unknown, nYaw unknown nprm, nrand = 5, 3 compH, lsqH, errH, bestH = compH_tqn, lsqH_tqn, errH_tqn, bestH_ elif runflag == 1: # qYaw unknown, nYaw known nprm, nrand = 4, 2 compH, lsqH, errH, bestH = compH_tq, lsqH_tq, errH_tq, bestH_ elif runflag == 2: # qYaw known, nYaw unknown nprm, nrand = 4, 2 compH, lsqH, errH, bestH = compH_tn, lsqH_tn, errH_tn, bestH_ elif runflag == 3: # qYaw known, nYaw known nprm, nrand = 3, 2 compH, lsqH, errH, bestH = compH_t, lsqH_t, errH_t, bestH_ elif runflag == 4: # qYaw unknown, nYaw unknown, solve for depth nprm, nrand = 6, 3 compH, lsqH, errH, bestH = compH_dtqn, lsqH_dtqn, errH_dtqn, bestH_d elif runflag == 5: # qYaw unknown, nYaw known, solve for depth nprm, nrand = 5, 2 compH, lsqH, errH, bestH = compH_dtq, lsqH_dtq, errH_dtq, bestH_d elif runflag == 6: # qYaw known, nYaw unknown, solve for depth nprm, nrand = 5, 2 compH, lsqH, errH, bestH = compH_dtn, lsqH_dtn, errH_dtn, bestH_d else: # runflag == 7: qYaw known, nYaw known, solve for depth nprm, nrand = 4, 2 compH, lsqH, errH, bestH = compH_dt, lsqH_dt, errH_dt, bestH_d if not yrestrict: bestH = bestH_ # Compute the number of Ransac iterations to perform and print run parameters rsiter = int( 10 * np.log(.01) / -np.abs(np.log(1-float(minI**nrand)/matches['nmat']**nrand)) ) maxiter = min(maxiter,rsiter) print 'Solving constrained homography [%d]: %.3f error threshold, %d iterations...' % (runflag,maxerr,maxiter) start = time.time() # Set local variables nmat, numq = matches['nmat'], matches['numq'] constants = (wRq,wRd,qYaw,nYaw) bprm, bmask, bnumi, bconf, bfrc, iterstop = np.zeros(nprm), np.bool_(np.zeros(nmat)), 0, 0, 0, maxiter qray, dray, ddep, qidx, weights = matches['qray'], matches['dray'], matches['ddep'], matches['qidx'], matches['weight'] # Ransac loop to eliminate outliers with homography # Solves homography matrix for homography matrix H=qRd(I+tn') using y ~ Hx iter, vcount = 0, 0 while iter < iterstop: iter += 1 q, d, dep = randsamples(nrand, nmat, qray, dray, ddep) prm, valid = compH(q,d,dep,constants) if not valid: continue errs = errH(prm,qray,dray,ddep,constants) imask, numi, iconf = getInliers(errs,weights,maxerr,qidx,numq,nmat) if numi < minI: continue vcount += 1 if bestH(prm,numi,minI,iconf,bconf): bprm, bmask, bnumi, bconf, bfrc = prm, imask, numi, iconf, float(numi)/matches['nmat'] iterstop = min( maxiter , 10*np.log(.01)/-np.abs(np.log(1-bfrc**nrand)) ) niter = iter print 'Total valid samples / total iterations: %d / %d' % (vcount,iter) # Guided matching prm, numi, imask, iconf = bprm, bnumi, bmask, bconf iter, maxgm = 0, 100 while numi >= minI: iter += 1 q, d, dep = qray[imask,:], dray[imask,:], ddep[imask] new_prm = lsqH(prm,q,d,dep,constants) errs = errH(new_prm,qray,dray,ddep,constants) new_imask, new_numi, new_iconf = getInliers(errs,weights,maxerr,qidx,numq,nmat) if (new_imask==imask).all() or iter >= maxgm: prm, numi, imask, iconf = new_prm, new_numi, new_imask, new_iconf break # calculate and store homography matrix if runflag == 7: wRq, wRd, qYaw, nYaw = constants dRq = np.dot(tp(wRd),wRq) td = np.dot(tp(wRd),prm[:3]) nd = -np.dot(tp(wRd),[np.sin(nYaw*np.pi/180),0,np.cos(nYaw*np.pi/180)]) H = np.dot(tp(dRq),np.eye(3,3)-np.outer(td,nd)) matches['estH'] = H matches['wRd'] = wRd matches['wRq'] = wRq # Set output parameters matches['constants'] = constants matches['niter'] = niter matches['viter'] = vcount matches['iprm'] = prm matches['imask'] = imask matches['rperr'] = geom.vecnorm(errH(prm,qray[imask,:],dray[imask,:],ddep[imask],constants)) / numi**0.5 matches['numi'] = numi matches['ifrc'] = float(numi) / matches['nmat'] matches['iconf'] = iconf / np.sum(weights) matches['hconf'] = ( iconf / np.sum(weights) ) / matches['rperr'] matches['runflag'] = runflag # Print output state if matches['numi'] == 0: print 'Constrained homography failed.' pose = np.zeros(6) pose[3:5] = np.nan else: print 'Resulting confidence of inlier set: %.4f' % matches['iconf'] print 'Number of inliers / total correspondences: ' + str(matches['numi']) + ' / ' + str(nmat) if np.mod(runflag,4) == 0: qYaw, nYaw = prm[3], prm[4] elif np.mod(runflag,4) == 1: qYaw, nYaw = prm[3], nYaw elif np.mod(runflag,4) == 2: qYaw, nYaw = qYaw, prm[3] if runflag == 4: scale = prm[5]*geom.vecnorm(prm[:3]) elif runflag == 5: scale = prm[4]*geom.vecnorm(prm[:3]) elif runflag == 6: scale = prm[4]*geom.vecnorm(prm[:3]) elif runflag == 7: scale = prm[3]*geom.vecnorm(prm[:3]) else: scale = np.nan pose = np.append( geom.normalrows(prm[:3]) , [ qYaw , nYaw , scale ] ) print 'Constrained homography took %.1f seconds.' % (time.time()-start) return matches, pose
#match_idx = np.nonzero( np.zeros(matches['nmat'] ) )[0] print 'Number of inliers / total correspondences : %d / %d' % (matches['numi'],matches['nmat']) for idx in match_idx: start = scale*matches['q2d'][idx,:] stop = matches['d2d'][idx,:] stop[0] += off xdrawcircle(start,'red') xdrawline((start,stop),'green',width=3) xdrawcircle(stop,'red') ### draw homography boxes ### # compute box center and corners pd = matches['iprm'][-1] tw = pose[5]*pose[:3] cd, xd = np.array([.4,-.1,1]), geom.normalrows(np.array([.5,-.2,1])) cw, xw = np.dot(wRd,cd), np.dot(wRd,xd) nw = -np.array([np.sin(pose[4]*np.pi/180),0,np.cos(pose[4]*np.pi/180)]) cw, xw = pd/np.dot(nw,cw)*cw, pd/np.dot(nw,xw)*xw trw, brw, tlw, blw = xw.copy(), xw.copy(), 2*cw-xw, 2*cw-xw brw[1], tlw[1] = blw[1], trw[1] trq, brq, tlq, blq = np.dot(tp(wRq),trw-tw), np.dot(tp(wRq),brw-tw), np.dot(tp(wRq),tlw-tw), np.dot(tp(wRq),blw-tw) trd, brd, tld, bld = np.dot(tp(wRd),trw), np.dot(tp(wRd),brw), np.dot(tp(wRd),tlw), np.dot(tp(wRd),blw) # draw query box trp, brp, tlp, blp = np.dot(Kq,trq), np.dot(Kq,brq), np.dot(Kq,tlq), np.dot(Kq,blq) trp, brp, tlp, blp = (trp/trp[2])[:2], (brp/brp[2])[:2], (tlp/tlp[2])[:2], (blp/blp[2])[:2] xdrawline((scale*trp,scale*brp),'green',off=0,width=10) xdrawline((scale*brp,scale*blp),'green',off=0,width=10) xdrawline((scale*blp,scale*tlp),'green',off=0,width=10) xdrawline((scale*tlp,scale*trp),'green',off=0,width=10) # draw database box
