Esempio n. 1
0
def tilted_sqares():
    p1 = gt.Point(0, 0)
    p2 = gt.Point(0, 100)
    p3 = gt.Point(100, 100)
    p4 = gt.Point(100, 0)

    rectangle = Structure([p1, p2, p3, p4])
    submat = [[0]]
    subpoints = [[[[0.8, 0.2, 0, 0], [0, 0.8, 0.2, 0], [0, 0, 0.8, 0.2],
                   [0.2, 0.0, 0.0, 0.8]]]]
    t = gt.Tiling(rectangle, submat, subpoints)
    t.draw()
Esempio n. 2
0
def triangles():
    p1 = gt.Point(0, 0)
    p2 = gt.Point(100, 0)
    p3 = gt.Point(50, 86)

    triangle = gt.Structure([p1, p2, p3])
    submat = [[0, 0, 0, 0]]
    substates = [[1, 0, 0, 0]]
    subpoints = [[[[1, 0, 0], [0.5, 0.5, 0], [0.5, 0, 0.5]],
                  [[0.5, 0.5, 0], [0, 1, 0], [0, 0.5, 0.5]],
                  [[0.5, 0, 0.5], [0, 0.5, 0.5], [0, 0, 1]],
                  [[0, 0.5, 0.5], [0.5, 0., 0.5], [0.5, 0.5, 0]]]]
    t = gt.Tiling(triangle, submat, subpoints, substates)
    t.draw(depth=6,
           filename='geometric_tilings/test_triangle_c2.png',
           fill=True)
Esempio n. 3
0
def snowflake():
    p1 = gt.Point(0, 0)
    p2 = gt.Point(100, 0)
    p3 = gt.Point(50, 86)

    triangle = gt.Structure([p1, p2, p3])
    submat = [[1, 1, 1], [1, 1]]
    subpoints = [
        [  # substructures of initial triangle:
            [[1 / 3, 2 / 3, 0], [2 / 3, 1 / 3, 0], [2 / 3, 2 / 3, -1 / 3]],
            [[0, 1 / 3, 2 / 3], [0, 2 / 3, 1 / 3], [-1 / 3, 2 / 3, 2 / 3]],
            [[2 / 3, 0, 1 / 3], [1 / 3, 0, 2 / 3], [2 / 3, -1 / 3, 2 / 3]]
        ],
        [[[0, 1 / 3, 2 / 3], [0, 2 / 3, 1 / 3], [-1 / 3, 2 / 3, 2 / 3]],
         [[2 / 3, 0, 1 / 3], [1 / 3, 0, 2 / 3], [2 / 3, -1 / 3, 2 / 3]]]
    ]
    t = gt.Tiling(triangle, submat, subpoints)
    t.draw(depth=5, filename='geometric_tilings/test_snowflake.png')
Esempio n. 4
0
def rectangles():
    p1 = gt.Point(0, 0)
    p2 = gt.Point(0, 100)
    p3 = gt.Point(100, 100)
    p4 = gt.Point(100, 0)

    eps = 0.0

    rectangle = gt.Structure([p1, p2, p3, p4])
    # 0: rectangle
    # 1: triangle
    # rectangle is split into four triangles (in the corners) and a rectangle in the center (rotated 45° to the initial rectangle)
    # triangle is split into two triangles and a rectangle
    submat = [[1, 1, 1, 1, 0], [1, 1, 0]]
    sp1 = [0.5 - eps, 0.5 - eps, eps, eps]
    sp2 = [eps, 0.5 - eps, 0.5 - eps, eps]
    sp3 = [eps, eps, 0.5 - eps, 0.5 - eps]
    sp4 = [0.5 - eps, eps, eps, 0.5 - eps]
    c1 = [1, 0, 0, 0]
    c2 = [0, 1, 0, 0]
    c3 = [0, 0, 1, 0]
    c4 = [0, 0, 0, 1]
    subpoints = [
        [  # substructures of rectangle:
            [sp1, sp2, c2],  # first triangle
            [sp2, sp3, c3],  # second triangle 
            [sp3, sp4, c4],  # third triangle
            [sp4, sp1, c1],  # fourth triangle
            [sp1, sp2, sp3, sp4]  # center rectangle
        ],
        [  # substructers of triangles:
            [[1, 0, 0], [0.5, 0.5, 0], [0.5, 0, 0.5]],  # first triangle
            [[0, 1, 0], [0.5, 0.5, 0], [0, 0.5, 0.5]],  # second triangle
            [[0, 0, 1], [0, 0.5, 0.5], [0.5, 0.5, 0], [0.5, 0.,
                                                       0.5]]  # rectangle
        ]
    ]
    substates = [[0, 0, 0, 0, 1], [0, 0, 1]]
    t = gt.Tiling(rectangle, submat, subpoints, substates)
    t.draw(depth=7,
           fill=True,
           filename='geometric_tilings/test_rect_triang_c2_e' + str(eps) +
           '.png')
Esempio n. 5
0
def chair_tiling():
    # p6 ------ p5
    # I         I
    # I    s8 - s3
    # I    I    I
    # s4 - s9   p4 - s2 - p3
    # I    I         I    I
    # I    s5 - s6 - s7   I
    # I         I         I
    # p1 ------ s1 ------ p2

