Esempio n. 1
0
class HyperboloidMetric(HyperbolicMetric):
    """Class that defines operations using a hyperbolic metric.

    Parameters
    ----------
    dim : int
        Dimension of the hyperbolic space.
    point_type : str, {'extrinsic', 'intrinsic', etc}
        Default coordinates to represent points in hyperbolic space.
        Optional, default: 'extrinsic'.
    scale : int
        Scale of the hyperbolic space, defined as the set of points
        in Minkowski space whose squared norm is equal to -scale.
        Optional, default: 1.
    """

    default_point_type = 'vector'
    default_coords_type = 'extrinsic'

    def __init__(self, dim, coords_type='extrinsic', scale=1):
        super(HyperboloidMetric, self).__init__(dim=dim, scale=scale)
        self.embedding_metric = MinkowskiMetric(dim + 1)

        self.coords_type = coords_type
        self.point_type = HyperbolicMetric.default_point_type

        self.scale = scale

    def inner_product_matrix(self, base_point=None):
        """Compute the inner product matrix.

        Parameters
        ----------
        base_point: array-like, shape=[..., dim + 1]
            Base point.
            Optional, default: None.

        Returns
        -------
        inner_prod_mat: array-like, shape=[..., dim+1, dim + 1]
            Inner-product matrix.
        """
        self.embedding_metric.inner_product_matrix(base_point)

    def _inner_product(self, tangent_vec_a, tangent_vec_b, base_point=None):
        """Compute the inner-product of two tangent vectors at a base point.

        Parameters
        ----------
        tangent_vec_a : array-like, shape=[..., dim + 1]
            First tangent vector at base point.
        tangent_vec_b : array-like, shape=[..., dim + 1]
            Second tangent vector at base point.
        base_point : array-like, shape=[..., dim + 1], optional
            Point in hyperbolic space.

        Returns
        -------
        inner_prod : array-like, shape=[...,]
            Inner-product of the two tangent vectors.
        """
        inner_prod = self.embedding_metric.inner_product(
            tangent_vec_a, tangent_vec_b, base_point)
        return inner_prod

    def _squared_norm(self, vector, base_point=None):
        """Compute the squared norm of a vector.

        Squared norm of a vector associated with the inner-product
        at the tangent space at a base point.

        Parameters
        ----------
        vector : array-like, shape=[..., dim + 1]
            Vector on the tangent space of the hyperbolic space at base point.
        base_point : array-like, shape=[..., dim + 1], optional
            Point in hyperbolic space in extrinsic coordinates.

        Returns
        -------
        sq_norm : array-like, shape=[...,]
            Squared norm of the vector.
        """
        sq_norm = self.embedding_metric.squared_norm(vector)
        return sq_norm

    def exp(self, tangent_vec, base_point):
        """Compute the Riemannian exponential of a tangent vector.

        Parameters
        ----------
        tangent_vec : array-like, shape=[..., dim + 1]
            Tangent vector at a base point.
        base_point : array-like, shape=[..., dim + 1]
            Point in hyperbolic space.

        Returns
        -------
        exp : array-like, shape=[..., dim + 1]
            Point in hyperbolic space equal to the Riemannian exponential
            of tangent_vec at the base point.
        """
        sq_norm_tangent_vec = self.embedding_metric.squared_norm(tangent_vec)
        sq_norm_tangent_vec = gs.clip(sq_norm_tangent_vec, 0, math.inf)

        coef_1 = utils.taylor_exp_even_func(sq_norm_tangent_vec,
                                            utils.cosh_close_0,
                                            order=5)
        coef_2 = utils.taylor_exp_even_func(sq_norm_tangent_vec,
                                            utils.sinch_close_0,
                                            order=5)

        exp = (gs.einsum('...,...j->...j', coef_1, base_point) +
               gs.einsum('...,...j->...j', coef_2, tangent_vec))

        exp = Hyperboloid(dim=self.dim).regularize(exp)
        return exp

    def log(self, point, base_point):
        """Compute Riemannian logarithm of a point wrt a base point.

        If point_type = 'poincare' then base_point belongs
        to the Poincare ball and point is a vector in the Euclidean
        space of the same dimension as the ball.

        Parameters
        ----------
        point : array-like, shape=[..., dim + 1]
            Point in hyperbolic space.
        base_point : array-like, shape=[..., dim + 1]
            Point in hyperbolic space.

        Returns
        -------
        log : array-like, shape=[..., dim + 1]
            Tangent vector at the base point equal to the Riemannian logarithm
            of point at the base point.
        """
        angle = self.dist(base_point, point) / self.scale

        coef_1_ = utils.taylor_exp_even_func(angle**2,
                                             utils.inv_sinch_close_0,
                                             order=4)
        coef_2_ = utils.taylor_exp_even_func(angle**2,
                                             utils.inv_tanh_close_0,
                                             order=4)

        log_term_1 = gs.einsum('...,...j->...j', coef_1_, point)
        log_term_2 = -gs.einsum('...,...j->...j', coef_2_, base_point)
        log = log_term_1 + log_term_2
        return log

    def dist(self, point_a, point_b):
        """Compute the geodesic distance between two points.