def VPQfromQuery(C, Q, qimg, qsource, vps, vnorms, vpconfs, vp_threshold, tyaw): # get query vanishing points qname = os.path.basename(qimg) qpath = os.path.join(C.querydir, 'hires', 'lsd', qname[:-4] + '.lsd') Kq, wRq = viewparam(qsource,tyaw) qmid, qleq, qlen = LfromLSD(qpath, qimg, Kq) qvps, conf, qcent, seedlens = VPfromSeeds(qmid, qleq, qlen, wRq, vp_threshold) nqvps = len(conf) ##### combine candidate vanishing points and vp from db ##### ##### into an estimate of the true query yaw orientation ##### # map vanishing points to world frame qvps = tp(np.dot(wRq,tp(qvps))) # align vanishing points based on normal and compute normals qnorms = geom.normalrows(np.cross(qvps,[0,1,0])) for i in range(len(conf)): if np.dot(tp(wRq),qnorms[i,:])[2] > 0: qnorms[i,:] *= -1 qvps[i,:] *= -1 # find optimal alignment of vanishing points cyaw = geom.YPRfromR(wRq)[0] # cell phone yaw byaw, bconf, bvps, bnorms, bvpconfs, nvps = np.nan, 0, vps, vnorms, vpconfs, len(vpconfs) # print '------------------------' # print vpconfs # print np.mod( vnorms , 360) # print conf # print np.mod( 180/np.pi * np.arctan2(qnorms[:,0],qnorms[:,2]) , 360 ) # print '------------------------' qnormyaws = 180/np.pi * np.arctan2(qnorms[:,0],qnorms[:,2]) for i in range(len(vpconfs)): for j in range(len(conf)): # compute relative yaw change vnormyaw = vnorms[i] #180/np.pi * np.arctan2(vnorms[i,0],vnorms[i,2]) qnormyaw = qnormyaws[j] dyaw = vnormyaw - qnormyaw dyaw = dyaw if dyaw<180 else dyaw-360 if abs(dyaw) > 50: continue # skip if the yaw change is too great # apply relative yaw change dR = geom.RfromYPR(dyaw,0,0) dvps, dnorms = tp(np.dot(dR,tp(qvps))), tp(np.dot(dR,tp(qnorms))) # get list of matching vanishing points dbidx, qidx, weights = np.zeros(0,np.int), np.zeros(0,np.int), np.zeros(0) # Gather lise of aligned vanishing points for k in range(len(vpconfs)): vpalign = np.inner(dvps,vps[k,:]) alignidx = np.argmax(vpalign) if vpalign[alignidx] < np.cos(np.pi/180*2*vp_threshold): continue dbidx, qidx = np.append(dbidx,k), np.append(qidx,alignidx) weights = np.append(weights,conf[alignidx]*vpconfs[k]) # Optimize for the yaw change yawconf = np.sum(weights) if yawconf <= bconf: continue dyaws = np.mod(vnorms[dbidx]-qnormyaws[qidx],360) if dyaws[0] < 90: dyaws[dyaws>270] = dyaws[dyaws>270]-360 elif dyaws[0] > 270: dyaws[dyaws<90] = dyaws[dyaws<90]+360 dyaw = np.sum(weights*dyaws) / yawconf byaw, bconf, bvpconfs, nvps = np.mod(cyaw+dyaw,360), yawconf, np.ones(len(weights)), len(weights) bnorms = np.mod( qnormyaws[qidx] + dyaw , 360 ) return byaw, bconf, bvps, bnorms, bvpconfs, nqvps