    p1 = gt.Point(0, 0)
    p2 = gt.Point(100, 0)
    p3 = gt.Point(100, 50)
    p4 = gt.Point(50, 50)
    p5 = gt.Point(50, 100)
    p6 = gt.Point(0, 100)

    chair = gt.Structure([p1, p2, p3, p4, p5, p6])
    p1 = [1, 0, 0, 0, 0, 0]
    p2 = [0, 1, 0, 0, 0, 0]
    p3 = [0, 0, 1, 0, 0, 0]
    p4 = [0, 0, 0, 1, 0, 0]
    p5 = [0, 0, 0, 0, 1, 0]
    p6 = [0, 0, 0, 0, 0, 1]
    s1 = [0.5, 0.5, 0, 0, 0, 0]
    s2 = [0, 0, 0.5, 0.5, 0, 0]
    s3 = [0, 0, 0, 0.5, 0.5, 0]
    s4 = [0.5, 0, 0, 0, 0, 0.5]
    s5 = [0.5, 0, 0, 0.5, 0, 0]
    s6 = [0.5, 0, 0.5, 0, 0, 0]
    s7 = [0, 0.5, 0, 0.5, 0, 0]
    s8 = [0, 0, 0, 0.5, 0, 0.5]
    s9 = [0.5, 0, 0, 0, 0.5, 0]
    submat = [[0, 0, 0, 0]]
    subpoints = [[[p1, s1, s6, s5, s9, s4], [p2, p3, s2, s7, s6, s1],
                  [p6, s4, s9, s8, s3, p5], [s5, s7, s2, p4, s3, s8]]]
    substates = [[0, 1, 0, 2]]
    t = gt.Tiling(chair, submat, subpoints, substates)
    t.draw(depth=6,
           filename='geometric_tilings/chair_1_c2.png',
           only_last_it=True,
           fill=True)
Esempio n. 6
0
def triangles_2():
    p1 = gt.Point(0, 0)
    p2 = gt.Point(100, 0)
    p3 = gt.Point(50, 86)

    eps = 0.02

    sp1 = [1, 0, 0]
    sp2 = [0.5 - eps, 0.5 - eps, 2 * eps]
    sp3 = [0.5 - eps, 2 * eps, 0.5 - eps]
    sp4 = [2 * eps, 0.5 - eps, 0.5 - eps]
    sp5 = [0, 1, 0]
    sp6 = [0, 0, 1]

    triangle = gt.Structure([p1, p2, p3])
    submat = [[0, 0, 0, 0]]
    substates = [[1, 1, 1, 2]]
    subpoints = [[[sp1, sp2, sp3], [sp2, sp5, sp4], [sp3, sp4, sp6],
                  [sp4, sp3, sp2]]]
    t = gt.Tiling(triangle, submat, subpoints, substates)
    t.draw(depth=7,
           filename='geometric_tilings/test_triangles_2_c1_e' + str(eps) +
           '.png',
           fill=True)
Esempio n. 7
0
def penrose():
    #         x
    #        / \
    #       c   d
    #     x1 __  \
    #   a /    c--x2
    #    /       , \
    #   /   ,b-´    e
    #  /,-´´         \
    # x-------b-------x
    #
    # (a is the full length of the long sides)
    #
    #
    #
    #      f    ,- x -.
    #        ,-´    \   `-.  f
    #    ,-´         \     `-.
    #  x -------f--- x3 --g-- x
    #
    # (the center diagonal also has length g)

    def get_length_big(a):
        b = a * (math.sin(math.pi / 5)) / (math.sin(2 * math.pi / 5))
        c = a - b
        d = c * (math.sin(3 * math.pi / 5)) / (math.sin(math.pi / 5))
        e = a - d
        return b, c, d, e

    def get_h(f):
        g = f * (math.sin(math.pi / 5)) / (math.sin(2 * math.pi / 5))
        return g

    a = 50

    # the initial structure: a regular decadon of 10 big triangles centered at 0
    p0 = gt.Point(50, 50)
    points = [p0]
    for i in range(10):
        xi = 50 + math.cos(i * math.pi / 5) * a
        yi = 50 + math.sin(i * math.pi / 5) * a
        points.append(gt.Point(xi, yi))
        #print(str(points[-1]))

