Esempio n. 1
0
def compH_dtn(qray,dray,ddep,constants):
    # set variables
    wRq, wRd, qYaw, nYaw = constants
#    prm = np.array([0,0,0,0,1])
#    prm = lsqH_dtn(prm,qray,dray,ddep,constants)
#    valid = (errH_dtn(prm,qray,dray,ddep,constants)<.001).all()
#    return prm, valid
    xd, yq = dray, qray
    xw = tp(np.dot(wRd,tp(xd)))
    yw = tp(np.dot(wRq,tp(yq)))
    z = np.cross(yw,xw)
#    # compute homography parameters
    t = geom.normalrows(np.cross(z[0,:],z[1,:])) # homography translation
    w = np.cross(yw,t)
    maxidx = np.argmax(w,1)
    b = z[[0,1],maxidx]/w[[0,1],maxidx]
    ka_init = np.array([0,np.pi+np.mean(np.arctan2(xw[:,0],xw[:,2]))])
    errf = lambda prm,argb,argx: argb+prm[0]*(argx[:,0]*np.sin(prm[1])+argx[:,2]*np.cos(prm[1]))
    k, a = tuple( opt.leastsq(errf,ka_init,args=(b,xw),warning=False)[0] )
    t = k*t
    if np.mean(np.inner(xw-yw,t)) < 0: t, a = -t, a+np.pi
    dep = np.mean(ddep*np.inner(xw,[-np.sin(a),0,-np.cos(a)]))
    prm = np.append(t,[180/np.pi*a,dep])
    valid = (errH_dtn(prm,qray,dray,ddep,constants)<.01).all()
    return prm, valid
Esempio n. 2
0
def compH_dtq(qray,dray,ddep,constants):
    # set variables
    Rpr, wRd, qYaw, nYaw = constants
    pr = geom.YPRfromR(Rpr)[1:] # pitch and roll
    dRq = np.dot(tp(wRd),geom.RfromYPR(qYaw,pr[0],pr[1]))
    xd, yq = dray, qray
    yd = tp(np.dot(dRq,tp(yq)))
    xw = tp(np.dot(wRd,tp(xd)))
    tn = np.cross(yd,xd)
    n = nYaw * np.pi/180 # homography normal bearing
    # compute homography parameters based off guessed yaw
    t = geom.normalrows(np.cross(tn[0,:],tn[1,:])) # homography translation
    m = geom.vecnorm(tn)/(geom.vecnorm(np.cross(yd,t))*geom.vecnorm(xw[:,[0,2]]))
    f = np.arctan2(xw[:,0],xw[:,2])
    k = np.mean( m / np.cos(n-f) )
    valid = np.std( m/(k*np.cos(n-f)) ) < 0.1
    fe = np.mod(n-np.mean(f),2*np.pi)
    if np.abs(fe) < np.pi/2: n = np.mod(n+np.pi,2*np.pi)
    if np.mean(np.inner(xd-yd,t)) < 0: t = -t
    # compute plane depth
    nd = -np.dot(tp(wRd),[np.sin(n),0,np.cos(n)])
    dep = ddep*np.inner(dray,nd)
    pd = np.mean(dep)
    valid = valid and np.std(dep/pd) < 0.1
    # set parameters and refine
    prm = np.append(np.abs(k)*np.dot(wRd,t),[qYaw,pd])
    if valid: prm = lsqH_dtq(prm,qray,dray,ddep,constants)
    valid = valid and geom.vecnorm(prm[:3]) < 5
    return prm, valid
Esempio n. 3
0
def esserrf_tq(prm, qray, dray, pr, wRd, domidx):
    # set variables
    dRq = np.dot(tp(wRd), geom.RfromYPR(prm[2], pr[0], pr[1]))
    td = np.dot(tp(wRd), geom.normalrows(np.insert(prm[:2], domidx, 1)))
    E = np.dot(tp(dRq), geom.xprodmat(td))
    # Compute homography error
    return np.sum(qray * tp(np.dot(E, tp(dray))), 1)
Esempio n. 4
0
def LfromLSD(path, img, Kcal):

    # load lines; if not already generated, run LSD
    if not os.path.isdir(os.path.dirname(path)): os.path.mkdir(os.path.dirname(path))
    if not os.path.isfile(path):
        callLSD(path, img)
    lines = loadLines(path)

    # map the line segment endpoints to the image frame
    nlines = lines.shape[0]
    Kinv = alg.inv(Kcal)
    end1 = tp( np.dot( Kinv , np.concatenate( ([lines[:,0]],[lines[:,1]],[np.ones(nlines)]) , 0 ) ) )
    end2 = tp( np.dot( Kinv , np.concatenate( ([lines[:,2]],[lines[:,3]],[np.ones(nlines)]) , 0 ) ) )

    # convert to midpoints, equations, and lengths
    lineqs = np.zeros((nlines,3))
    lineqs[:,0] , lineqs[:,1] = end2[:,1]-end1[:,1] , end1[:,0]-end2[:,0]
    lineqs[:,2] = -np.sum(lineqs*end1,1)
    lineqs = geom.normalrows(lineqs)
    lengths = geom.vecnorm(end1-end2)
    midpts = (end1+end2)/2.0

    # remove lines that are too vertical
    mask = np.abs(lineqs[:,1]/lineqs[:,0]) > np.tan(10*np.pi/180)
    midpts, lineqs, lengths = midpts[mask,:], lineqs[mask,:], lengths[mask]

    return midpts, lineqs, lengths
def esserrf_tq(prm,qray,dray,pr,wRd,domidx):
    # set variables
    dRq = np.dot(tp(wRd),geom.RfromYPR(prm[2],pr[0],pr[1]))
    td = np.dot(tp(wRd),geom.normalrows(np.insert(prm[:2],domidx,1)))
    E = np.dot(tp(dRq),geom.xprodmat(td))
    # Compute homography error
    return np.sum( qray * tp(np.dot(E,tp(dray))) , 1 )
Esempio n. 6
0
def compH_dtqn(qray,dray,ddep,constants):
    # set variables
    Rpr, wRd, qYaw, nYaw = constants
    pr = geom.YPRfromR(Rpr)[1:] # pitch and roll
    dRq = np.dot(tp(wRd),geom.RfromYPR(qYaw,pr[0],pr[1]))
    xd, yq = dray, qray
    yd = tp(np.dot(dRq,tp(yq)))
    xw = tp(np.dot(wRd,tp(xd)))
    tn = np.cross(yd,xd) # no renormalization to bias more confident planes
    # compute homography parameters
    teig = alg.eig(np.dot(tp(tn),tn))
    nullidx = np.argmin(teig[0])
    valid = teig[0][nullidx] < 1e-2
    t = geom.normalrows(teig[1][:,nullidx]) # homography translation
    m = geom.vecnorm(tn)/(geom.vecnorm(np.cross(yd,t))*geom.vecnorm(xw[:,[0,2]]))
    f = np.arctan2(xw[:,0],xw[:,2])
    errf = lambda prm,argm,argf: prm[0]-argm/np.cos(prm[1]-argf)
    kn_init = np.array([1.2*np.mean(m),np.mean(f)])
    k, n = tuple( opt.leastsq(errf,kn_init,args=(m,f),warning=False)[0] )
    valid = valid and np.std( m/(k*np.cos(n-f)) ) < 0.1
    fe = np.mod(n-np.mean(f),2*np.pi)
    if np.abs(fe) < np.pi/2: n = np.mod(n+np.pi,2*np.pi)
    if np.mean(np.inner(xd-yd,t)) < 0: t = -t
    # compute plane depth
    nd = -np.dot(tp(wRd),[np.sin(n),0,np.cos(n)])
    dep = ddep*np.inner(dray,nd)
    pd = np.mean(dep)
    valid = valid and np.std(dep/pd) < 0.1
    # set parameters and refine
    prm = np.append(np.abs(k)*np.dot(wRd,t),[qYaw,180/np.pi*n,pd])
    if valid: prm = lsqH_dtqn(prm,qray,dray,ddep,constants)
    valid = valid and geom.vecnorm(prm[:3]) < 5
    return prm, valid
Esempio n. 7
0
def compH_dt(qray,dray,ddep,constants):
    # set variables
    wRq, wRd, qYaw, nYaw = constants
#    prm = np.array([0,0,0,1])
#    prm = lsqH_dt(prm,qray,dray,ddep,constants)
#    valid = (errH_dt(prm,qray,dray,ddep,constants)<.001).all()
#    return prm, valid
    xd, yq = dray, qray
    xw = tp(np.dot(wRd,tp(xd)))
    yw = tp(np.dot(wRq,tp(yq)))
    z = np.cross(yw,xw)
    a = nYaw * np.pi/180 # homography normal bearing
#    # compute homography parameters
    t = geom.normalrows(np.cross(z[0,:],z[1,:])) # homography translation
    w = np.cross(yw,t)
    maxidx = np.argmax(w,1)
    b = z[[0,1],maxidx]/w[[0,1],maxidx]
#    b = np.mean(z/w,1)
    k = np.mean(-b/(xw[:,0]*np.sin(a)+xw[:,2]*np.cos(a)))
    t = k*t
    if np.mean(np.inner(xw-yw,t)) < 0: t, a = -t, a+np.pi
    dep = np.mean(ddep*np.inner(xw,[-np.sin(a),0,-np.cos(a)]))
    prm = np.append(t,dep)
    valid = (errH_dt(prm,qray,dray,ddep,constants)<.01).all()
    return prm, valid
Esempio n. 8
0
def planefrom3d(C, Q, dbmatch, domplane, Kdinv, wRd):

    if domplane == -1: return np.nan * np.zeros(5)

    # get 3d points on plane
    planes = np.asarray(
        Image.open(os.path.join(C.hiresdir, dbmatch + '-planes.png')))
    depths = np.asarray(
        Image.open(os.path.join(C.hiresdir, dbmatch + '-depth.png')))
    y, x = np.nonzero(planes == domplane)
    npts = len(x)
    pray = geom.normalrows(
        tp(
            np.dot(
                wRd,
                np.dot(Kdinv, np.concatenate(([x], [y], [np.ones(npts)]),
                                             0)))))
    pdep = depths[y, x] / 100.0
    p3d = np.append(geom.vecmul(pray, pdep),
                    tp(np.array([np.ones(len(pray))])), 1)
    xz_pts = p3d[:, [0, 2, 3]]

