Esempio n. 1
0
    def extract_locations(self):
        """Preprocess the location data"""
        default_pos_columns = common_cfg.coord_col_names
        if set(default_pos_columns).issubset(set(self._raw_data.columns)):
            print('Location data found')
            # check and drop units outside provided city boundary
            geometry = [
                shapely.geometry.Point(xy) for xy in zip(
                    self._raw_data[default_pos_columns[0]],  # Long
                    self._raw_data[default_pos_columns[1]])
            ]  # Lat
            b_within_boundary = np.array(
                list(
                    map(lambda p: p.within(self.model_city.convhull),
                        geometry)))

            if not all(b_within_boundary):
                print(
                    '%s -- dropping %i units outside city.' %
                    (self.servicetype, sum(np.bitwise_not(b_within_boundary))))
                self._raw_data = self._raw_data.iloc[
                    b_within_boundary, :].reset_index()

            # store geolocations as geopy Point
            locations = [
                geopy.Point(yx) for yx in zip(
                    self._raw_data[default_pos_columns[1]],  # Lat
                    self._raw_data[default_pos_columns[0]])
            ]  # Long

            propert_data = self._raw_data.drop(default_pos_columns, axis=1)

        else:
            raise NotImplementedError('Locations not found - not implemented!')

        return propert_data, locations
Esempio n. 2
0
def addTriangle(gwlat, gwlon, bearing, distance, features):
    if (distance < 1):
        return
    origin = geopy.Point(gwlat, gwlon)
    destination = geopy.distance.distance(
        kilometers=distance / 1000.0).destination(
            origin, ((360 + bearing - (0.5 / 2.0)) % 360))
    lat, lon = destination.latitude, destination.longitude
    destination = geopy.distance.distance(
        kilometers=distance / 1000.0).destination(
            origin, ((360 + bearing + (0.5 / 2.0)) % 360))
    lat2, lon2 = destination.latitude, destination.longitude

    feature = {}
    feature["type"] = "Feature"
    feature["geometry"] = {}
    feature["geometry"]["type"] = "Polygon"
    feature["geometry"]["coordinates"] = [[[gwlon, gwlat],
                                           [round(lon, 6),
                                            round(lat, 6)],
                                           [round(lon2, 6),
                                            round(lat2, 6)], [gwlon, gwlat]]]

    features.append(copy.deepcopy(feature))
Esempio n. 3
0
import fiona
from itertools import chain
import geopy.distance
distance = geopy.distance.vincenty

baseFile = 'data/alameda-tracts-2000/alameda-tracts-2000'
baseFile = 'data/Oakland_parcels/parcels'
baseFile = 'data/Oakland_parcels_subset2/parcels'  # radius of 1e-3
baseFile = 'data/Oakland_parcels_subset/parcels'  # radius of 1e-2

# compute map bounds
center = (37.8058428, -122.2399758)  # (lat, long), Armenian Church
radius = 1e-3  # should be 0.001

#---
origin = geopy.Point(lat1, lon1)
destination = VincentyDistance(kilometers=d).destination(origin, b)
lat2, lon2 = destination.latitude, destination.longitude
#---

ll = (center[1] - radius * 10, center[0] - radius)
ur = (center[1] + radius * 10, center[0] + radius)

#shp = fiona.open(baseFile + '.shp')
#bds = shp.bounds
#shp.close()
extra = 0.001
#ll = (bds[0], bds[1])
#ur = (bds[2], bds[3])
coords = list(chain(ll, ur))
w, h = coords[2] - coords[0], coords[3] - coords[1]
import time
from datetime import datetime
from pymongo import MongoClient
import geopy
from geopy.distance import VincentyDistance

client = MongoClient()
db = client.testDB

recordsFutian = []
futianCenter = geopy.Point(22.543, 114.055)
northLat = VincentyDistance(kilometers=2).destination(futianCenter, 0).latitude
southLat = VincentyDistance(kilometers=2).destination(futianCenter,
                                                      180).latitude
eastLon = VincentyDistance(kilometers=2).destination(futianCenter,
                                                     90).longitude
westLon = VincentyDistance(kilometers=2).destination(futianCenter,
                                                     270).longitude
print(northLat, southLat, eastLon, westLon)
with open('./confidentialData/GPS_2016_01_02', 'rb') as file:
    while True:
        entry = file.readline().decode('utf-8')
        if entry == "":
            break
        else:
            infoArray = entry.split(',')