        Parameters
        ----------
        point_a : array-like, shape=[..., dim + 1]
            First point in hyperbolic space.
        point_b : array-like, shape=[..., dim + 1]
            Second point in hyperbolic space.

        Returns
        -------
        dist : array-like, shape=[...,]
            Geodesic distance between the two points.
        """
        sq_norm_a = self.embedding_metric.squared_norm(point_a)
        sq_norm_b = self.embedding_metric.squared_norm(point_b)
        inner_prod = self.embedding_metric.inner_product(point_a, point_b)

        cosh_angle = -inner_prod / gs.sqrt(sq_norm_a * sq_norm_b)
        cosh_angle = gs.clip(cosh_angle, 1.0, 1e24)

        dist = gs.arccosh(cosh_angle)
        dist *= self.scale
        return dist
Esempio n. 2
0
class HyperboloidMetric(HyperbolicMetric):
    """Class that defines operations using a hyperbolic metric.

    Parameters
    ----------
    dim : int
        Dimension of the hyperbolic space.
    point_type : str, {'extrinsic', 'intrinsic', etc}, optional
        Default coordinates to represent points in hyperbolic space.
    scale : int, optional
        Scale of the hyperbolic space, defined as the set of points
        in Minkowski space whose squared norm is equal to -scale.
    """

    default_point_type = 'vector'
    default_coords_type = 'extrinsic'

    def __init__(self, dim, coords_type='extrinsic', scale=1):
        super(HyperboloidMetric, self).__init__(
            dim=dim,
            scale=scale)
        self.embedding_metric = MinkowskiMetric(dim + 1)

        self.coords_type = coords_type
        self.point_type = HyperbolicMetric.default_point_type

        self.scale = scale

    def inner_product_matrix(self, base_point=None):
        """Compute the inner product matrix.

        Parameters
        ----------
        base_point: array-like, shape=[..., dim+1]

        Returns
        -------
        inner_prod_mat: array-like, shape=[..., dim+1, dim+1]
        """
        self.embedding_metric.inner_product_matrix(base_point)

    def _inner_product(self, tangent_vec_a, tangent_vec_b, base_point=None):
        """Compute the inner-product of two tangent vectors at a base point.

        Parameters
        ----------
        tangent_vec_a : array-like, shape=[..., dim + 1]
            First tangent vector at base point.
        tangent_vec_b : array-like, shape=[..., dim + 1]
            Second tangent vector at base point.
        base_point : array-like, shape=[..., dim + 1], optional
            Point in hyperbolic space.

        Returns
        -------
        inner_prod : array-like, shape=[..., 1]
            Inner-product of the two tangent vectors.
        """
        inner_prod = self.embedding_metric.inner_product(
            tangent_vec_a, tangent_vec_b, base_point)
        return inner_prod

    def _squared_norm(self, vector, base_point=None):
        """Compute the squared norm of a vector.

        Squared norm of a vector associated with the inner-product
        at the tangent space at a base point.

        Parameters
        ----------
        vector : array-like, shape=[..., dim + 1]
            Vector on the tangent space of the hyperbolic space at base point.
        base_point : array-like, shape=[..., dim + 1], optional
            Point in hyperbolic space in extrinsic coordinates.

        Returns
        -------
        sq_norm : array-like, shape=[..., 1]
            Squared norm of the vector.
        """
        sq_norm = self.embedding_metric.squared_norm(vector)
        return sq_norm

    @geomstats.vectorization.decorator(['else', 'vector', 'vector'])
    def exp(self, tangent_vec, base_point):
        """Compute the Riemannian exponential of a tangent vector.

        Parameters
        ----------
        tangent_vec : array-like, shape=[..., dim + 1]
            Tangent vector at a base point.
        base_point : array-like, shape=[..., dim + 1]
            Point in hyperbolic space.

        Returns
        -------
        exp : array-like, shape=[..., dim + 1]
            Point in hyperbolic space equal to the Riemannian exponential
            of tangent_vec at the base point.
        """
        sq_norm_tangent_vec = self.embedding_metric.squared_norm(
            tangent_vec)
        sq_norm_tangent_vec = gs.clip(sq_norm_tangent_vec, 0, math.inf)
        norm_tangent_vec = gs.sqrt(sq_norm_tangent_vec)

        mask_0 = gs.isclose(sq_norm_tangent_vec, 0.)
        mask_0 = gs.to_ndarray(mask_0, to_ndim=1)
        mask_else = ~mask_0
        mask_else = gs.to_ndarray(mask_else, to_ndim=1)
        mask_0_float = gs.cast(mask_0, gs.float32)
        mask_else_float = gs.cast(mask_else, gs.float32)