    # RANSAC solve
    threshold, g = 2, np.array([0, 1, 0])  # meters
    bprm, bnumi, bmask = np.zeros(3), 0, np.bool_(np.zeros(npts))
    for i in range(1000):
        i1 = rnd.randint(0, npts)
        i2 = rnd.randint(0, npts - 1)
        i2 = i2 if i2 < i1 else i2 + 1
        i3 = rnd.randint(0, npts - 2)
        i3 = i3 if i3 < min(i1, i2) else (i3 +
                                          1 if i3 + 1 < max(i1, i2) else i3 +
                                          2)
        inlpts = xz_pts[[i1, i2, i3], :]
        prm = geom.smallestSingVector(inlpts)
        prm = prm / geom.vecnorm(prm[:2])
        prm = -prm if prm[2] < 0 else prm
        errs = np.abs(np.inner(xz_pts, prm))
        inlmask = errs < threshold
        numi = np.sum(inlmask)
        if numi > bnumi and float(numi) / npts > 0.5:
            bprm, bmask, bnumi = prm, inlmask, numi
    prm, numi, mask = bprm, bnumi, bmask

    # guided matching
    for i in range(10):
        if numi == 0: break
        prm = geom.smallestSingVector(xz_pts[mask, :])
        prm = prm / geom.vecnorm(prm[:2])
        prm = -prm if prm[2] < 0 else prm
        errs = np.abs(np.inner(xz_pts, prm))
        mask = errs < threshold
        numi = np.sum(mask)

    # get error
    err = np.mean(np.abs(np.inner(xz_pts[mask, :], prm)))

    return np.array([prm[0], 0, prm[1], prm[2], err])
def compE_t(qray,dray,constants):
    # set variables
    wRq, wRd, qYaw = constants
    xd, yq = dray, qray
    yw = tp(np.dot(wRq,tp(yq)))
    xw = tp(np.dot(wRd,tp(xd)))
    tn = np.cross(yw,xw)
    # compute essential matrix parameters based off guessed yaw
    t = geom.normalrows(np.cross(tn[0,:],tn[1,:])) # homography translation
    return t, -1, True
def lsqE_t(prm,qray,dray,constants,domidx):
    # set variables
    wRq, wRd, qYaw = constants
    xd, yq = dray, qray
    yw = tp(np.dot(wRq,tp(yq)))
    xw = tp(np.dot(wRd,tp(xd)))
    tn = np.cross(yw,xw) # no renormalization to bias more confident planes
    # compute essential matrix parameters based off guessed yaw
    teig = alg.eig(np.dot(tp(tn),tn))
    return geom.normalrows(teig[1][:,np.argmin(teig[0])]) # essential matrix translation
Esempio n. 11
0
def compE_t(qray, dray, constants):
    # set variables
    wRq, wRd, qYaw = constants
    xd, yq = dray, qray
    yw = tp(np.dot(wRq, tp(yq)))
    xw = tp(np.dot(wRd, tp(xd)))
    tn = np.cross(yw, xw)
    # compute essential matrix parameters based off guessed yaw
    t = geom.normalrows(np.cross(tn[0, :], tn[1, :]))  # homography translation
    return t, -1, True
Esempio n. 12
0
def lsqE_t(prm, qray, dray, constants, domidx):
    # set variables
    wRq, wRd, qYaw = constants
    xd, yq = dray, qray
    yw = tp(np.dot(wRq, tp(yq)))
    xw = tp(np.dot(wRd, tp(xd)))
    tn = np.cross(yw, xw)  # no renormalization to bias more confident planes
    # compute essential matrix parameters based off guessed yaw
    teig = alg.eig(np.dot(tp(tn), tn))
    return geom.normalrows(
        teig[1][:, np.argmin(teig[0])])  # essential matrix translation
Esempio n. 13
0
def planefrom3d(C, Q, dbmatch, domplane, Kdinv, wRd):

    if domplane == -1: return np.nan * np.zeros(5)

    # get 3d points on plane
    planes = np.asarray( Image.open( os.path.join(C.hiresdir,dbmatch+'-planes.png') ) )
    depths = np.asarray( Image.open( os.path.join(C.hiresdir,dbmatch+'-depth.png') ) )
    y, x = np.nonzero(planes==domplane)
    npts = len(x)
    pray = geom.normalrows( tp( np.dot( wRd , np.dot( Kdinv , np.concatenate( ([x],[y],[np.ones(npts)]) , 0 ) ) ) ) )
    pdep = depths[y,x]/100.0
    p3d = np.append( geom.vecmul(pray,pdep) , tp(np.array([np.ones(len(pray))])) , 1 )
    xz_pts = p3d[:,[0,2,3]]

    # RANSAC solve
    threshold, g = 2, np.array([0,1,0]) # meters
    bprm, bnumi, bmask = np.zeros(3), 0, np.bool_(np.zeros(npts))
    for i in range(1000):
        i1 = rnd.randint(0,npts)
        i2 = rnd.randint(0,npts-1)
        i2 = i2 if i2<i1 else i2+1
        i3 = rnd.randint(0,npts-2)
        i3 = i3 if i3<min(i1,i2) else ( i3+1 if i3+1<max(i1,i2) else i3+2 )
        inlpts = xz_pts[[i1,i2,i3],:]
        prm = geom.smallestSingVector(inlpts)
        prm = prm / geom.vecnorm(prm[:2])
        prm = -prm if prm[2]<0 else prm
        errs = np.abs(np.inner(xz_pts,prm))
        inlmask = errs < threshold
        numi = np.sum(inlmask)
        if numi > bnumi and float(numi)/npts > 0.5: bprm, bmask, bnumi = prm, inlmask, numi
    prm, numi, mask = bprm, bnumi, bmask

    # guided matching
    for i in range(10):
        if numi == 0: break
        prm = geom.smallestSingVector(xz_pts[mask,:])
        prm = prm / geom.vecnorm(prm[:2])
        prm = -prm if prm[2]<0 else prm
        errs = np.abs(np.inner(xz_pts,prm))
        mask = errs < threshold
        numi = np.sum(mask)

    # get error
    err = np.mean(np.abs(np.inner(xz_pts[mask,:],prm)))

    return np.array([prm[0],0,prm[1],prm[2],err])
Esempio n. 14
0
def compE_tq(qray, dray, constants):
    # set variables
    Rpr, wRd, qYaw = constants
    pr = geom.YPRfromR(Rpr)[1:]  # pitch and roll
    wRq = geom.RfromYPR(qYaw, pr[0], pr[1])
    xd, yq = dray, qray
    yw = tp(np.dot(wRq, tp(yq)))
    xw = tp(np.dot(wRd, tp(xd)))
    tn = np.cross(yw, xw)  # no renormalization to bias more confident planes
    # compute essential matrix parameters based off guessed yaw
    teig = alg.eig(np.dot(tp(tn), tn))
    nullidx = np.argmin(teig[0])
    valid = teig[0][nullidx] / teig[0][np.argmax(teig[0])] < 1e-2
    t = geom.normalrows(teig[1][:, nullidx])  # essential matrix translation
    domidx = np.argmax(t)
    prm = np.append(np.delete(t / t[domidx], domidx), qYaw)
    if valid: prm = lsqE_tq(prm, qray, dray, constants, domidx)
    return prm, domidx, valid
def compE_tq(qray,dray,constants):
    # set variables
    Rpr, wRd, qYaw = constants
    pr = geom.YPRfromR(Rpr)[1:] # pitch and roll
    wRq = geom.RfromYPR(qYaw,pr[0],pr[1])
    xd, yq = dray, qray
    yw = tp(np.dot(wRq,tp(yq)))
    xw = tp(np.dot(wRd,tp(xd)))
    tn = np.cross(yw,xw) # no renormalization to bias more confident planes
    # compute essential matrix parameters based off guessed yaw
    teig = alg.eig(np.dot(tp(tn),tn))
    nullidx = np.argmin(teig[0])
    valid = teig[0][nullidx]/teig[0][np.argmax(teig[0])] < 1e-2
    t = geom.normalrows(teig[1][:,nullidx]) # essential matrix translation
    domidx = np.argmax(t)
    prm = np.append( np.delete(t/t[domidx],domidx) , qYaw )
    if valid: prm = lsqE_tq(prm,qray,dray,constants,domidx)
    return prm, domidx, valid
Esempio n. 16
0
def compH_tn(qray,dray,ddep,constants):
    # set variables
    wRq, wRd, qYaw, nYaw = constants
    dRq = np.dot(tp(wRd),wRq)
    xd, yq = dray, qray
    yd = tp(np.dot(dRq,tp(yq)))
    xw = tp(np.dot(wRd,tp(xd)))
    tn = np.cross(yd,xd)
    # compute homography parameters
    t = geom.normalrows(np.cross(tn[0,:],tn[1,:])) # homography translation
    m = geom.vecnorm(tn)/(geom.vecnorm(np.cross(yd,t))*geom.vecnorm(xw[:,[0,2]]))
    f = np.arctan2(xw[:,0],xw[:,2])
    errf = lambda prm,argm,argf: prm[0]-argm/np.cos(prm[1]-argf)
    kn_init = np.array([1.2*np.mean(m),np.mean(f)])
    k, n = tuple( opt.leastsq(errf,kn_init,args=(m,f),warning=False)[0] )
    valid = np.std( m/(k*np.cos(n-f)) ) < 0.1
    fe = np.mod(n-np.mean(f),2*np.pi)
    if np.abs(fe) < np.pi/2: n = np.mod(n+np.pi,2*np.pi)
    if np.mean(np.inner(xd-yd,t)) < 0: t = -t
    # set parameters and refine
    prm = np.append(k*np.dot(wRd,t),180/np.pi*n)
    valid = valid and geom.vecnorm(prm[:3]) < 5
    return prm, valid
Esempio n. 17
0
def compH_t(qray,dray,ddep,constants):
    # set variables
    wRq, wRd, qYaw, nYaw = constants
    dRq = np.dot(tp(wRd),wRq)
    xd, yq = dray, qray
    yd = tp(np.dot(dRq,tp(yq)))
    xw = tp(np.dot(wRd,tp(xd)))
    tn = np.cross(yd,xd)
    n = nYaw * np.pi/180 # homography normal bearing
    # compute homography parameters
    t = geom.normalrows(np.cross(tn[0,:],tn[1,:])) # homography translation
    m = geom.vecnorm(tn)/(geom.vecnorm(np.cross(yd,t))*geom.vecnorm(xw[:,[0,2]]))
    f = np.arctan2(xw[:,0],xw[:,2])
    errf = lambda prm,argm,argf,argn: prm[0]-argm/np.cos(argn-argf)
    k_init = np.mean( m / np.cos(n-f) )
    k = tuple( opt.leastsq(errf,k_init,args=(m,f,n),warning=False)[0] )
#    k = np.mean( m / np.cos(n-f) )
    valid = np.std( m/(k*np.cos(n-f)) ) < 0.1
    if np.mean(np.inner(xd-yd,t)) < 0: t = -t
    # set parameters and refine
    prm = np.abs(k)*np.dot(wRd,t)
    valid = valid and geom.vecnorm(prm[:3]) < 5
    return prm, valid
Esempio n. 18
0
    print 'Number of inliers / total correspondences : %d / %d' % (
        matches['numi'], matches['nmat'])
    for idx in match_idx:
        start = scale * matches['q2d'][idx, :]
        stop = matches['d2d'][idx, :]
        stop[0] += off
        xdrawcircle(start, 'red')
        xdrawline((start, stop), 'green', width=3)
        xdrawcircle(stop, 'red')