            # 01  . license plate
            # TODO: write regular expressions to check the data validity
            try:
                licensePlate = infoArray[0]
Esempio n. 5
0
#!/usr/bin/env python
# -*- coding: utf-8 -*-

import geopy
import geopy.distance
import sys

pt1 = geopy.Point(sys.argv[1].replace(",", "."), sys.argv[2].replace(",", "."))
pt2 = geopy.Point(sys.argv[3].replace(",", "."), sys.argv[4].replace(",", "."))

dist = geopy.distance.distance(pt1, pt2).km

print dist
Esempio n. 6
0
def test_centroid(igroup):
    assert igroup.centroid('abc') == geopy.Point(1, 1)
Esempio n. 7
0
    vehicle.simple_goto(targetLocation, groundspeed=1)

    while vehicle.mode.name == "GUIDED":  #Stop action if we are no longer in guided mode.
        currentPoint = geopy.Point(vehicle.location.global_relative_frame.lat,
                                   vehicle.location.global_relative_frame.lon)
        remainingDistance = VincentyDistance(currentPoint, targetPoint).meters
        print "Distance to target: ", remainingDistance
        if remainingDistance <= 1.0:  # Near enough
            print "Reached target"
            break
        time.sleep(2)


print "home heading: ", vehicle.heading
homeHeading = vehicle.heading
homePoint = geopy.Point(vehicle.location.global_relative_frame.lat,
                        vehicle.location.global_relative_frame.lon)

# determine the marker locations
frontRightMarker = VincentyDistance(
    meters=int(5 / sin(radians(45)))).destination(homePoint,
                                                  (homeHeading + 45) % 360)
frontLeftMarker = VincentyDistance(meters=10).destination(
    frontRightMarker, (homeHeading - 90) % 360)
backLeftMarker = VincentyDistance(meters=10).destination(
    frontLeftMarker, homeHeading)
backRightMarker = VincentyDistance(meters=10).destination(
    backLeftMarker, (homeHeading + 90) % 360)

targetAltitude = 3
arm_and_takeoff(targetAltitude)
Esempio n. 8
0
car_distance = 0.5  # km
gpx_tag_attribute = {}
directory_path = "/Users/TommyChang/Desktop/So Simple Mobility Simulation/src/examples/SSMS/exp/trajectories/"  # will be appended with _0.gpx, _1.gpx, ...
first_car_id = 10000  # Will be used as the file name. The second car will be first_car_id + 1, etc.

# User input end -------------------------------------------------

gpx_list = []
bearing = calculate_bearing(
    (direction_coord["lat"], direction_coord["lng"]),
    (first_car_start_coord["lat"], first_car_start_coord["lng"]))

for i in range(0, car_count):
    dist = geopy.distance.distance(kilometers=car_distance * i)

    coord = dist.destination(point=geopy.Point(first_car_start_coord["lat"],
                                               first_car_start_coord["lng"]),
                             bearing=bearing)
    print(coord)
    start_coord = {"lat": coord[0], "lng": coord[1]}

    t = Track(
        start_time=start_time,
        end_time=end_time,
        start_coord=start_coord,
        direction_coord=direction_coord,
        trkpt_time_interval=trkpt_time_interval,  # seconds
        moving_speed=moving_speed,  # km/h
        bearing=None)

    gpx_list.append(t.create_gpx(gpx_tag_attribute=gpx_tag_attribute))
Esempio n. 9
0
    seis = read(stalist[s], format='PICKLE')

    if clean:
        for tr in seis.select(channel='BX*'):
            seis.remove(tr)
            print('delete channel ' + tr.stats['channel'])
    else:
        for tr in seis.select(channel='BX90*'):
            seis.remove(tr)
            print('delete channel ' + tr.stats['channel'])

