def __init__(self, sidelength, point):
     half_sl = sidelength / 2
     self.tl = Point2D(point.x - half_sl, point.y - half_sl)
     self.tr = Point2D(point.x + half_sl, point.y - half_sl)
     self.bl = Point2D(point.x - half_sl, point.y + half_sl)
     self.br = Point2D(point.x + half_sl, point.y + half_sl)
     self.sidelength = sidelength
Esempio n. 2
0
    def test_edge_property(self):
        """
        Small experimental test to verify whether the Frechet Distance
        between any two edges is defined my the maximum distance between
        both pairs of endpoints.
        """
        spacing = 0.5
        fixed = Edge2D(Point2D(0.0, 0.0), Point2D(0.0, 1.0)).get_steiner_edge(spacing)
        u, v = fixed.get_spine()

        def almost_equal(estimate, real):
            return real + 1 >= estimate >= real - 1

        for i in range(0, 10000):
            p1 = Point2D(float(randint(-20, 20)), float(randint(-20, 20)))
            p2 = Point2D(float(randint(-20, 20)), float(randint(-20, 20)))

            # Ensure points aren't the same
            if p1 == p2:
                p2 = Point2D(p2.x + 0.1, p2.y)

            rand_edge = Edge2D(p1, p2).get_steiner_edge(spacing)
            x, y = rand_edge.get_spine()
            r = min(
                max(np.linalg.norm(x.v - u.v), np.linalg.norm(y.v - v.v)),
                max(np.linalg.norm(y.v - u.v), np.linalg.norm(x.v - v.v))
            )
            frechet_estimate = discrete_frechet(fixed, rand_edge)

            assert almost_equal(r, frechet_estimate)
    def test_approximation(self):
        u = Point2D(0.0, 0.0)
        grid = ExponentialGrid2D(u, self.error, 1.0, 20.0)
        p = Point2D(0.0, 15.0)
        p_prime = grid.approximate_point(p)

        # Test for error property
        assert np.linalg.norm(p.v - p_prime.v) <= \
            (self.error / 2) * np.linalg.norm(p.v - u.v)
Esempio n. 4
0
    def test_bottleneck_weight_easy_dag(self):
        dag = DirectedAcyclicGraph()

        p1 = Point2D(0, 0)
        p2 = Point2D(1, 0)
        p3 = Point2D(2, 0)

        dag.add_edge(p1, p2, 1)
        dag.add_edge(p2, p3, 2)

        assert dag.bottleneck_path_weight(p1, p3) == 2
 def __init__(self, sidelength, tl_point):
     self.tl = tl_point
     self.tr = Point2D(tl_point.x + sidelength, tl_point.y)
     self.bl = Point2D(tl_point.x, tl_point.y + sidelength)
     self.br = Point2D(tl_point.x + sidelength, tl_point.y + sidelength)
     self.points = [
         self.tl,
         self.tr,
         self.bl,
         self.br
     ]
    def test_edge(self):
        curve = Edge2D(Point2D(-5.0, 1.0), Point2D(-4.0, 4.0))
        e = Edge2D(Point2D(-3.0, 1.0), Point2D(-3.0, 3.0))
        grid = FrechetGrid2D(curve, self.error)

        real = discrete_frechet(e.get_steiner_curve(STEINER_SPACING),
                                curve.get_steiner_curve(STEINER_SPACING))
        estimate = grid.approximate_frechet(e)

        # Test for (1 + epsilon) property of grid estimate
        assert estimate <= real or \
            real <= (1 + self.error) * estimate
Esempio n. 7
0
    def test_symmetric_curves(self):
        c1 = PolygonalCurve2D([
            Point2D(0.0, 1.0),
            Point2D(3.0, 2.0),
            Point2D(5.0, 2.0),
            Point2D(7.0, 1.0)
        ])

        c2 = PolygonalCurve2D([
            Point2D(0.0, 0.0),
            Point2D(3.0, 1.0),
            Point2D(5.0, 1.0),
            Point2D(7.0, 0.0)
        ])

        self.perform_test(c1, c2, 1.0)
Esempio n. 8
0
    def create_children(children, parent):
        prev = None
        first = None
        for child in children:
            new = Tree.Node(Point2D(child['x'], child['y']), parent=parent)
            new.left_child = create_children(child['children'], new)

            if prev:
                prev.right_sibling = new
            if not first:
                first = new

            prev = new

        return first
Esempio n. 9
0
    def sub_divide(self, d_t):
        assert d_t > 0, "Distance for line partition must be greater than 0."
        pi = list()
        pi.append(self.p1)
        curr_t = t = d_t / self.d if self.d != 0 else 1

        while curr_t < 1:
            pi.append(Point2D(
                (1 - curr_t) * self.p1.x + (curr_t * self.p2.x),
                (1 - curr_t) * self.p1.y + (curr_t * self.p2.y)
            ))

            curr_t += t

        pi.append(self.p2)
        return pi
Esempio n. 10
0
    def test_asymmetric_curves(self):
        c1 = PolygonalCurve2D([
            Point2D(-5.0, 1.0),
            Point2D(-4.0, 4.0),
            Point2D(-2.0, -1.0)
        ])