    ### draw homography boxes ###

    # compute box center and corners
    pd = matches['iprm'][-1]
    tw = pose[5] * pose[:3]
    cd, xd = np.array([.4, -.1, 1]), geom.normalrows(np.array([.5, -.2, 1]))
    cw, xw = np.dot(wRd, cd), np.dot(wRd, xd)
    nw = -np.array(
        [np.sin(pose[4] * np.pi / 180), 0,
         np.cos(pose[4] * np.pi / 180)])
    cw, xw = pd / np.dot(nw, cw) * cw, pd / np.dot(nw, xw) * xw
    trw, brw, tlw, blw = xw.copy(), xw.copy(), 2 * cw - xw, 2 * cw - xw
    brw[1], tlw[1] = blw[1], trw[1]
    trq, brq, tlq, blq = np.dot(tp(wRq),
                                trw - tw), np.dot(tp(wRq), brw - tw), np.dot(
                                    tp(wRq),
                                    tlw - tw), np.dot(tp(wRq), blw - tw)
    trd, brd, tld, bld = np.dot(tp(wRd), trw), np.dot(tp(wRd), brw), np.dot(
        tp(wRd), tlw), np.dot(tp(wRd), blw)
    # draw query box
    trp, brp, tlp, blp = np.dot(Kq, trq), np.dot(Kq, brq), np.dot(Kq,
Esempio n. 19
0
def constrainedEssMatrix(matches,
                         wRd,
                         wRq,
                         qYaw=np.nan,
                         runflag=0,
                         maxerr=.05,
                         maxiter=1000):

    print 'Solving constrained essential matrix...'
    start = time.time()

    # Homography parameters to solve for:
    #   translation: 2 parameters (never known)
    #   normal yaw: 1 parameter (may be known)
    #   query yaw: 1 parameter (may be known)

    # Set the different run conditions to be used in the RANSAC loop
    # Note that if qYaw is unknown, then wRq is assumed just pitch and roll (yaw=0)
    if runflag == 0:  # qYaw unknown
        nprm, nrand = 3, 3
        compE, lsqE, errE = compE_tq, lsqE_tq, errE_tq
    else:  # runflag == 1: qYaw known
        nprm, nrand = 2, 2
        compE, lsqE, errE = compE_t, lsqE_t, errE_t

    # Set variables
    nmat, numq = matches['nmat'], matches['numq']
    constants = (wRq, wRd, qYaw)
    bprm, bmask, bnumi, bdomidx, berr = np.zeros(nprm), np.zeros(
        nmat), 0, -1, np.inf
    qray, dray, qidx = matches['qray'], matches['dray'], matches['qidx']

    # Ransac loop to eliminate outliers with essential matrix
    # Solves essential matrix
    iter = 0
    while iter < maxiter:
        iter += 1
        q, d = randsamples(nrand, nmat, qray, dray)
        prm, domidx, valid = compE(q, d, constants)
        if not valid: continue
        errs = errE(prm, qray, dray, constants, domidx)
        imask, numi = getInliers(errs, maxerr, qidx, numq, nmat)
        if numi >= bnumi:
            bprm, bmask, bnumi, bdomidx = prm, imask, numi, domidx
    # Guided matching
    numi, imask, prm, domidx = bnumi, bmask, bprm, bdomidx
    last_numi, iter, maxgm = 0, 0, 100
    while last_numi != numi and iter < maxgm:
        last_numi, iter = numi, iter + 1
        q, d = qray[imask, :], dray[imask, :]
        prm = lsqE(prm, q, d, constants, domidx)
        errs = errE(prm, qray, dray, constants, domidx)
        imask, numi = getInliers(errs, maxerr, qidx, numq, nmat)

    # Set output parameters
    matches['iprm'] = prm
    matches['imask'] = imask
    matches['ierr'] = geom.vecnorm(
        errE(prm, qray[imask, :], dray[imask, :], constants,
             domidx)) * numq / numi if numi != 0 else np.inf
    matches['numi'] = sum(imask)

    # Print output state
    if matches['numi'] == 0:
        print 'Constrained homography failed.'
        pose = np.nan * np.zeros(4)
    else:
        print 'Result from error metric choosing best inlier set: %f' % matches[
            'ierr']
        print 'Number of inliers / total correspondences: ' + str(
            matches['numi']) + ' / ' + str(nmat)
        if runflag == 0: qYaw = prm[3]
        pose = np.append(geom.normalrows(prm[:3]), qYaw)
    print 'Constrained homography took %.1f seconds.' % (time.time() - start)

    return matches, pose
def constrainedEssMatrix(matches, wRd, wRq, qYaw=np.nan, runflag=0, maxerr=.05, maxiter=1000):

    print 'Solving constrained essential matrix...'
    start = time.time()

    # Homography parameters to solve for:
    #   translation: 2 parameters (never known)
    #   normal yaw: 1 parameter (may be known)
    #   query yaw: 1 parameter (may be known)

    # Set the different run conditions to be used in the RANSAC loop
    # Note that if qYaw is unknown, then wRq is assumed just pitch and roll (yaw=0)
    if runflag == 0: # qYaw unknown
        nprm, nrand = 3, 3
        compE, lsqE, errE = compE_tq, lsqE_tq, errE_tq
    else: # runflag == 1: qYaw known
        nprm, nrand = 2, 2
        compE, lsqE, errE = compE_t, lsqE_t, errE_t

    # Set variables
    nmat, numq = matches['nmat'], matches['numq']
    constants = (wRq,wRd,qYaw)
    bprm, bmask, bnumi, bdomidx, berr = np.zeros(nprm), np.zeros(nmat), 0, -1, np.inf
    qray, dray, qidx = matches['qray'], matches['dray'], matches['qidx']

    # Ransac loop to eliminate outliers with essential matrix
    # Solves essential matrix
    iter = 0
    while iter < maxiter:
        iter += 1
        q, d = randsamples(nrand, nmat, qray, dray)
        prm, domidx, valid = compE(q,d,constants)
        if not valid: continue
        errs = errE(prm,qray,dray,constants,domidx)
        imask, numi = getInliers(errs,maxerr,qidx,numq,nmat)
        if numi >= bnumi: bprm, bmask, bnumi, bdomidx = prm, imask, numi, domidx
    # Guided matching
    numi, imask, prm, domidx = bnumi, bmask, bprm, bdomidx
    last_numi, iter, maxgm = 0, 0, 100
    while last_numi != numi and iter < maxgm:
        last_numi, iter = numi, iter+1
        q, d = qray[imask,:], dray[imask,:]
        prm = lsqE(prm,q,d,constants,domidx)
        errs = errE(prm,qray,dray,constants,domidx)
        imask, numi = getInliers(errs,maxerr,qidx,numq,nmat)

    # Set output parameters
    matches['iprm'] = prm
    matches['imask'] = imask
    matches['ierr'] = geom.vecnorm(errE(prm,qray[imask,:],dray[imask,:],constants,domidx)) * numq / numi if numi!=0 else np.inf
    matches['numi'] = sum(imask)

    # Print output state
    if matches['numi'] == 0:
        print 'Constrained homography failed.'
        pose = np.nan * np.zeros(4)
    else:
        print 'Result from error metric choosing best inlier set: %f' % matches['ierr']
        print 'Number of inliers / total correspondences: ' + str(matches['numi']) + ' / ' + str(nmat)
        if runflag == 0: qYaw = prm[3]
        pose = np.append( geom.normalrows(prm[:3]) , qYaw )
    print 'Constrained homography took %.1f seconds.' % (time.time()-start)

    return matches, pose
Esempio n. 21
0
def VPNfromDatabase(C, Q, dimg, vp_threshold):

    main_bias, off_bias = 1, 0

    if off_bias == 0:

        dname = os.path.basename(dimg)
        himg, dinfo, dpath = os.path.join(C.hiresdir, dname[:-4] + '.jpg'), \
                             os.path.join(C.hiresdir, dname[:-4] + '.info'), \
                             os.path.join(C.hiresdir, dname[:-4] + '.lsd')
        dsource = render_tags.EarthmineImageInfo(himg,dinfo)
        Kd, wRd = viewparam(dsource,np.nan)
        dmid, deqs, dlen = LfromLSD(dpath,himg,Kd)
        dvps, dcon, dcent, dseeds = VPfromSeeds(dmid, deqs, dlen, wRd, vp_threshold)
        vps, conf, cent = tp(np.dot(wRd,tp(dvps))), dcon, dcent
        nvps = len(conf)
        if nvps == 0: return np.zeros((0,3)), np.zeros((0,3)), np.zeros(0), np.zeros(0) # return if no vanishing points
    
    else:

        # get 3 database images
        dname = os.path.basename(dimg)
        view = int(dname[-6:-4])
        if view < 6: # right side of street
            limg, linfo, lpath = os.path.join(C.hiresdir, dname[:-6] + '02.jpg'), \
                                 os.path.join(C.hiresdir, dname[:-6] + '02.info'), \
                                 os.path.join(C.hiresdir, 'lsd', dname[:-6] + '02.lsd')
            cimg, cinfo, cpath = os.path.join(C.hiresdir, dname[:-6] + '03.jpg'), \
                                 os.path.join(C.hiresdir, dname[:-6] + '03.info'), \
                                 os.path.join(C.hiresdir, 'lsd', dname[:-6] + '03.lsd')
            rimg, rinfo, rpath = os.path.join(C.hiresdir, dname[:-6] + '04.jpg'), \
                                 os.path.join(C.hiresdir, dname[:-6] + '04.info'), \
                                 os.path.join(C.hiresdir, 'lsd', dname[:-6] + '04.lsd')
        else: # left side of street
            limg, linfo, lpath = os.path.join(C.hiresdir, dname[:-6] + '08.jpg'), \
                                 os.path.join(C.hiresdir, dname[:-6] + '08.info'), \
                                 os.path.join(C.hiresdir, 'lsd', dname[:-6] + '08.lsd')
            cimg, cinfo, cpath = os.path.join(C.hiresdir, dname[:-6] + '09.jpg'), \
                                 os.path.join(C.hiresdir, dname[:-6] + '09.info'), \
                                 os.path.join(C.hiresdir, 'lsd', dname[:-6] + '09.lsd')
            rimg, rinfo, rpath = os.path.join(C.hiresdir, dname[:-6] + '10.jpg'), \
                                 os.path.join(C.hiresdir, dname[:-6] + '10.info'), \
                                 os.path.join(C.hiresdir, 'lsd', dname[:-6] + '10.lsd')
            lsource = render_tags.EarthmineImageInfo(limg, linfo)
            csource = render_tags.EarthmineImageInfo(cimg, cinfo)
            rsource = render_tags.EarthmineImageInfo(rimg, rinfo)

        # extract view parameters
        Kl, wRl = viewparam(lsource,np.nan)
        Kc, wRc = viewparam(csource,np.nan)
        Kr, wRr = viewparam(rsource,np.nan)
        
        # get lines for each database image; image frame equations and segment lengths
        lmid, leqs, llen = LfromLSD(lpath, limg, Kl)
        cmid, ceqs, clen = LfromLSD(cpath, cimg, Kc)
        rmid, reqs, rlen = LfromLSD(rpath, rimg, Kr)

        # get candidate vanishing points from lines
        lvps, lcon, lcent, lseeds = VPfromSeeds(lmid, leqs, llen, wRl, vp_threshold)
        cvps, ccon, ccent, cseeds = VPfromSeeds(cmid, ceqs, clen, wRc, vp_threshold)
        rvps, rcon, rcent, rseeds = VPfromSeeds(rmid, reqs, rlen, wRr, vp_threshold)

        #####  combine candidate vanishing points and into an estimate of   #####
        #####  the building faces' horizontal vanishing points and normals  #####

        # increase the confidence of vps from the matched view and
        if    view==2 or view==8  : lcon, ccon, rcon, ccent, rcent, ndvps, seedlens = main_bias*lcon, off_bias*ccon, off_bias*rcon, 0*ccent, 0*rcent, len(lvps), lseeds
        elif  view==3 or view==9  : lcon, ccon, rcon, lcent, rcent, ndvps, seedlens = off_bias*lcon, main_bias*ccon, off_bias*rcon, 0*lcent, 0*rcent, len(cvps), cseeds
        elif  view==4 or view==10 : lcon, ccon, rcon, lcent, ccent, ndvps, seedlens = off_bias*lcon, off_bias*ccon, main_bias*rcon, 0*lcent, 0*ccent, len(rvps), rseeds

        # map the vanishing points to the world frame (EDN - east/down/north) and combine all vps
        lvps, cvps, rvps = tp(np.dot(wRl,tp(lvps))), tp(np.dot(wRc,tp(cvps))), tp(np.dot(wRr,tp(rvps)))
        vps, conf, cent = np.concatenate( (lvps,cvps,rvps) , 0 ), np.concatenate((lcon,ccon,rcon)), np.concatenate( (lcent,ccent,rcent) , 0 )
        nvps = len(conf)
        if nvps == 0: return np.zeros((0,3)), np.zeros((0,3)), np.zeros(0), np.zeros(0) # return if no vanishing points

    # get normals and remove vanishing points indicating more than a ~18 degree incline
    normals = np.cross(vps,[0,1,0])
    mask = geom.vecnorm(normals) > 0.95
    vps, cent, normals, conf = vps[mask,:], cent[mask,:], geom.normalrows(normals[mask,:]), conf[mask]
    nvps = len(conf)

    # sort vanishing points by confidence
    sort = np.argsort(conf)
    vps, cent, conf = vps[sort[::-1],:], cent[sort[::-1],:], conf[sort[::-1]]

    # combine all vanishing points
    minconf = 0.2  # average 20% of line length in each image OR 50% of line length in retrieved image
    bvps, bcenters, bnorms, bconfs = np.zeros((0,3)), np.zeros((0,3)), np.zeros(0), np.zeros(0)
    while len(conf)!=0:
        vp = vps[0,:]
        mask = np.inner(vps,vp) > np.cos(vp_threshold*np.pi/180)
        c = np.sum(conf[mask])/(2*off_bias+main_bias)
        if c > minconf:
            vp = geom.largestSingVector(geom.vecmul(vps[mask,:],conf[mask]))
            if np.inner(vps[0,:],vp) < 0: vp = -vp
            normal = np.cross(vp,[0,1,0])
            nyaw = np.mod( 180/np.pi * np.arctan2(normal[0],normal[2]) , 360 )
            bvps = np.concatenate( (bvps,[vp]) , 0 )
            bnorms, bconfs = np.append(bnorms,nyaw), np.append(bconfs,c)
            centmask = np.logical_and(mask,cent[:,2]!=0)
            center = np.mean(cent[centmask,:],0)
            bcenters = np.concatenate( (bcenters,[center]) , 0 )
            keep = np.logical_not(mask)
            vps, conf, cent = vps[keep,:], conf[keep], cent[keep,:]
        else:
            vps, conf, cent = np.delete(vps,0,0), np.delete(conf,0), np.delete(cent,0,0)

    # sort best vanishing points by confidence
    if len(bconfs) == 0: return bvps, bcenters, bnorms, bconfs
    sort = np.argsort(bconfs)
    bvps, bcenters, bnorms, bconfs = bvps[sort[::-1],:], bcenters[sort[::-1],:], bnorms[sort[::-1]], bconfs[sort[::-1]]

    return bvps, bcenters, bnorms, bconfs, nvps
Esempio n. 22
0
def estimate_pose(C, Q, dbmatch, gtStatus=None):

    # settings
    param = C.pose_param
    runflag = param['runflag']
    np.seterr(all='ignore')
    Q.datafile = os.path.join(C.pose_param['resultsdir'],
                              'data_' + Q.name + '.txt')
    open(Q.datafile, 'w').close()

    #####-----    PRINT RUN DETAILS    -----#####
    run_info = os.path.join(param['resultsdir'], param['run_info'])
    open(run_info, 'w').close()
    with open(run_info, 'a') as ri:
        if runflag == 11:
            print >> ri, 'Method: Yaw, planes from VPs. Scale computed with homography.'
        elif runflag == 10:
            print >> ri, 'Method: Yaw, planes from VPs. Scale computed after homography.'
        if param['cheat']:
            print >> ri, 'Ground truth yaw and plane used (cheating).'
        print >> ri, 'Inlier base error threshold: %.3f' % param['inlier_error']
        print >> ri, 'Base iteration scale: %d' % param['ransac_iter']
    #####-----    PRINT RUN DETAILS    -----#####

    # get high res db image and sift paths
    dbinfo = os.path.join(C.hiresdir, dbmatch + '.info')
    dbimg = os.path.join(C.hiresdir, dbmatch + '.jpg')
    dbsift = os.path.join(C.hiresdir, dbmatch + 'sift.txt')
    dbsource = render_tags.EarthmineImageInfo(dbimg, dbinfo)

    # Set Kd, wRd, and db position
    wx, wy = dbsource.image.size
    fov = dbsource.fov
    Kd = geom.cameramat(wx, wy, fov)
    Kdinv = alg.inv(Kd)
    y, p, r = dbsource.yaw, dbsource.pitch, dbsource.roll
    wRd = geom.RfromYPR(y, p, r)  # db camera orientation (camera to world)
    olat, olon, oalt = dbsource.lat, dbsource.lon, dbsource.alt  # database location

    # get high res query information
    qname = Q.name
    qimg = os.path.join(C.querydir, 'hires', qname + '.jpg')
    qsift = os.path.join(C.querydir, 'hires', qname + 'sift.txt')
    qsource = render_tags.QueryImageInfo(Q.datasource)
    glat, glon = qsource.lat, qsource.lon
    gzx = geom.lltom(olat, olon, glat, glon)
    timename = qname[-12:-10] + qname[-9:-7] + qname[-6:-4]  #+qname[-3:]

    # Set Kq
    wx, wy = qsource.image.size
    fov = qsource.fov
    Kq = geom.cameramat(wx, wy, fov)
    Kqinv = alg.inv(Kq)
    cyaw, p, r = qsource.yaw, qsource.pitch, qsource.roll  # cyaw - cell phone yaw

    # get high res sift rematch
    matches = highresSift(C, Q, dbmatch)
    with open(Q.datafile, 'a') as df:
        print >> df, 'Number of matches | number of queries | ratio: %.0f | %.0f | %.2f' % (
            matches['nmat'], matches['numq'],
            float(matches['nmat']) / matches['numq'])
        print >> df, ''

    # Get estimated ground truth query location and normal direction
    tlat, tlon, tnorm, tyaw = getGTpose(C, Q)
    qzx = geom.lltom(olat, olon, tlat, tlon)

    # get query yaw and plane yaw from vanishing point anaylsis
    yawforvp = tyaw if param['cheat'] else np.nan
    vyaw, vnorms = vp_analysis.getQNyaws(C, Q, qimg, dbimg, qsource, yawforvp)

    # get dominant planes
    dplanes, psizes, planeprms = find_dbplanes(C, Q, dbmatch, Kdinv, wRd)

    # match vanishing point planes to database planes
    pyaws, planes, pconfs = combine_planes(runflag, vnorms, dplanes, psizes,
                                           planeprms)

    print 'VP and DB Planes: ' + str(np.int_(pyaws)) + ', ' + str(planes)

    with open(Q.datafile, 'a') as df:
        #        print >>df, 'Planes detected with vanishing points:'
        for i in range(len(pconfs)):
            perr = np.round(np.mod(pyaws[i] - tnorm, 360))
            perr = perr if perr < 180 else 360 - perr
            print >> df, 'Plane Yaw | DB plane | Confidence | Error : %3.0f | %d | %.2f | %.0f' % (
                pyaws[i], 0 if planes[i] < 0 else planes[i], pconfs[i], perr)
        yerr = np.round(np.mod(vyaw - tyaw, 360))
        yerr = yerr if yerr < 180 else 360 - yerr
        print >> df, 'VP Yaw | Confidence | Error : %3.0f | %.2f | %.0f' % (
            vyaw, np.nan, yerr)
        print >> df, 'Cell yaw | True yaw | Plane : %3.0f | %3.0f  | %3.0f' % (
            cyaw, tyaw, tnorm)
        print >> df, ''