    #While we are at it there is a mistake in data_processing_2 where the stats of seis[0] (vertical component)  get overwritten by those of a horizontal component... fixing this here.
    seis[0].stats['channel'] = 'BHZ'
    #   print(seis[0].stats['channel'])
    #Calculate receiver at 90 distance
    origin = geopy.Point(srcdict['latitude'], srcdict['longitude'])
    destination = VincentyDistance(kilometers=90 *
                                   (6371 * np.pi / 180.)).destination(
                                       origin, seis[0].stats['az'])
    receiver = instaseis.Receiver(latitude=destination.latitude,
                                  longitude=destination.longitude,
                                  network=seis[0].stats['network'],
                                  station=seis[0].stats['station'])

    eventtime = seis[0].stats['eventtime']
    starttime = seis[0].stats['starttime']
    endtime = seis[0].stats['endtime']
    st = db.get_seismograms(source=source,
                            receiver=receiver,
                            kind='displacement',
                            dt=0.1)
Esempio n. 10
0
    def index(self, document):
        """
        The method that actually performs the indexing.

        :param document: The document as a memory file.
        """
        from django.contrib.gis.geos import (
            Point, LineString, MultiLineString)
        from obspy import read_events

        # Collect all indices in a list. Each index has to be a dictionary.
        indices = []

        inv = read_events(document, format="quakeml")

        for event in inv:
            if event.origins:
                org = event.preferred_origin() or event.origins[0]
            else:
                org = None

            if event.magnitudes:
                mag = event.preferred_magnitude() or event.magnitudes[0]
            else:
                mag = None

            has_focal_mechanism = False
            has_moment_tensor = False
            if event.focal_mechanisms:
                has_focal_mechanism = True
                if any(mt for mt in event.focal_mechanisms):
                    has_moment_tensor = True

            # Parse attributes in the baynet namespace.
            # The public attribute defaults to None, it can only be set to
            # True by utilizing the baynet namespace as of now.
            extra = event.get("extra", {})
            if "public" in extra:
                public = extra["public"]["value"]
                if public.lower() in ["false", "f"]:
                    public = False
                elif public.lower() in ["true", "t"]:
                    public = True
                else:
                    public = None
            else:
                public = None
            if "evaluationMode" in extra:
                evaluation_mode = extra["evaluationMode"]["value"]
            else:
                evaluation_mode = None
            # parse horizontal uncertainties
            if org and org.origin_uncertainty:
                org_unc = org.origin_uncertainty
                if org_unc.preferred_description == 'horizontal uncertainty':
                    horizontal_uncertainty_max = org_unc.horizontal_uncertainty
                    horizontal_uncertainty_min = org_unc.horizontal_uncertainty
                    horizontal_uncertainty_max_azimuth = 0
                elif org_unc.preferred_description == 'uncertainty ellipse':
                    horizontal_uncertainty_max = \
                        org_unc.max_horizontal_uncertainty
                    horizontal_uncertainty_min = \
                        org_unc.min_horizontal_uncertainty
                    horizontal_uncertainty_max_azimuth = \
                        org_unc.azimuth_max_horizontal_uncertainty
                else:
                    horizontal_uncertainty_max = None
                    horizontal_uncertainty_min = None
                    horizontal_uncertainty_max_azimuth = None
            else:
                horizontal_uncertainty_max = None
                horizontal_uncertainty_min = None
                horizontal_uncertainty_max_azimuth = None

            geometry = None
            if org:
                geometry = [Point(org.longitude, org.latitude)]
                if all(value is not None for value in (
                        horizontal_uncertainty_max, horizontal_uncertainty_min,
                        horizontal_uncertainty_max_azimuth)):
                    import geopy
                    import geopy.distance
                    start = geopy.Point(latitude=org.latitude,
                                        longitude=org.longitude)
                    lines = []
                    for distance, azimuth in (
                            (horizontal_uncertainty_max,
                             horizontal_uncertainty_max_azimuth),
                            (horizontal_uncertainty_min,
                             horizontal_uncertainty_max_azimuth + 90)):
                        azimuth = azimuth % 180
                        distance = geopy.distance.VincentyDistance(
                            kilometers=distance / 1e3)
                        end1 = distance.destination(
                            point=start, bearing=azimuth)
                        end2 = distance.destination(
                            point=start, bearing=azimuth + 180)
                        line = LineString((end1.longitude, end1.latitude),
                                          (org.longitude, org.latitude),
                                          (end2.longitude, end2.latitude))
                        lines.append(line)
                    geometry.append(MultiLineString(lines))
                else:
                    geometry.append(MultiLineString([]))