        coef_1 = gs.zeros_like(norm_tangent_vec)
        coef_2 = gs.zeros_like(norm_tangent_vec)

        coef_1 += mask_0_float * (
            1. + COSH_TAYLOR_COEFFS[2] * norm_tangent_vec ** 2
            + COSH_TAYLOR_COEFFS[4] * norm_tangent_vec ** 4
            + COSH_TAYLOR_COEFFS[6] * norm_tangent_vec ** 6
            + COSH_TAYLOR_COEFFS[8] * norm_tangent_vec ** 8)
        coef_2 += mask_0_float * (
            1. + SINH_TAYLOR_COEFFS[3] * norm_tangent_vec ** 2
            + SINH_TAYLOR_COEFFS[5] * norm_tangent_vec ** 4
            + SINH_TAYLOR_COEFFS[7] * norm_tangent_vec ** 6
            + SINH_TAYLOR_COEFFS[9] * norm_tangent_vec ** 8)
        # This avoids dividing by 0.
        norm_tangent_vec += mask_0_float * 1.0
        coef_1 += mask_else_float * (gs.cosh(norm_tangent_vec))
        coef_2 += mask_else_float * (
            (gs.sinh(norm_tangent_vec) / (norm_tangent_vec)))

        exp = (
            gs.einsum('...,...j->...j', coef_1, base_point)
            + gs.einsum('...,...j->...j', coef_2, tangent_vec))

        hyperbolic_space = Hyperboloid(dim=self.dim)
        exp = hyperbolic_space.regularize(exp)
        return exp

    @geomstats.vectorization.decorator(['else', 'vector', 'vector'])
    def log(self, point, base_point):
        """Compute Riemannian logarithm of a point wrt a base point.

        If point_type = 'poincare' then base_point belongs
        to the Poincare ball and point is a vector in the Euclidean
        space of the same dimension as the ball.

        Parameters
        ----------
        point : array-like, shape=[..., dim + 1]
            Point in hyperbolic space.
        base_point : array-like, shape=[..., dim + 1]
            Point in hyperbolic space.

        Returns
        -------
        log : array-like, shape=[..., dim + 1]
            Tangent vector at the base point equal to the Riemannian logarithm
            of point at the base point.
        """
        angle = self.dist(base_point, point) / self.scale
        angle = gs.to_ndarray(angle, to_ndim=1)

        mask_0 = gs.isclose(angle, 0.)
        mask_else = ~mask_0

        mask_0_float = gs.cast(mask_0, gs.float32)
        mask_else_float = gs.cast(mask_else, gs.float32)

        coef_1 = gs.zeros_like(angle)
        coef_2 = gs.zeros_like(angle)

        coef_1 += mask_0_float * (
            1. + INV_SINH_TAYLOR_COEFFS[1] * angle ** 2
            + INV_SINH_TAYLOR_COEFFS[3] * angle ** 4
            + INV_SINH_TAYLOR_COEFFS[5] * angle ** 6
            + INV_SINH_TAYLOR_COEFFS[7] * angle ** 8)
        coef_2 += mask_0_float * (
            1. + INV_TANH_TAYLOR_COEFFS[1] * angle ** 2
            + INV_TANH_TAYLOR_COEFFS[3] * angle ** 4
            + INV_TANH_TAYLOR_COEFFS[5] * angle ** 6
            + INV_TANH_TAYLOR_COEFFS[7] * angle ** 8)

        # This avoids dividing by 0.
        angle += mask_0_float * 1.

        coef_1 += mask_else_float * (angle / gs.sinh(angle))
        coef_2 += mask_else_float * (angle / gs.tanh(angle))
        log_term_1 = gs.einsum('...,...j->...j', coef_1, point)
        log_term_2 = - gs.einsum('...,...j->...j', coef_2, base_point)
        log = log_term_1 + log_term_2
        return log

    def dist(self, point_a, point_b):
        """Compute the geodesic distance between two points.

        Parameters
        ----------
        point_a : array-like, shape=[..., dim + 1]
            First point in hyperbolic space.
        point_b : array-like, shape=[..., dim + 1]
            Second point in hyperbolic space.

        Returns
        -------
        dist : array-like, shape=[..., 1]
            Geodesic distance between the two points.
        """
        sq_norm_a = self.embedding_metric.squared_norm(point_a)
        sq_norm_b = self.embedding_metric.squared_norm(point_b)
        inner_prod = self.embedding_metric.inner_product(point_a, point_b)

        cosh_angle = - inner_prod / gs.sqrt(sq_norm_a * sq_norm_b)
        cosh_angle = gs.clip(cosh_angle, 1.0, 1e24)

        dist = gs.arccosh(cosh_angle)
        dist *= self.scale
        return dist