    # Set yaw value to be used
    if runflag >= 10:  # vanishing point methods
        if np.isnan(vyaw): yaw, yawerr = cyaw, 0
        else: yaw, yawerr = vyaw, 0
    else: yaw, yawerr = cyaw, 0  # set cell phone yaw to use, plane normal
    wRq = geom.RfromYPR(yaw, p, r)  # camera orientation (camera to world)

    ### --- THIS IS FOR CHEATING --- ###
    if param['cheat']:
        if not np.isnan(tnorm):
            pyaws, planes, pconfs = np.append(pyaws, tnorm), np.append(
                planes, -1), np.append(pconfs, 1)
        yaw, yawerr = tyaw, 0
        wRq = geom.RfromYPR(yaw, p, r)  # camera orientation (camera to world)
    ### --- THIS IS FOR CHEATING --- ###

    # print pre-homography data to file
    vyaw_err = np.round(np.round(np.mod(
        tyaw - vyaw, 360))) if not np.isnan(vyaw) else np.nan
    vyaw_err = vyaw_err if vyaw_err < 180 else 360 - vyaw_err
    dbears = np.mod(180 / np.pi * np.arctan2(planeprms[:, 0], planeprms[:, 2]),
                    360)
    print 'Computed / ground truth cell phone yaw: %.0f / %.0f' % (vyaw, tyaw)
    with open(os.path.join(param['resultsdir'], param['extras_file']),
              'a') as extras_file:
        print >> extras_file, '\t'.join([
            timename,
            '%.0f' % tnorm,
            '%.0f' % np.round(tyaw),
            '%.0f' % cyaw,
            '%.0f' % vyaw,
            '%.4f' % np.nan,
            str(vyaw_err)
        ])
        print >> extras_file, '\t'.join(['%.4f' % 0 for vnorm in vnorms])
        print >> extras_file, '\t'.join(['%.0f' % vnorm for vnorm in vnorms])
        print >> extras_file, '\t'.join(['%.0f' % plane for plane in planes])
        print >> extras_file, '\t'.join(
            ['%.0f' % dplane for dplane in dplanes])
        print >> extras_file, '\t'.join(['%.0f' % dbear for dbear in dbears])
        print >> extras_file, '\t'.join(
            ['%.3f' % dnerr for dnerr in planeprms[:, 4]])

    # Fill out match information
    nmat = matches['nmat']
    matches['qray'] = geom.normalrows(
        tp(np.dot(Kqinv, np.append(tp(matches['q2d']), [np.ones(nmat)], 0))))
    matches['dray'] = geom.normalrows(
        tp(np.dot(Kdinv, np.append(tp(matches['d2d']), [np.ones(nmat)], 0))))
    matches = match_info(C, Q, matches, dbmatch, wRd)
    matches_start = matches.copy()

    # Solve for query pose using constrained image geometry
    init_matches = initMatches(matches.copy())
    matches['numi'], matches['hconf'] = 0, 0
    runflag, ntry, planechose = param['runflag'], 0, 0
    parameters = (wRq, wRd, yaw, np.nan, runflag, param['inlier_error'],
                  param['ransac_iter'], 10, True)
    if param['ransac_iter'] == 0:
        matches = init_matches
        matches['numi'], matches['hconf'] == 0, 0
        pose = np.zeros(6)
        pose[3:5] = np.nan
    elif runflag < 10:
        matches, pose = solveGeom(init_matches, parameters, yawerr)
    else:
        ntry = 1
        viter = -np.ones(3)
        parameters = (wRq, wRd, yaw, np.nan, runflag, param['inlier_error'],
                      param['ransac_iter'], 15, True)
        matches, pose, planechose = solveNorm(C, Q, dbmatch, pyaws, planes,
                                              init_matches, parameters, yawerr)
        viter[0] = matches['viter']
        if matches['numi'] == 0 or matches['hconf'] == 0:
            ntry = 2
            parameters = (wRq, wRd, yaw, np.nan, runflag,
                          3 * param['inlier_error'], param['ransac_iter'], 10,
                          True)
            matches, pose, planechose = solveNorm(C, Q, dbmatch, pyaws, planes,
                                                  init_matches, parameters,
                                                  yawerr)
            viter[1] = matches['viter']
        if matches['numi'] == 0 or matches['hconf'] == 0:
            ntry, planechose = 3, 0
            parameters = (wRq, wRd, yaw, np.nan, 7, 3 * param['inlier_error'],
                          param['ransac_iter'], 10, True)
            matches, pose = solveYaw(init_matches, parameters, yawerr)
            viter[2] = matches['viter']
        if matches['numi'] == 0 or matches['hconf'] == 0:
            ntry, planechose = 4, 0

    # save matches to disk
    matches_file = os.path.join(param['resultsdir'],
                                'matches_' + qname + '.pkl')
    matches_out = open(matches_file, 'wb')
    pickle.dump(matches, matches_out)
    matches_out.close()

    # extract pose parameters
    comp_runflag = matches['runflag']
    tray = pose[:3]
    comp_yaw = pose[3]
    comp_pyaw = pose[4] if runflag >= 0 else np.nan
    scale = pose[5] if runflag >= 0 else np.nan

    # Get scaled translation for query location
    if np.isnan(scale):
        wRq_pr = geom.YPRfromR(wRq)[1:]
        comp_wRq = geom.RfromYPR(comp_yaw, wRq_pr[0], wRq_pr[1])
        qloc = scalefrom3d(matches, tray, comp_wRq)[0]
    else:  # scale calculated in RANSAC loop
        qloc = scale * tray

    # temporarily get yaw error
    qyaw_error = np.round(abs(np.mod(tyaw - comp_yaw, 360)))
    qyaw_error = qyaw_error if qyaw_error < 180 else abs(qyaw_error - 360)

    # compute location errors wrt estimated query locations
    loc_err = ((qloc[0] - qzx[1])**2 + (qloc[2] - qzx[0])**2)**0.5
    gps_err = ((gzx[1] - qzx[1])**2 + (gzx[0] - qzx[0])**2)**0.5

    # compute the angle difference between T and ground truth translation
    tyaw_error = np.round(
        abs(180 / np.pi * np.arccos(
            np.abs(qloc[0] * qzx[1] + qloc[2] * qzx[0]) /
            (alg.norm([qloc[0], qloc[2]]) * alg.norm(qzx)))))

    # compute the plane normal angle error
    nyaw_error = np.nan if np.isnan(comp_pyaw) or np.isnan(tnorm) else np.mod(
        np.round(abs(comp_pyaw - tnorm)), 180)
    nyaw_error = nyaw_error if nyaw_error < 90 else abs(nyaw_error - 180)

    # write pose estimation results to file
    yaw_err = np.nan
    pose_file = os.path.join(param['resultsdir'], param['pose_file'])
    with open(pose_file, 'a') as pf:
        print >>pf, '\t'.join([qname, str(loc_err), str(gps_err), \
            str(tyaw_error), str(qyaw_error), str(nyaw_error), str(matches['numi']), \
            str(matches['numq']), str(matches['nmat']), str(matches['hconf']), \
            str(qloc[0]), str(qloc[2]), str(yaw_err), str(runflag)])

    # print post-homography data to file
    with open(Q.datafile, 'a') as df:
        print >> df, ''
        print >> df, '------------------'
        print >> df, ''
        if ntry == 1:
            print >> df, 'Homography solution using low error threshold with restrictions.'
        elif ntry == 2:
            print >> df, 'Homography solution using high error threshold with restrictions.'
        else:
            print >> df, 'Solution not found. Setting T=0.'
        if planechose == 0:
            print >> df, 'Solution formed with unset plane normal.'
        else:
            'Solution chosen with plane normal %d chosen.' % planechose
        print >> df, 'VP yaw | Computed yaw | Actual Yaw | Error : %3.0f | %3.0f | %3.0f | %3.0f' % (
            vyaw, comp_yaw, tyaw, qyaw_error)
        print >> df, 'Computed Normal | Actual Normal | Error : %3.0f | %3.0f | %3.0f' % (
            comp_pyaw, tnorm, nyaw_error)
        print >> df, 'Translation   (x|y|z): %.1f | %.1f | %.1f' % (
            qloc[0], qloc[1], qloc[2])
        print >> df, 'True position (x|-|z): %.1f |  -  | %.1f' % (qzx[1],
                                                                   qzx[0])
        print >> df, 'Angle error | Location error: %.0f | %.1f' % (tyaw_error,
                                                                    loc_err)
        print >> df, 'Number of Inliers | Total matches | Ratio: %d | %d | %.2f' % (
            matches['numi'], matches['nmat'], np.nan if matches['nmat'] == 0
            else float(matches['numi']) / matches['nmat'])
        print >> df, 'Reprojection error | Homography confidence: %.3f | %.1f' % (
            matches['rperr'], matches['hconf'])
        print >> df, 'Valid Homographies | Iterations | Ratio: %d | %d | %.3f' % (
            matches['viter'], matches['niter'], np.nan if matches['niter'] == 0
            else float(matches['viter']) / matches['niter'])
        print >> df, ''
        print >> df, '------------------'
        print >> df, ''
        booleans = [ loc_err<5, loc_err<10, not(5<np.mod(vyaw-tyaw,360)<355), \
                     not(10<np.mod(vyaw-tyaw,360)<350), \
                     not(5<np.mod(comp_yaw-tyaw,360)<355), ntry==1, ntry!=3, \
                     planechose!=0, matches['nmat']!=matches_start['nmat'], \
                     0 if planechose==0 else pconfs[planechose-1]>0, comp_yaw-vyaw ]
        print >> df, '|'.join(['%.0f' % (b) for b in booleans])