def estimate_pose(C, Q, dbmatch, gtStatus=None): # settings param = C.pose_param runflag = param['runflag'] np.seterr(all='ignore') Q.datafile = os.path.join(C.pose_param['resultsdir'],'data_'+Q.name+'.txt') open(Q.datafile,'w').close() #####----- PRINT RUN DETAILS -----##### run_info = os.path.join(param['resultsdir'],param['run_info']) open(run_info,'w').close() with open(run_info,'a') as ri: if runflag == 11: print >>ri, 'Method: Yaw, planes from VPs. Scale computed with homography.' elif runflag == 10: print >>ri, 'Method: Yaw, planes from VPs. Scale computed after homography.' if param['cheat']: print >>ri, 'Ground truth yaw and plane used (cheating).' print >>ri, 'Inlier base error threshold: %.3f' % param['inlier_error'] print >>ri, 'Base iteration scale: %d' % param['ransac_iter'] #####----- PRINT RUN DETAILS -----##### # get high res db image and sift paths dbinfo = os.path.join(C.hiresdir, dbmatch + '.info') dbimg = os.path.join(C.hiresdir,dbmatch+'.jpg') dbsift = os.path.join(C.hiresdir,dbmatch+'sift.txt') dbsource = render_tags.EarthmineImageInfo(dbimg, dbinfo) # Set Kd, wRd, and db position wx,wy = dbsource.image.size fov = dbsource.fov Kd = geom.cameramat(wx, wy, fov) Kdinv = alg.inv(Kd) y,p,r = dbsource.yaw, dbsource.pitch, dbsource.roll wRd = geom.RfromYPR(y,p,r) # db camera orientation (camera to world) olat,olon,oalt = dbsource.lat,dbsource.lon,dbsource.alt # database location # get high res query information qname = Q.name qimg = os.path.join(C.querydir,'hires',qname+'.jpg') qsift = os.path.join(C.querydir,'hires',qname+'sift.txt') qsource = render_tags.QueryImageInfo(Q.datasource) glat,glon = qsource.lat,qsource.lon gzx = geom.lltom(olat,olon,glat,glon) timename = qname[-12:-10]+qname[-9:-7]+qname[-6:-4]#+qname[-3:] # Set Kq wx,wy = qsource.image.size fov = qsource.fov Kq = geom.cameramat(wx, wy, fov) Kqinv = alg.inv(Kq) cyaw,p,r = qsource.yaw, qsource.pitch, qsource.roll # cyaw - cell phone yaw # get high res sift rematch matches = highresSift(C, Q, dbmatch) with open(Q.datafile,'a') as df: print >>df, 'Number of matches | number of queries | ratio: %.0f | %.0f | %.2f' % (matches['nmat'], matches['numq'], float(matches['nmat'])/matches['numq']) print >>df, '' # Get estimated ground truth query location and normal direction tlat, tlon, tnorm, tyaw = getGTpose(C, Q) qzx = geom.lltom(olat,olon,tlat,tlon) # get query yaw and plane yaw from vanishing point anaylsis yawforvp = tyaw if param['cheat'] else np.nan vyaw, vnorms = vp_analysis.getQNyaws(C, Q, qimg, dbimg, qsource, yawforvp) # get dominant planes dplanes, psizes, planeprms = find_dbplanes(C, Q, dbmatch, Kdinv, wRd) # match vanishing point planes to database planes pyaws, planes, pconfs = combine_planes(runflag,vnorms,dplanes,psizes,planeprms) print 'VP and DB Planes: ' + str(np.int_(pyaws)) + ', ' + str(planes) with open(Q.datafile,'a') as df: # print >>df, 'Planes detected with vanishing points:' for i in range(len(pconfs)): perr = np.round(np.mod(pyaws[i]-tnorm,360)) perr = perr if perr<180 else 360-perr print >>df, 