            # phase counts
            used_phase_count = None
            used_p = None
            used_s = None
            if org:
                if org.quality:
                    used_phase_count = org.quality.used_phase_count
                if org.quality and org.quality.get('extra'):
                    extra = org.quality.get('extra', {})
                    used_p = extra.get(
                        'usedPhaseCountP', {}).get('value', None)
                    used_s = extra.get(
                        'usedPhaseCountS', {}).get('value', None)
                    if used_p is not None:
                        used_p = int(used_p)
                    if used_s is not None:
                        used_s = int(used_s)

            # set first/last pick times
            first_pick_time = None
            last_pick_time = None
            if event.picks:
                pick_times = [
                    pick.time for pick in event.picks if pick.time is not None]
                if pick_times:
                    first_pick_time = str(min(pick_times))
                    last_pick_time = str(max(pick_times))

            indices.append({
                "quakeml_id": str(event.resource_id),
                "latitude": org.latitude if org else None,
                "longitude": org.longitude if org else None,
                "depth_in_m": org.depth if org else None,
                "origin_time": str(org.time) if org else None,
                "first_pick_time": first_pick_time,
                "last_pick_time": last_pick_time,
                "used_phase_count": used_phase_count,
                "used_p": used_p,
                "used_s": used_s,
                "magnitude": mag.mag if mag else None,
                "magnitude_type": mag.magnitude_type if mag else None,
                "agency":
                event.creation_info and event.creation_info.agency_id or None,
                "author":
                event.creation_info and event.creation_info.author or None,
                "public": public,
                "evaluation_mode": evaluation_mode,
                "event_type": event.event_type,
                "has_focal_mechanism": has_focal_mechanism,
                "has_moment_tensor": has_moment_tensor,
                # The special key geometry can be used to store geographic
                # information about the indexes geometry. Useful for very
                # fast queries using PostGIS.
                "geometry": geometry,
                "horizontal_uncertainty_max": horizontal_uncertainty_max,
                "horizontal_uncertainty_min": horizontal_uncertainty_min,
                "horizontal_uncertainty_max_azimuth":
                    horizontal_uncertainty_max_azimuth,
            })

        return indices
Esempio n. 11
0
#import utm
import math
import geopy
import geopy.distance
from geographiclib.geodesic import Geodesic

#FRASCA_WSG86_500POINT_LAT=64.93166666666667
#FRASCA_WSG86_500POINT_LON=25.359166666666667
FRASCA_WSG86_500POINT_LAT = 64.931388
FRASCA_WSG86_500POINT_LON = 25.375800

global point0
point0 = geopy.Point(FRASCA_WSG86_500POINT_LAT, FRASCA_WSG86_500POINT_LON)


def from_frasca(x, y, force_point0=False):
    global point0
    dx = x - 500.0
    dy = y - 500.0
    dc = math.sqrt(pow(dy, 2) + pow(dx, 2))
    alpha = 0 if dy == 0.0 else math.atan(abs(dx) / abs(dy))
    heading = (alpha if dy > 0 and dx >= 0 else
               (math.pi - alpha if dy <= 0 and dx > 0 else
                (alpha + math.pi if dy < 0 and dx <= 0 else
                 (2 * math.pi - alpha if dy >= 0 and dx < 0 else -1))))

    dist = geopy.distance.geodesic(nautical=dc)
    point1 = dist.destination(point=(force_point0 if force_point0 else point0),
                              bearing=heading * (180.0 / math.pi))
    return point1
Esempio n. 12
0
def create_heatmap(list_of_lat_longs):
    '''
    This function takes a list of tuples as a paremeter, I think thats what its called
    we don't particularly care here about the points themselves, that is handled by the placemarks
    as long as we keep them in pairs, we don't need to preserve any other information about them
    '''
    #1. Create the square
    lats = []
    longs = [] 
    for p in list_of_lat_longs:
        lats.append(p[0])
        longs.append(p[1])
    lats.sort()
    longs.sort()

    max_lat = lats[-1]
    min_lat = lats[0]
    max_long = longs[-1]
    min_long = longs[0]