    # draw matches
    close = int(loc_err < 5) + int(loc_err < 10)
    yawclose = int(not (5 < np.mod(vyaw - tyaw, 360) < 355)) + int(not (
        10 < np.mod(vyaw - tyaw, 360) < 350))
    imgpath = os.path.join( param['resultsdir'] , qname + ';locerr=%.2f' % (loc_err) + ';locPerf_' + str(close) \
        + ';yawPerf_' + str(yawclose) + ';nplanes_' + str(len(pyaws)) + ';plane_' + str(planes[planechose]) + ';try_' + str(ntry) \
        + ';tAng=%.0f' % (tyaw_error) + ';qAng=%.0f' % (qyaw_error) + ';nAng=%.0f' % (nyaw_error) + ';' + dbmatch + '.jpg')
    draw_matches(matches, qimg, dbimg, imgpath)
    #    imgpath = os.path.join( param['resultsdir'] , 'homography;' + qname + ';' + dbmatch + '.jpg')
    #    draw_hom(matches, pose, wRq, wRd, Kq, Kd, qimg, dbimg, imgpath)
    if C.QUERY == 'oakland1': C.pose_param['draw_tags'] = False
    if C.pose_param['draw_tags']:
        draw_tags(C, Q, matches, pose, dbmatch, olat, olon, Kd, Kq)

    print 'Computed yaw / ground truth yaw        : %.0f / %.0f' % (comp_yaw,
                                                                    tyaw)
    if runflag < 10:
        print 'Computed normal bearing / ground truth : %.0f / %.0f' % (
            comp_pyaw, tnorm)
    print 'Computed query location relative to db     : %.1f, %.1f, %.1f' % tuple(
        qloc)
    print 'Ground truth query location relative to db : %.1f,  - , %.1f' % (
        qzx[1], qzx[0])

    input = (wRq, wRd)

    return qloc, loc_err, matches, input
Esempio n. 23
0
def constrainedHomography(matches, wRd, wRq, qYaw=np.nan, nYaw=np.nan, runflag=0, maxerr=.01, maxiter=10000, minI=15, yrestrict=True):

    # Homography parameters to solve for:
    #   translation: 2 parameters (never known, always solved)
    #   normal yaw: 1 parameter (may be known. always solved)
    #   query yaw: 1 parameter (may be known. always solved)
    #   scale factor: 1 parameter (never known, may not solve for this)

    # Set the different run conditions to be used in the RANSAC loop
    # Note that if qYaw is unknown, then wRq is assumed just pitch and roll (yaw=0)
    if runflag == 0: # qYaw unknown, nYaw unknown
        nprm, nrand = 5, 3
        compH, lsqH, errH, bestH = compH_tqn, lsqH_tqn, errH_tqn, bestH_
    elif runflag == 1: # qYaw unknown, nYaw known
        nprm, nrand = 4, 2
        compH, lsqH, errH, bestH = compH_tq, lsqH_tq, errH_tq, bestH_
    elif runflag == 2: # qYaw known, nYaw unknown
        nprm, nrand = 4, 2
        compH, lsqH, errH, bestH = compH_tn, lsqH_tn, errH_tn, bestH_
    elif runflag == 3: # qYaw known, nYaw known
        nprm, nrand = 3, 2
        compH, lsqH, errH, bestH = compH_t, lsqH_t, errH_t, bestH_
    elif runflag == 4: # qYaw unknown, nYaw unknown, solve for depth
        nprm, nrand = 6, 3
        compH, lsqH, errH, bestH = compH_dtqn, lsqH_dtqn, errH_dtqn, bestH_d
    elif runflag == 5: # qYaw unknown, nYaw known, solve for depth
        nprm, nrand = 5, 2
        compH, lsqH, errH, bestH = compH_dtq, lsqH_dtq, errH_dtq, bestH_d
    elif runflag == 6: # qYaw known, nYaw unknown, solve for depth
        nprm, nrand = 5, 2
        compH, lsqH, errH, bestH = compH_dtn, lsqH_dtn, errH_dtn, bestH_d
    else: # runflag == 7: qYaw known, nYaw known, solve for depth
        nprm, nrand = 4, 2
        compH, lsqH, errH, bestH = compH_dt, lsqH_dt, errH_dt, bestH_d
    if not yrestrict: bestH = bestH_

    # Compute the number of Ransac iterations to perform and print run parameters
    rsiter = int( 10 * np.log(.01) / -np.abs(np.log(1-float(minI**nrand)/matches['nmat']**nrand)) )
    maxiter = min(maxiter,rsiter)
    print 'Solving constrained homography [%d]: %.3f error threshold, %d iterations...' % (runflag,maxerr,maxiter)
    start = time.time()

    # Set local variables
    nmat, numq = matches['nmat'], matches['numq']
    constants = (wRq,wRd,qYaw,nYaw)
    bprm, bmask, bnumi, bconf, bfrc, iterstop = np.zeros(nprm), np.bool_(np.zeros(nmat)), 0, 0, 0, maxiter
    qray, dray, ddep, qidx, weights = matches['qray'], matches['dray'], matches['ddep'], matches['qidx'], matches['weight']

    # Ransac loop to eliminate outliers with homography
    # Solves homography matrix for homography matrix H=qRd(I+tn') using y ~ Hx
    iter, vcount = 0, 0
    while iter < iterstop:
        iter += 1
        q, d, dep = randsamples(nrand, nmat, qray, dray, ddep)
        prm, valid = compH(q,d,dep,constants)
        if not valid: continue
        errs = errH(prm,qray,dray,ddep,constants)
        imask, numi, iconf = getInliers(errs,weights,maxerr,qidx,numq,nmat)
        if numi < minI: continue
        vcount += 1
        if bestH(prm,numi,minI,iconf,bconf):
            bprm, bmask, bnumi, bconf, bfrc = prm, imask, numi, iconf, float(numi)/matches['nmat']
            iterstop = min( maxiter , 10*np.log(.01)/-np.abs(np.log(1-bfrc**nrand)) )
    niter = iter
    print 'Total valid samples / total iterations: %d / %d' % (vcount,iter)

    # Guided matching
    prm, numi, imask, iconf = bprm, bnumi, bmask, bconf
    iter, maxgm = 0, 100
    while numi >= minI:
        iter += 1
        q, d, dep = qray[imask,:], dray[imask,:], ddep[imask]
        new_prm = lsqH(prm,q,d,dep,constants)
        errs = errH(new_prm,qray,dray,ddep,constants)
        new_imask, new_numi, new_iconf = getInliers(errs,weights,maxerr,qidx,numq,nmat)
        if (new_imask==imask).all() or iter >= maxgm:
            prm, numi, imask, iconf = new_prm, new_numi, new_imask, new_iconf
            break

    # calculate and store homography matrix
    if runflag == 7:
        wRq, wRd, qYaw, nYaw = constants
        dRq = np.dot(tp(wRd),wRq)
        td = np.dot(tp(wRd),prm[:3])
        nd = -np.dot(tp(wRd),[np.sin(nYaw*np.pi/180),0,np.cos(nYaw*np.pi/180)])
        H = np.dot(tp(dRq),np.eye(3,3)-np.outer(td,nd))
        matches['estH'] = H
        matches['wRd'] = wRd
        matches['wRq'] = wRq

    # Set output parameters
    matches['constants'] = constants
    matches['niter'] = niter
    matches['viter'] = vcount
    matches['iprm'] = prm
    matches['imask'] = imask
    matches['rperr'] = geom.vecnorm(errH(prm,qray[imask,:],dray[imask,:],ddep[imask],constants)) / numi**0.5
    matches['numi'] = numi
    matches['ifrc'] = float(numi) / matches['nmat']
    matches['iconf'] = iconf / np.sum(weights)
    matches['hconf'] = ( iconf / np.sum(weights) ) / matches['rperr']
    matches['runflag'] = runflag

    # Print output state
    if matches['numi'] == 0:
        print 'Constrained homography failed.'
        pose = np.zeros(6)
        pose[3:5] = np.nan
    else:
        print 'Resulting confidence of inlier set: %.4f' % matches['iconf']
        print 'Number of inliers / total correspondences: ' + str(matches['numi']) + ' / ' + str(nmat)
        if   np.mod(runflag,4) == 0: qYaw, nYaw = prm[3], prm[4]
        elif np.mod(runflag,4) == 1: qYaw, nYaw = prm[3], nYaw
        elif np.mod(runflag,4) == 2: qYaw, nYaw = qYaw, prm[3]
        if   runflag == 4: scale = prm[5]*geom.vecnorm(prm[:3])
        elif runflag == 5: scale = prm[4]*geom.vecnorm(prm[:3])
        elif runflag == 6: scale = prm[4]*geom.vecnorm(prm[:3])
        elif runflag == 7: scale = prm[3]*geom.vecnorm(prm[:3])
        else:              scale = np.nan
        pose = np.append( geom.normalrows(prm[:3]) , [ qYaw , nYaw , scale ] )
    print 'Constrained homography took %.1f seconds.' % (time.time()-start)

    return matches, pose
Esempio n. 24
0
    #match_idx = np.nonzero( np.zeros(matches['nmat'] ) )[0]
    print 'Number of inliers / total correspondences : %d / %d' % (matches['numi'],matches['nmat'])
    for idx in match_idx:
        start = scale*matches['q2d'][idx,:]
        stop = matches['d2d'][idx,:]
        stop[0] += off
        xdrawcircle(start,'red')
        xdrawline((start,stop),'green',width=3)
        xdrawcircle(stop,'red')

    ### draw homography boxes ###

    # compute box center and corners
    pd = matches['iprm'][-1]
    tw = pose[5]*pose[:3]
    cd, xd = np.array([.4,-.1,1]), geom.normalrows(np.array([.5,-.2,1]))
    cw, xw = np.dot(wRd,cd), np.dot(wRd,xd)
    nw = -np.array([np.sin(pose[4]*np.pi/180),0,np.cos(pose[4]*np.pi/180)])
    cw, xw = pd/np.dot(nw,cw)*cw, pd/np.dot(nw,xw)*xw
    trw, brw, tlw, blw = xw.copy(), xw.copy(), 2*cw-xw, 2*cw-xw
    brw[1], tlw[1] = blw[1], trw[1]
    trq, brq, tlq, blq = np.dot(tp(wRq),trw-tw), np.dot(tp(wRq),brw-tw), np.dot(tp(wRq),tlw-tw), np.dot(tp(wRq),blw-tw)
    trd, brd, tld, bld = np.dot(tp(wRd),trw), np.dot(tp(wRd),brw), np.dot(tp(wRd),tlw), np.dot(tp(wRd),blw)
    # draw query box
    trp, brp, tlp, blp = np.dot(Kq,trq), np.dot(Kq,brq), np.dot(Kq,tlq), np.dot(Kq,blq)
    trp, brp, tlp, blp = (trp/trp[2])[:2], (brp/brp[2])[:2], (tlp/tlp[2])[:2], (blp/blp[2])[:2]
    xdrawline((scale*trp,scale*brp),'green',off=0,width=10)
    xdrawline((scale*brp,scale*blp),'green',off=0,width=10)
    xdrawline((scale*blp,scale*tlp),'green',off=0,width=10)
    xdrawline((scale*tlp,scale*trp),'green',off=0,width=10)
    # draw database box
Esempio n. 25
0
def VPQfromQuery(C, Q, qimg, qsource, vps, vnorms, vpconfs, vp_threshold, tyaw):