    # struct 1: big Triangle
    # struct 2: small triangle
    # struct 3: decadon

    ratio = (math.sin(math.pi / 5)) / (math.sin(2 * math.pi / 5))
    p1 = [1, 0, 0]
    p2 = [0, 1, 0]
    p3 = [0, 0, 1]
    bigT = gt.Structure([points[1], points[2], points[0]])

    submat_bigT = [0, 0, 1]
    x1 = [1 - ratio, 0, ratio]
    x2 = [0, ratio, 1 - ratio]
    subpoints_bigT = [[p2, x2, p1], [x1, x2, p1], [p3, x2, x1]]
    substates_bigT = [0, 1, 1]

    submat_smallT = [0, 1]
    x3 = [1 - ratio, ratio, 0]
    #subpoints_smallT = [
    #	[p1, p3, x3],
    #	[x3, p3, p2]
    #]
    subpoints_smallT = [[x3, p3, p1], [p2, p3, x3]]
    substates_smallT = [0, 0]

    decadon = gt.Structure(points[1:], type=2)
    submat_decadon = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

    c = np.ones(10) * 0.1
    p01 = [1, 0, 0, 0, 0, 0, 0, 0, 0, 0]
    p02 = [0, 1, 0, 0, 0, 0, 0, 0, 0, 0]
    p03 = [0, 0, 1, 0, 0, 0, 0, 0, 0, 0]
    p04 = [0, 0, 0, 1, 0, 0, 0, 0, 0, 0]
    p05 = [0, 0, 0, 0, 1, 0, 0, 0, 0, 0]
    p06 = [0, 0, 0, 0, 0, 1, 0, 0, 0, 0]
    p07 = [0, 0, 0, 0, 0, 0, 1, 0, 0, 0]
    p08 = [0, 0, 0, 0, 0, 0, 0, 1, 0, 0]
    p09 = [0, 0, 0, 0, 0, 0, 0, 0, 1, 0]
    p10 = [0, 0, 0, 0, 0, 0, 0, 0, 0, 1]
    subpoints_decadon = [[p01, p02, c], [p03, p02, c], [p03, p04, c],
                         [p05, p04, c], [p05, p06, c], [p07, p06, c],
                         [p07, p08, c], [p09, p08, c], [p09, p10, c],
                         [p01, p10, c]]
    substates_decadon = np.zeros(10)

    submat = [submat_bigT, submat_smallT, submat_decadon]
    subpoints = [subpoints_bigT, subpoints_smallT, subpoints_decadon]
    substates = [substates_bigT, substates_smallT, substates_decadon]

    #t = gt.Tiling(decadon, submat, subpoints, substates)
    #t.draw(depth=6, only_last_it=True)

    for d in [4, 5, 6, 7]:
        t = gt.Tiling(decadon, submat, subpoints, substates)
        t.draw(depth=d,
               only_last_it=True,
               filename='geometric_tilings/penrose_' + str(d) + '_c.png',
               fill=True)
Esempio n. 8
0
def rhombs_1():
    b = 50
    a = b * math.tan(math.pi / 5)
    c = (b**2 - a**2) / (2 * a)
    d = ((a + c) * a) / (2 * b)
    #print (a,b,c,d)

    p1 = gt.Point(b, b - a)
    p2 = gt.Point(2 * b, b)
    p3 = gt.Point(b, b + a)
    p4 = gt.Point(0, b)

    bigrhomb = gt.Structure([p1, p2, p3, p4], type=0)

    eps = 0.1
    b_p1 = [1, 0, 0, 0]
    b_p2 = [0, 1, 0, 0]
    b_p3 = [0, 0, 1, 0]
    b_p4 = [0, 0, 0, 1]
    b_s1 = [
        1 - (a - (a + c) / 2) / (2 * a), (b - d) / (2 * b),
        (a - (a + c) / 2) / (2 * a), -(b - d) / (2 * b)
    ]
    b_s2 = [(a + c) / (4 * a), d / (2 * b), 1 - ((a + c) / (4 * a)),
            -d / (2 * b)]
    b_s3 = [(a + c) / (4 * a), -d / (2 * b), 1 - ((a + c) / (4 * a)),
            d / (2 * b)]
    b_s4 = [
        1 - (a - (a + c) / 2) / (2 * a), -(b - d) / (2 * b),
        (a - (a + c) / 2) / (2 * a), (b - d) / (2 * b)
    ]
    b_s5 = [1 - ((a - c) / (2 * a)), 0, (a - c) / (2 * a), 0]

