Esempio n. 1
0
 def test_4D(self):
     np.random.seed(0)
     a = np.random.rand(12, 12, 12, 12)
     self.assertTrue(
         np.allclose(rolling_sum(a, 3),
                     rolling_window(a, 3).sum(axis=(4, 5, 6, 7))))
     self.assertTrue(
         np.allclose(rolling_sum(a, 9),
                     rolling_window(a, 9).sum(axis=(4, 5, 6, 7))))
Esempio n. 2
0
 def test_2D(self):
     np.random.seed(0)
     a = np.random.rand(20, 20)
     self.assertTrue(
         np.allclose(rolling_sum(a, 3),
                     rolling_window(a, 3).sum(axis=(2, 3))))
     self.assertTrue(
         np.allclose(rolling_sum(a, 9),
                     rolling_window(a, 9).sum(axis=(2, 3))))
Esempio n. 3
0
 def test_3D(self):
     np.random.seed(0)
     a = np.random.rand(15, 15, 15)
     self.assertTrue(
         np.allclose(rolling_sum(a, 3),
                     rolling_window(a, 3).sum(axis=(3, 4, 5))))
     self.assertTrue(
         np.allclose(rolling_sum(a, 9),
                     rolling_window(a, 9).sum(axis=(3, 4, 5))))
Esempio n. 4
0
 def test_assumptions(self):
     with self.assertRaises(ValueError):
         # window_size bigger than dimensions of array should raise ValueError
         rolling_sum(np.array([1, 2, 3]), 5)
Esempio n. 5
0
 def test_reduce(self):
     np.random.seed(0)
     a = np.random.rand(5, 5)
     self.assertTrue(rolling_sum(a, window_size=5, reduce=True), a.sum())
Esempio n. 6
0
 def test_5D(self):
     np.random.seed(0)
     a = np.random.rand(10, 10, 10, 10, 10)
     self.assertTrue(
         np.allclose(rolling_sum(a, 3),
                     rolling_window(a, 3).sum(axis=(5, 6, 7, 8, 9))))
Esempio n. 7
0
    x = t.ppf(0.95, df=df)
    r = x / np.sqrt(df + x**2)
    sign_threshold[n] = x / np.sqrt(df + x**2)

mp.Raster.set_window_size(window_size)
M_corr.window_size = 1
mp.Raster.set_tiles((10, 10))

for i in M_th:
    progress_bar((i + 1) / M_th.c_tiles)
    th = M_th[i]
    wtd = M_wtd[i]
    fapar = M_fapar[i]
    fapar[th < 3] = np.nan
    corr = M_corr[i]

    count_values = rolling_sum(np.logical_and(~np.isnan(fapar),
                                              ~np.isnan(wtd)),
                               window_size=15)

    threshold = sign_threshold[count_values]

    significance = np.full_like(corr, 0, dtype=np.float64)
    significance[np.isnan(corr)] = np.nan
    significance[corr < -threshold] = -1
    significance[corr > threshold] = 1

    M_sig[i] = significance

mp.Raster.close()
Esempio n. 8
0
mp.Raster.set_window_size(15)
mp.Raster.set_tiles((20, 20))

d_p_pet = {}
d_wtd = {}
for i in M_th:
    progress_bar((i+1) / M_th.c_tiles)
    th = M_th[i]
    fapar = M_fapar[i]
    fapar[th < 3] = np.nan
    p_pet = M_p_pet[i]
    wtd = M_wtd[i]

    # P_PET
    nans = np.logical_or(np.isnan(fapar), np.isnan(p_pet))
    mask = (rolling_sum(nans, window_size=15) == 0)

    a = rolling_window(fapar, window_size=15)[mask]
    b = rolling_window(p_pet, window_size=15)[mask]

    if a.size == 0:
        continue

    sample_size = min(100, a.shape[0])

    x = correlation_threshold_inference(a[np.random.choice(np.arange(a.shape[0]), sample_size, replace=False)],
                                        b[np.random.choice(np.arange(b.shape[0]), sample_size, replace=False)])
    d_p_pet[i] = x

    # WTD
    nans = np.logical_or(np.isnan(fapar), np.isnan(wtd))