    # get query vanishing points
    qname = os.path.basename(qimg)
    qpath = os.path.join(C.querydir, 'hires', 'lsd', qname[:-4] + '.lsd')
    Kq, wRq = viewparam(qsource,tyaw)
    qmid, qleq, qlen = LfromLSD(qpath, qimg, Kq)
    qvps, conf, qcent, seedlens = VPfromSeeds(qmid, qleq, qlen, wRq, vp_threshold)
    nqvps = len(conf)

    #####  combine candidate vanishing points and vp from db   #####
    #####  into an estimate of the true query yaw orientation  #####

    # map vanishing points to world frame
    qvps = tp(np.dot(wRq,tp(qvps)))
    
    # align vanishing points based on normal and compute normals
    qnorms = geom.normalrows(np.cross(qvps,[0,1,0]))
    for i in range(len(conf)):
        if np.dot(tp(wRq),qnorms[i,:])[2] > 0:
            qnorms[i,:] *= -1
            qvps[i,:] *= -1

    # find optimal alignment of vanishing points
    cyaw = geom.YPRfromR(wRq)[0] # cell phone yaw
    byaw, bconf, bvps, bnorms, bvpconfs, nvps = np.nan, 0, vps, vnorms, vpconfs, len(vpconfs)

#    print '------------------------'
#    print vpconfs
#    print np.mod( vnorms , 360)
#    print conf
#    print np.mod( 180/np.pi * np.arctan2(qnorms[:,0],qnorms[:,2]) , 360 )
#    print '------------------------'
    qnormyaws = 180/np.pi * np.arctan2(qnorms[:,0],qnorms[:,2])
    for i in range(len(vpconfs)):
        for j in range(len(conf)):
            # compute relative yaw change
            vnormyaw = vnorms[i] #180/np.pi * np.arctan2(vnorms[i,0],vnorms[i,2])
            qnormyaw = qnormyaws[j]
            dyaw = vnormyaw - qnormyaw
            dyaw = dyaw if dyaw<180 else dyaw-360
            if abs(dyaw) > 50: continue # skip if the yaw change is too great
            # apply relative yaw change
            dR = geom.RfromYPR(dyaw,0,0)
            dvps, dnorms = tp(np.dot(dR,tp(qvps))), tp(np.dot(dR,tp(qnorms)))
            # get list of matching vanishing points
            dbidx, qidx, weights = np.zeros(0,np.int), np.zeros(0,np.int), np.zeros(0)
            # Gather lise of aligned vanishing points
            for k in range(len(vpconfs)):
                vpalign = np.inner(dvps,vps[k,:])
                alignidx = np.argmax(vpalign)
                if vpalign[alignidx] < np.cos(np.pi/180*2*vp_threshold): continue
                dbidx, qidx = np.append(dbidx,k), np.append(qidx,alignidx)
                weights = np.append(weights,conf[alignidx]*vpconfs[k])
            # Optimize for the yaw change
            yawconf = np.sum(weights)
            if yawconf <= bconf: continue
            dyaws = np.mod(vnorms[dbidx]-qnormyaws[qidx],360)
            if dyaws[0] < 90: dyaws[dyaws>270] = dyaws[dyaws>270]-360
            elif dyaws[0] > 270: dyaws[dyaws<90] = dyaws[dyaws<90]+360
            dyaw = np.sum(weights*dyaws) / yawconf
            byaw, bconf, bvpconfs, nvps = np.mod(cyaw+dyaw,360), yawconf, np.ones(len(weights)), len(weights)
            bnorms = np.mod( qnormyaws[qidx] + dyaw , 360 )

    return byaw, bconf, bvps, bnorms, bvpconfs, nqvps
Esempio n. 26
0
def estimate_pose(C, Q, dbmatch, gtStatus=None):

    # settings
    param = C.pose_param
    runflag = param['runflag']
    np.seterr(all='ignore')
    Q.datafile = os.path.join(C.pose_param['resultsdir'],'data_'+Q.name+'.txt')
    open(Q.datafile,'w').close()

    #####-----    PRINT RUN DETAILS    -----#####
    run_info = os.path.join(param['resultsdir'],param['run_info'])
    open(run_info,'w').close()
    with open(run_info,'a') as ri:
        if runflag == 11:   print >>ri, 'Method: Yaw, planes from VPs. Scale computed with homography.'
        elif runflag == 10: print >>ri, 'Method: Yaw, planes from VPs. Scale computed after homography.'
        if param['cheat']:  print >>ri, 'Ground truth yaw and plane used (cheating).'
        print >>ri, 'Inlier base error threshold: %.3f' % param['inlier_error']
        print >>ri, 'Base iteration scale: %d' % param['ransac_iter']
    #####-----    PRINT RUN DETAILS    -----#####

    # get high res db image and sift paths
    dbinfo = os.path.join(C.hiresdir, dbmatch + '.info')
    dbimg = os.path.join(C.hiresdir,dbmatch+'.jpg')
    dbsift = os.path.join(C.hiresdir,dbmatch+'sift.txt')
    dbsource = render_tags.EarthmineImageInfo(dbimg, dbinfo)

    # Set Kd, wRd, and db position
    wx,wy = dbsource.image.size
    fov = dbsource.fov
    Kd = geom.cameramat(wx, wy, fov)
    Kdinv = alg.inv(Kd)
    y,p,r = dbsource.yaw, dbsource.pitch, dbsource.roll
    wRd = geom.RfromYPR(y,p,r) # db camera orientation (camera to world)
    olat,olon,oalt = dbsource.lat,dbsource.lon,dbsource.alt # database location

    # get high res query information
    qname = Q.name
    qimg = os.path.join(C.querydir,'hires',qname+'.jpg')
    qsift = os.path.join(C.querydir,'hires',qname+'sift.txt')
    qsource = render_tags.QueryImageInfo(Q.datasource)
    glat,glon = qsource.lat,qsource.lon
    gzx = geom.lltom(olat,olon,glat,glon)
    timename = qname[-12:-10]+qname[-9:-7]+qname[-6:-4]#+qname[-3:]

    # Set Kq
    wx,wy = qsource.image.size
    fov = qsource.fov
    Kq = geom.cameramat(wx, wy, fov)
    Kqinv = alg.inv(Kq)
    cyaw,p,r = qsource.yaw, qsource.pitch, qsource.roll # cyaw - cell phone yaw

    # get high res sift rematch
    matches = highresSift(C, Q, dbmatch)
    with open(Q.datafile,'a') as df:
        print >>df, 'Number of matches | number of queries | ratio: %.0f | %.0f | %.2f' % (matches['nmat'], matches['numq'], float(matches['nmat'])/matches['numq'])
        print >>df, ''
        
    # Get estimated ground truth query location and normal direction
    tlat, tlon, tnorm, tyaw = getGTpose(C, Q)
    qzx = geom.lltom(olat,olon,tlat,tlon)

    # get query yaw and plane yaw from vanishing point anaylsis
    yawforvp = tyaw if param['cheat'] else np.nan
    vyaw, vnorms = vp_analysis.getQNyaws(C, Q, qimg, dbimg, qsource, yawforvp) 

    # get dominant planes
    dplanes, psizes, planeprms = find_dbplanes(C, Q, dbmatch, Kdinv, wRd)
    
    # match vanishing point planes to database planes
    pyaws, planes, pconfs = combine_planes(runflag,vnorms,dplanes,psizes,planeprms)

    print 'VP and DB Planes: ' + str(np.int_(pyaws)) + ', ' + str(planes)

    with open(Q.datafile,'a') as df:
#        print >>df, 'Planes detected with vanishing points:'
        for i in range(len(pconfs)):
            perr = np.round(np.mod(pyaws[i]-tnorm,360))
            perr = perr if perr<180 else 360-perr
            print >>df, 'Plane Yaw | DB plane | Confidence | Error : %3.0f | %d | %.2f | %.0f' % (pyaws[i],0 if planes[i]<0 else planes[i],pconfs[i],perr)
        yerr = np.round(np.mod(vyaw-tyaw,360))
        yerr = yerr if yerr<180 else 360-yerr
        print >>df, 'VP Yaw | Confidence | Error : %3.0f | %.2f | %.0f' % (vyaw,np.nan,yerr)
        print >>df, 'Cell yaw | True yaw | Plane : %3.0f | %3.0f  | %3.0f' % (cyaw,tyaw,tnorm)
        print >>df, ''

    # Set yaw value to be used
    if runflag >= 10: # vanishing point methods
        if np.isnan(vyaw): yaw, yawerr = cyaw, 0
        else: yaw, yawerr = vyaw, 0
    else: yaw, yawerr = cyaw, 0 # set cell phone yaw to use, plane normal
    wRq = geom.RfromYPR(yaw,p,r) # camera orientation (camera to world)

    ### --- THIS IS FOR CHEATING --- ###
    if param['cheat']:
        if not np.isnan(tnorm):
            pyaws, planes, pconfs = np.append(pyaws,tnorm), np.append(planes,-1), np.append(pconfs,1)
        yaw, yawerr = tyaw, 0
        wRq = geom.RfromYPR(yaw,p,r) # camera orientation (camera to world)
    ### --- THIS IS FOR CHEATING --- ###