    e = (a - c) / 2
    f = (b - d) - ((e * b) / a)
    smallrhomb = gt.Structure([
        gt.Point(0, b - d),
        gt.Point(-e, 0),
        gt.Point(0, -b + d),
        gt.Point(e, 0)
    ],
                              type=1)

    s_p1 = [1, 0, 0, 0]
    s_p2 = [0, 1, 0, 0]
    s_p3 = []
    s_p4 = [0, 0, 0, 1]
    s_s1 = [f / (2 * (b - d)), 1, -f / (2 * (b - d)), 0]
    s_s2 = [1 / 3, 0, 2 / 3, 0]
    s_s2 = [
        1 - ((2 * e * b) / a + f) / (2 * (b - d)), 0,
        ((2 * e * b) / a + f) / (2 * (b - d)), 0
    ]
    s_s3 = [f / (2 * (b - d)), 0, -f / (2 * (b - d)), 1]
    s_s4 = [1 - (e * b) / (a * (b - d)), 0, (e * b) / (a * (b - d)), 0]

    submat = [[0, 0, 0, 1], [0, 1, 1]]
    subpoints = [[[b_s1, b_p2, b_s2, b_s5], [b_s2, b_p3, b_s3, b_s5],
                  [b_s3, b_p4, b_s4, b_s5], [b_s4, s_p1, b_s1, b_s5]],
                 [[s_s3, s_p1, s_s1, s_s4], [s_s1, s_p2, s_s2, s_s4],
                  [s_s2, s_p4, s_s3, s_s4]]]

    substates = [[1, 0, 1, 0], [1, 0, 0]]

    #t = gt.Tiling(bigrhomb, submat, subpoints, substates)
    #t.draw(depth=3, only_last_it=True)#, filename='geometric_tilings/rhombs_c1.png', fill=True)

    # the full star:
    base = [p1, p2, p3, p4]
    origin = (p2.x, p2.y)
    points = [p4, p1]
    for i in range(1, 5):
        #new_points = [p1]
        for j in [3, 0]:
            px, py = gt.rotate(origin, (base[j].x, base[j].y),
                               (2 * i / 5) * math.pi)
            points.append(gt.Point(px, py))

    c = np.array([1, 0, 1, 0, 1, 0, 1, 0, 1, 0]) * 0.2
    p11 = [0, 0, 0, 0, 0, 0, 0, 0, 0, 1]
    p13 = [0, 1, 0, 0, 0, 0, 0, 0, 0, 0]
    p14 = [1, 0, 0, 0, 0, 0, 0, 0, 0, 0]
    p21 = [0, 1, 0, 0, 0, 0, 0, 0, 0, 0]
    p23 = [0, 0, 0, 1, 0, 0, 0, 0, 0, 0]
    p24 = [0, 0, 1, 0, 0, 0, 0, 0, 0, 0]
    p31 = [0, 0, 0, 1, 0, 0, 0, 0, 0, 0]
    p33 = [0, 0, 0, 0, 0, 1, 0, 0, 0, 0]
    p34 = [0, 0, 0, 0, 1, 0, 0, 0, 0, 0]
    p41 = [0, 0, 0, 0, 0, 1, 0, 0, 0, 0]
    p43 = [0, 0, 0, 0, 0, 0, 0, 1, 0, 0]
    p44 = [0, 0, 0, 0, 0, 0, 1, 0, 0, 0]
    p51 = [0, 0, 0, 0, 0, 0, 0, 1, 0, 0]
    p53 = [0, 0, 0, 0, 0, 0, 0, 0, 0, 1]
    p54 = [0, 0, 0, 0, 0, 0, 0, 0, 1, 0]
    #print(len(points))
    star = gt.Structure(points, type=2)

    submat.append([0, 0, 0, 0, 0])
    subpoints.append([
        [p11, c, p13, p14],
        [p21, c, p23, p24],
        [p31, c, p33, p34],
        [p41, c, p43, p44],
        [p51, c, p53, p54],
    ])
    substates.append([0, 0, 0, 0, 0])

    t = gt.Tiling(star, submat, subpoints, substates)
    t.draw(depth=7,
           only_last_it=True,
           filename='geometric_tilings/rhombs_circular.png')  #, fill=True)