'Plane Yaw | DB plane | Confidence | Error : %3.0f | %d | %.2f | %.0f' % (pyaws[i],0 if planes[i]<0 else planes[i],pconfs[i],perr) yerr = np.round(np.mod(vyaw-tyaw,360)) yerr = yerr if yerr<180 else 360-yerr print >>df, 'VP Yaw | Confidence | Error : %3.0f | %.2f | %.0f' % (vyaw,np.nan,yerr) print >>df, 'Cell yaw | True yaw | Plane : %3.0f | %3.0f | %3.0f' % (cyaw,tyaw,tnorm) print >>df, '' # Set yaw value to be used if runflag >= 10: # vanishing point methods if np.isnan(vyaw): yaw, yawerr = cyaw, 0 else: yaw, yawerr = vyaw, 0 else: yaw, yawerr = cyaw, 0 # set cell phone yaw to use, plane normal wRq = geom.RfromYPR(yaw,p,r) # camera orientation (camera to world) ### --- THIS IS FOR CHEATING --- ### if param['cheat']: if not np.isnan(tnorm): pyaws, planes, pconfs = np.append(pyaws,tnorm), np.append(planes,-1), np.append(pconfs,1) yaw, yawerr = tyaw, 0 wRq = geom.RfromYPR(yaw,p,r) # camera orientation (camera to world) ### --- THIS IS FOR CHEATING --- ### # print pre-homography data to file vyaw_err = np.round(np.round(np.mod(tyaw-vyaw,360))) if not np.isnan(vyaw) else np.nan vyaw_err = vyaw_err if vyaw_err<180 else 360-vyaw_err dbears = np.mod( 180/np.pi*np.arctan2(planeprms[:,0],planeprms[:,2]) , 360 ) print 'Computed / ground truth cell phone yaw: %.0f / %.0f' % (vyaw,tyaw) with open(os.path.join(param['resultsdir'],param['extras_file']),'a') as extras_file: print >>extras_file, '\t'.join([timename, '%.0f' % tnorm, '%.0f' % np.round(tyaw), '%.0f' % cyaw, '%.0f' % vyaw, '%.4f'%np.nan, str(vyaw_err)]) print >>extras_file, '\t'.join([ '%.4f' % 0 for vnorm in vnorms ]) print >>extras_file, '\t'.join([ '%.0f' % vnorm for vnorm in vnorms ]) print >>extras_file, '\t'.join([ '%.0f' % plane for plane in planes ]) print >>extras_file, '\t'.join([ '%.0f' % dplane for dplane in dplanes ]) print >>extras_file, '\t'.join([ '%.0f' % dbear for dbear in dbears ]) print >>extras_file, '\t'.join([ '%.3f' % dnerr for dnerr in planeprms[:,4] ]) # Fill out match information nmat = matches['nmat'] matches['qray'] = geom.normalrows(tp(np.dot(Kqinv,np.append(tp(matches['q2d']),[np.ones(nmat)],0)))) matches['dray'] = geom.normalrows(tp(np.dot(Kdinv,np.append(tp(matches['d2d']),[np.ones(nmat)],0)))) matches = match_info(C, Q, matches, dbmatch, wRd) matches_start = matches.copy() # Solve for query pose using constrained image geometry init_matches = initMatches(matches.copy()) matches['numi'], matches['hconf'] = 0, 0 runflag, ntry, planechose = param['runflag'], 0, 0 parameters = ( wRq, wRd, yaw, np.nan, runflag, param['inlier_error'], param['ransac_iter'], 10, True ) if param['ransac_iter'] == 0: matches = init_matches matches['numi'], matches['hconf'] == 0, 0 pose = np.zeros(6) pose[3:5] = np.nan elif runflag < 10: matches, pose = solveGeom(init_matches,parameters,yawerr) else: ntry = 1 viter = -np.ones(3) parameters = ( wRq, wRd, yaw, np.nan, runflag, param['inlier_error'], param['ransac_iter'], 