    # print pre-homography data to file
    vyaw_err = np.round(np.round(np.mod(tyaw-vyaw,360))) if not np.isnan(vyaw) else np.nan
    vyaw_err = vyaw_err if vyaw_err<180 else 360-vyaw_err
    dbears = np.mod( 180/np.pi*np.arctan2(planeprms[:,0],planeprms[:,2]) , 360 )
    print 'Computed / ground truth cell phone yaw: %.0f / %.0f' % (vyaw,tyaw)
    with open(os.path.join(param['resultsdir'],param['extras_file']),'a') as extras_file:
        print >>extras_file, '\t'.join([timename, '%.0f' % tnorm, '%.0f' % np.round(tyaw), '%.0f' % cyaw, '%.0f' % vyaw, '%.4f'%np.nan, str(vyaw_err)])
        print >>extras_file, '\t'.join([ '%.4f' % 0 for vnorm in vnorms ])
        print >>extras_file, '\t'.join([ '%.0f'   % vnorm  for vnorm  in vnorms  ])
        print >>extras_file, '\t'.join([ '%.0f'   % plane  for plane  in planes  ])
        print >>extras_file, '\t'.join([ '%.0f'   % dplane for dplane in dplanes ])
        print >>extras_file, '\t'.join([ '%.0f'   % dbear  for dbear  in dbears  ])
        print >>extras_file, '\t'.join([ '%.3f' % dnerr  for dnerr  in planeprms[:,4] ])

    # Fill out match information
    nmat = matches['nmat']
    matches['qray'] = geom.normalrows(tp(np.dot(Kqinv,np.append(tp(matches['q2d']),[np.ones(nmat)],0))))
    matches['dray'] = geom.normalrows(tp(np.dot(Kdinv,np.append(tp(matches['d2d']),[np.ones(nmat)],0))))
    matches = match_info(C, Q, matches, dbmatch, wRd)
    matches_start = matches.copy()

    # Solve for query pose using constrained image geometry
    init_matches = initMatches(matches.copy())
    matches['numi'], matches['hconf'] = 0, 0
    runflag, ntry, planechose = param['runflag'], 0, 0
    parameters = ( wRq, wRd, yaw, np.nan, runflag, param['inlier_error'], param['ransac_iter'], 10, True )
    if param['ransac_iter'] == 0:
        matches = init_matches
        matches['numi'], matches['hconf'] == 0, 0
        pose = np.zeros(6)
        pose[3:5] = np.nan
    elif runflag < 10:
        matches, pose = solveGeom(init_matches,parameters,yawerr)
    else:
        ntry = 1
        viter = -np.ones(3)
        parameters = ( wRq, wRd, yaw, np.nan, runflag, param['inlier_error'], param['ransac_iter'], 15, True )
        matches, pose, planechose = solveNorm(C,Q,dbmatch,pyaws,planes,init_matches,parameters,yawerr)
        viter[0] = matches['viter']
        if matches['numi'] == 0 or matches['hconf'] == 0:
            ntry = 2
            parameters = ( wRq, wRd, yaw, np.nan, runflag, 3*param['inlier_error'], param['ransac_iter'], 10, True )
            matches, pose, planechose = solveNorm(C,Q,dbmatch,pyaws,planes,init_matches,parameters,yawerr)
            viter[1] = matches['viter']
        if matches['numi'] == 0 or matches['hconf'] == 0:
            ntry, planechose = 3, 0
            parameters = ( wRq, wRd, yaw, np.nan, 7, 3*param['inlier_error'], param['ransac_iter'], 10, True )
            matches, pose = solveYaw(init_matches,parameters,yawerr)
            viter[2] = matches['viter']
        if matches['numi'] == 0 or matches['hconf'] == 0:
            ntry, planechose = 4, 0

    # save matches to disk
    matches_file = os.path.join(param['resultsdir'],'matches_'+qname+'.pkl')
    matches_out = open(matches_file,'wb')
    pickle.dump(matches,matches_out)
    matches_out.close()
    
    # extract pose parameters
    comp_runflag = matches['runflag']
    tray = pose[:3]
    comp_yaw = pose[3]
    comp_pyaw = pose[4] if runflag>=0 else np.nan
    scale = pose[5] if runflag>=0 else np.nan

    # Get scaled translation for query location
    if np.isnan(scale):
        wRq_pr = geom.YPRfromR(wRq)[1:]
        comp_wRq = geom.RfromYPR(comp_yaw, wRq_pr[0], wRq_pr[1])
        qloc = scalefrom3d(matches, tray, comp_wRq)[0]
    else: # scale calculated in RANSAC loop
        qloc = scale*tray

    # temporarily get yaw error
    qyaw_error = np.round(abs(np.mod(tyaw-comp_yaw,360)))
    qyaw_error = qyaw_error if qyaw_error<180 else abs(qyaw_error-360)

    # compute location errors wrt estimated query locations
    loc_err = ( (qloc[0]-qzx[1])**2 + (qloc[2]-qzx[0])**2 )**0.5
    gps_err = ( (gzx[1] -qzx[1])**2 + (gzx[0] -qzx[0])**2 )**0.5

    # compute the angle difference between T and ground truth translation
    tyaw_error = np.round(abs( 180/np.pi * np.arccos( np.abs(qloc[0]*qzx[1]+qloc[2]*qzx[0]) / (alg.norm([qloc[0],qloc[2]])*alg.norm(qzx)) ) ))

    # compute the plane normal angle error
    nyaw_error = np.nan if np.isnan(comp_pyaw) or np.isnan(tnorm) else np.mod(np.round(abs(comp_pyaw-tnorm)),180)
    nyaw_error = nyaw_error if nyaw_error<90 else abs(nyaw_error-180)

    # write pose estimation results to file
    yaw_err = np.nan
    pose_file = os.path.join(param['resultsdir'],param['pose_file'])
    with open(pose_file,'a') as pf:
        print >>pf, '\t'.join([qname, str(loc_err), str(gps_err), \
            str(tyaw_error), str(qyaw_error), str(nyaw_error), str(matches['numi']), \
            str(matches['numq']), str(matches['nmat']), str(matches['hconf']), \
            str(qloc[0]), str(qloc[2]), str(yaw_err), str(runflag)])

    # print post-homography data to file
    with open(Q.datafile,'a') as df:
        print >>df, ''
        print >>df, '------------------'
        print >>df, ''
        if ntry==1:   print >>df, 'Homography solution using low error threshold with restrictions.'
        elif ntry==2: print >>df, 'Homography solution using high error threshold with restrictions.'
        else:         print >>df, 'Solution not found. Setting T=0.'
        if planechose==0: print >>df, 'Solution formed with unset plane normal.'
        else:                         'Solution chosen with plane normal %d chosen.' % planechose
        print >>df, 'VP yaw | Computed yaw | Actual Yaw | Error : %3.0f | %3.0f | %3.0f | %3.0f' % (vyaw,comp_yaw,tyaw,qyaw_error)
        print >>df, 'Computed Normal | Actual Normal | Error : %3.0f | %3.0f | %3.0f' % (comp_pyaw,tnorm,nyaw_error)
        print >>df, 'Translation   (x|y|z): %.1f | %.1f | %.1f' % (qloc[0],qloc[1],qloc[2])
        print >>df, 'True position (x|-|z): %.1f |  -  | %.1f' % (qzx[1],qzx[0])
        print >>df, 'Angle error | Location error: %.0f | %.1f' % (tyaw_error,loc_err)
        print >>df, 'Number of Inliers | Total matches | Ratio: %d | %d | %.2f' % (matches['numi'],matches['nmat'],np.nan if matches['nmat']==0 else float(matches['numi'])/matches['nmat'])
        print >>df, 'Reprojection error | Homography confidence: %.3f | %.1f' % (matches['rperr'],matches['hconf'])
        print >>df, 'Valid Homographies | Iterations | Ratio: %d | %d | %.3f' % (matches['viter'],matches['niter'],np.nan if matches['niter']==0 else float(matches['viter'])/matches['niter'])
        print >>df, ''
        print >>df, '------------------'
        print >>df, ''
        booleans = [ loc_err<5, loc_err<10, not(5<np.mod(vyaw-tyaw,360)<355), \
                     not(10<np.mod(vyaw-tyaw,360)<350), \
                     not(5<np.mod(comp_yaw-tyaw,360)<355), ntry==1, ntry!=3, \
                     planechose!=0, matches['nmat']!=matches_start['nmat'], \
                     0 if planechose==0 else pconfs[planechose-1]>0, comp_yaw-vyaw ]
        print >>df, '|'.join(['%.0f' % (b) for b in booleans])

    # draw matches
    close = int(loc_err<5) + int(loc_err<10)
    yawclose = int(not(5<np.mod(vyaw-tyaw,360)<355)) + int(not(10<np.mod(vyaw-tyaw,360)<350))
    imgpath = os.path.join( param['resultsdir'] , qname + ';locerr=%.2f' % (loc_err) + ';locPerf_' + str(close) \
        + ';yawPerf_' + str(yawclose) + ';nplanes_' + str(len(pyaws)) + ';plane_' + str(planes[planechose]) + ';try_' + str(ntry) \
        + ';tAng=%.0f' % (tyaw_error) + ';qAng=%.0f' % (qyaw_error) + ';nAng=%.0f' % (nyaw_error) + ';' + dbmatch + '.jpg')
    draw_matches(matches, qimg, dbimg, imgpath)
#    imgpath = os.path.join( param['resultsdir'] , 'homography;' + qname + ';' + dbmatch + '.jpg')
#    draw_hom(matches, pose, wRq, wRd, Kq, Kd, qimg, dbimg, imgpath)
    if C.QUERY == 'oakland1': C.pose_param['draw_tags'] = False
    if C.pose_param['draw_tags']: draw_tags(C, Q, matches, pose, dbmatch, olat, olon, Kd, Kq)

    print 'Computed yaw / ground truth yaw        : %.0f / %.0f' % (comp_yaw,tyaw)
    if runflag < 10: print 'Computed normal bearing / ground truth : %.0f / %.0f' % (comp_pyaw,tnorm)
    print 'Computed query location relative to db     : %.1f, %.1f, %.1f' % tuple(qloc)
    print 'Ground truth query location relative to db : %.1f,  - , %.1f' % (qzx[1],qzx[0])

    input = (wRq, wRd)

    return qloc, loc_err, matches, input
Esempio n. 27
0
def VPfrom2Lines(lineqs):
    nlines = lineqs.shape[0]
    i0 = rnd.randint(0,nlines)
    i1 = rnd.randint(0,nlines-1)
    i1 = i1+1 if i1>=i0 else i1
    return geom.normalrows(np.cross(lineqs[i0,:],lineqs[i1,:]))