        c2 = PolygonalCurve2D([
            Point2D(-6.0, 0.0),
            Point2D(-3.0, -2.0),
            Point2D(-2.0, 1.0)
        ])

        self.perform_test(c1, c2, 6.08)
Esempio n. 11
0
def create_tree(json):
    root = Tree.Node(Point2D(json['root']['x'], json['root']['x']))

    def create_children(children, parent):
        prev = None
        first = None
        for child in children:
            new = Tree.Node(Point2D(child['x'], child['y']), parent=parent)
            new.left_child = create_children(child['children'], new)

            if prev:
                prev.right_sibling = new
            if not first:
                first = new

            prev = new

        return first

    root.left_child = create_children(json['root']['children'], root)
    return Tree(root=root)
Esempio n. 12
0
    def test_bottleneck_weight_hard_dag(self):
        dag = DirectedAcyclicGraph()

        p1 = Point2D(0, 0)
        p2 = Point2D(1, 0)
        p3 = Point2D(2, 0)
        p4 = Point2D(3, 0)
        p5 = Point2D(1, -1)
        p6 = Point2D(2, -1)

        dag.add_edge(p1, p2, 1)
        dag.add_edge(p2, p3, 2)
        dag.add_edge(p3, p4, 1)
        dag.add_edge(p2, p6, 3)
        dag.add_edge(p1, p5, 2)
        dag.add_edge(p5, p6, 5)
        dag.add_edge(p6, p4, 6)

        assert dag.bottleneck_path_weight(p1, p4) == 2
Esempio n. 13
0
    def test_small_float_values(self):
        tree = CurveRangeTree2D(
            PolygonalCurve2D([
                Point2D(0.0, 0.0),
                Point2D(1.0, 0.0),
                Point2D(0.0, -0.01),
                Point2D(1.0, -0.01),
                Point2D(0.0, -0.02),
                Point2D(1.0, -0.02)
            ]), self.error, 0.55)

        # Create query parameters
        q_edge = Edge2D(Point2D(0.0, 0.0), Point2D(1.0, -0.02))
        x = Point2D(0.0, 0.0)
        x_edge = Edge2D(Point2D(0.0, 0.0), Point2D(1.0, 0.0))
        y = Point2D(1.0, -0.02)
        y_edge = Edge2D(Point2D(0.0, -0.02), Point2D(1.0, -0.02))

        assert tree.is_approximate(q_edge, x, y, x_edge, y_edge)

        q_edge = Edge2D(Point2D(2.2, 0.0), Point2D(2.2, -0.02))
        assert not tree.is_approximate(q_edge, x, y, x_edge, y_edge)
Esempio n. 14
0
    def test_query_square_curve(self):
        tree = CurveRangeTree2D(
            PolygonalCurve2D([
                Point2D(0.0, 0.0),
                Point2D(5.0, 0.0),
                Point2D(5.0, 5.0),
                Point2D(1.0, 5.0),
                Point2D(1.0, 1.0),
                Point2D(4.0, 1.0),
                Point2D(4.0, 4.0),
                Point2D(2.0, 4.0),
                Point2D(2.0, 2.0),
                Point2D(3.0, 2.0),
                Point2D(3.0, 3.0)
            ]), self.error, self.delta)

        # Create query parameters
        x = Point2D(2.5, 0.0)
        x_edge = Edge2D(Point2D(0.0, 0.0), Point2D(5.0, 0.0))
        y = Point2D(3.0, 2.5)
        y_edge = Edge2D(Point2D(3.0, 2.0), Point2D(3.0, 3.0))

        # Query various edges against this tree
        q_edge = Edge2D(Point2D(2.5, -2.0), Point2D(5.5, -0.5))
        assert tree.is_approximate(q_edge, x, y, x_edge, y_edge)

        q_edge = Edge2D(Point2D(-1.1, 5.0), Point2D(-1.1, 1))
        assert not tree.is_approximate(q_edge, x, y, x_edge, y_edge)

        q_edge = Edge2D(Point2D(1.0, 2.5), Point2D(5.0, 2.5))
        assert not tree.is_approximate(q_edge, x, y, x_edge, y_edge)

        q_edge = Edge2D(Point2D(0.0, 0.0), Point2D(5.0, 5.0))
        assert not tree.is_approximate(q_edge, x, y, x_edge, y_edge)
Esempio n. 15
0
    def test_query_trivial_curve(self):
        tree = CurveRangeTree2D(
            PolygonalCurve2D(
                [Point2D(0.0, 0.0),
                 Point2D(3.0, 0.0),
                 Point2D(3.0, 3.0)]), self.error, self.delta)

        # Create query parameters
        q_edge = Edge2D(Point2D(0.0, -1.0), Point2D(3.0, -1.0))
        x = Point2D(0.25, 0.0)
        x_edge = Edge2D(Point2D(0.0, 0.0), Point2D(3.0, 0.0))
        y = Point2D(3.0, 2.5)
        y_edge = Edge2D(Point2D(3.0, 0.0), Point2D(3.0, 3.0))

        assert tree.is_approximate(q_edge, x, y, x_edge, y_edge)