15, True ) matches, pose, planechose = solveNorm(C,Q,dbmatch,pyaws,planes,init_matches,parameters,yawerr) viter[0] = matches['viter'] if matches['numi'] == 0 or matches['hconf'] == 0: ntry = 2 parameters = ( wRq, wRd, yaw, np.nan, runflag, 3*param['inlier_error'], param['ransac_iter'], 10, True ) matches, pose, planechose = solveNorm(C,Q,dbmatch,pyaws,planes,init_matches,parameters,yawerr) viter[1] = matches['viter'] if matches['numi'] == 0 or matches['hconf'] == 0: ntry, planechose = 3, 0 parameters = ( wRq, wRd, yaw, np.nan, 7, 3*param['inlier_error'], param['ransac_iter'], 10, True ) matches, pose = solveYaw(init_matches,parameters,yawerr) viter[2] = matches['viter'] if matches['numi'] == 0 or matches['hconf'] == 0: ntry, planechose = 4, 0 # save matches to disk matches_file = os.path.join(param['resultsdir'],'matches_'+qname+'.pkl') matches_out = open(matches_file,'wb') pickle.dump(matches,matches_out) matches_out.close() # extract pose parameters comp_runflag = matches['runflag'] tray = pose[:3] comp_yaw = pose[3] comp_pyaw = pose[4] if runflag>=0 else np.nan scale = pose[5] if runflag>=0 else np.nan # Get scaled translation for query location if np.isnan(scale): wRq_pr = geom.YPRfromR(wRq)[1:] comp_wRq = geom.RfromYPR(comp_yaw, wRq_pr[0], wRq_pr[1]) qloc = scalefrom3d(matches, tray, comp_wRq)[0] else: # scale calculated in RANSAC loop qloc = scale*tray # temporarily get yaw error qyaw_error = np.round(abs(np.mod(tyaw-comp_yaw,360))) qyaw_error = qyaw_error if qyaw_error<180 else abs(qyaw_error-360) # compute location errors wrt estimated query locations loc_err = ( (qloc[0]-qzx[1])**2 + (qloc[2]-qzx[0])**2 )**0.5 gps_err = ( (gzx[1] -qzx[1])**2 + (gzx[0] -qzx[0])**2 )**0.5 # compute the angle difference between T and ground truth translation tyaw_error = np.round(abs( 180/np.pi * np.arccos( np.abs(qloc[0]*qzx[1]+qloc[2]*qzx[0]) / (alg.norm([qloc[0],qloc[2]])*alg.norm(qzx)) ) )) # compute the plane normal angle error nyaw_error = np.nan if np.isnan(comp_pyaw) or np.isnan(tnorm) else np.mod(np.round(abs(comp_pyaw-tnorm)),180) nyaw_error = nyaw_error if nyaw_error<90 else abs(nyaw_error-180) # write pose estimation results to file yaw_err = np.nan pose_file = os.path.join(param['resultsdir'],param['pose_file']) with open(pose_file,'a') as pf: print >>pf, '\t'.join([qname, str(loc_err), str(gps_err), \ str(tyaw_error), str(qyaw_error), str(nyaw_error), str(matches['numi']), \ str(matches['numq']), str(matches['nmat']), str(matches['hconf']), \ str(qloc[0]), str(qloc[2]), str(yaw_err), str(runflag)]) # print post-homography data to file with open(Q.datafile,'a') as df: print >>df, '' print >>df, '------------------' print >>df, '' if ntry==1: print >>df, 'Homography solution using low error threshold with restrictions.' elif ntry==2: print >>df, 'Homography solution using high error threshold with restrictions.' else: print >>df, 'Solution not found. Setting T=0.' if planechose==0: print >>df, 'Solution formed with unset plane normal.' else: 'Solution chosen with plane normal %d chosen.' % planechose print >>df, 'VP yaw | Computed yaw | Actual Yaw | Error : %3.0f | %3.0f | %3.0f | %3.0f' % (vyaw,comp_yaw,tyaw,qyaw_error) print >>df, 'Computed Normal | Actual Normal | Error : %3.0f | %3.0f | %3.0f' % (comp_pyaw,tnorm,nyaw_error) print >>df, 'Translation (x|y|z): %.1f | %.1f | %.1f' % (qloc[0],qloc[1],qloc[2]) print >>df, 'True position (x|-|z): %.1f | - | %.1f' % (qzx[1],qzx[0]) print >>df, 'Angle error | Location error: %.0f | %.1f' % (tyaw_error,loc_err) print >>df, 'Number of Inliers | Total matches | Ratio: %d | %d | %.2f' % (matches['numi'],matches['nmat'],np.nan if matches['nmat']==0 else float(matches['numi'])/matches['nmat']) print >>df, 'Reprojection error | Homography confidence: %.3f | %.1f' % (matches['rperr'],matches['hconf']) print >>df, 'Valid Homographies | Iterations | Ratio: %d | %d | %.3f' % (matches['viter'],matches['niter'],np.nan if matches['niter']==0 else float(matches['viter'])/matches['niter']) print >>df, '' print >>df, '------------------' print >>df, '' booleans = [ loc_err<5, loc_err<10, not(5<np.mod(vyaw-tyaw,360)<355), \ not(10<np.mod(vyaw-tyaw,360)<350), \ not(5<np.mod(comp_yaw-tyaw,360)<355), ntry==1, ntry!=3, \ planechose!=0, matches['nmat']!=matches_start['nmat'], \ 0 if planechose==0 else pconfs[planechose-1]>0, comp_yaw-vyaw ] print >>df, '|'.join(['%.0f' % (b) for b in booleans]) # draw matches close = int(loc_err<5) + int(loc_err<10) yawclose = int(not(5<np.mod(vyaw-tyaw,360)<355)) + int(not(10<np.mod(vyaw-tyaw,360)<350)) imgpath = os.path.join( param['resultsdir'] , qname + ';locerr=%.2f' % (loc_err) + ';locPerf_' + str(close) \ + ';yawPerf_' + str(yawclose) + ';nplanes_' + str(len(pyaws)) + ';plane_' + str(planes[planechose]) + ';try_' + str(ntry) \ + ';tAng=%.0f' % (tyaw_error) + ';qAng=%.0f' % (qyaw_error) + ';nAng=%.0f' % (nyaw_error) + ';' + dbmatch + '.jpg') draw_matches(matches, qimg, dbimg, imgpath) # imgpath = os.path.join( param['resultsdir'] , 'homography;' + qname + ';' + dbmatch + '.jpg') # draw_hom(matches, pose, wRq, wRd, Kq, Kd, qimg, dbimg, imgpath) if C.QUERY == 'oakland1': C.pose_param['draw_tags'] = False if C.pose_param['draw_tags']: draw_tags(C, Q, matches, pose, dbmatch, olat, olon, Kd, Kq) print 'Computed yaw / ground truth yaw : %.0f / %.0f' % (comp_yaw,tyaw) if runflag < 10: print 'Computed normal bearing / ground truth : %.0f / %.0f' % (comp_pyaw,tnorm) print 'Computed query location relative to db : %.1f, %.1f, %.1f' % tuple(qloc) print 'Ground truth query location relative to db : %.1f, - , %.1f' % (qzx[1],qzx[0]) input = (wRq, wRd) return qloc, loc_err, matches, input
def VPfrom2Lines(lineqs): nlines = lineqs.shape[0] i0 = rnd.randint(0,nlines) i1 = rnd.randint(0,nlines-1) i1 = i1+1 if i1>=i0 else i1 return geom.normalrows(np.cross(lineqs[i0,:],lineqs[i1,:]))