    #Start in SW corner (-,-)
    STEP_AMOUNT = 1#length of each square 
    steps_right = 0
    
    current_lat = float(min_lat)
    current_long = float(min_long)
    
    dist_xy = geopy.distance.geodesic(miles = STEP_AMOUNT)
    dist_z = geopy.distance.geodesic(miles = (math.sqrt(2)*STEP_AMOUNT))
    dist_c = geopy.distance.geodesic(miles = (math.sqrt(2)*STEP_AMOUNT)/2)#sqrt(2n)/2
    
    grids = []
    
    # Find all the grid points
    while current_long < max_long and current_long >= min_long: #Since we always go to min_long I need = here
        if current_lat < max_lat:
            t_grid = [0,0,0,0]
            start = geopy.Point(current_lat, current_long) #Starting point at current_lat and lon
            dest_up = dist_xy.destination(start,0) # move upwards 
            dest_right = dist_xy.destination(start,90) #move right
            dest_corner = dist_z.destination(start,45)  #move diagonally
            t_grid[0] = (current_lat, current_long)
            t_grid[1] = (dest_up.latitude,dest_up.longitude)
            t_grid[2] = (dest_corner.latitude,dest_corner.longitude)
            t_grid[3] = (dest_right.latitude,dest_right.longitude)
            
            current_lat = dest_up.latitude

            grids.append(t_grid)
            
        elif current_lat > max_lat:
            steps_right +=1
            current_lat = min_lat
            origin = geopy.Point(min_lat, min_long)
            dist_x = geopy.distance.geodesic(miles = STEP_AMOUNT*steps_right)
            dest_right = dist_x.destination(origin,90)
            current_long = dest_right.longitude



    center_points = []
    #find all centers
    
    for grid in grids:
        corner = geopy.Point(grid[0][0], grid[0][1])
        center = dist_c.destination(corner,45)
        center_points.append((center.latitude,center.longitude))
    #print(center_points)
        

    #calculate a_values for each center
    
    R_FACTOR = 6
    a_vals = []
    for center in center_points:
        a_val = 0
        for point in list_of_lat_longs:
            distance = geodesic(center,point).miles
            a_point_val = math.exp(-1*(distance**2/(R_FACTOR*STEP_AMOUNT)))
            a_val += a_point_val
        a_vals.append(a_val)
        print(a_val)
        
    #a_vals_ordered = a_vals
    #a_vals_ordered.sort()
    #max_a_val = a_vals_ordered[-1]

    #for x in range(len(a_vals)):
    #    a_vals[x] = a_vals[x]/max_a_val #get a value between 0 and 1


        


    export_file = open('test.kml','w')
    export_file.write('<?xml version="1.0" encoding="UTF-8"?>\n')
    export_file.write('<kml xmlns="http://earth.google.com/kml/2.0">\n')
    export_file.write(' <Document>\n')
    export_file.write('  <Style id="red">\n')
    export_file.write('   <PolyStyle>\n')
    export_file.write('    <color>6f0000ff</color>\n')
    export_file.write('     <outline>0</outline>\n')
    export_file.write('   </PolyStyle>\n')
    export_file.write('  </Style>\n')
    
    export_file.write('  <Style id="yellow">\n')
    export_file.write('   <PolyStyle>\n')
    export_file.write('    <color>6f00ffff</color>\n')
    export_file.write('     <outline>0</outline>\n')
    export_file.write('   </PolyStyle>\n')
    export_file.write('  </Style>\n')

    export_file.write('  <Style id="green">\n')
    export_file.write('   <PolyStyle>\n')
    export_file.write('    <color>6f00ff00</color>\n')
    export_file.write('     <outline>0</outline>\n')
    export_file.write('   </PolyStyle>\n')
    export_file.write('  </Style>\n')

    export_file.write('  <Style id="blue">\n')
    export_file.write('   <PolyStyle>\n')
    export_file.write('    <color>6fff0000</color>\n')
    export_file.write('     <outline>0</outline>\n')
    export_file.write('   </PolyStyle>\n')
    export_file.write('  </Style>\n')

    export_file.write('  <Style id="black">\n')
    export_file.write('   <PolyStyle>\n')
    export_file.write('    <color>00000000</color>\n')
    export_file.write('     <outline>0</outline>\n')
    export_file.write('   </PolyStyle>\n')
    export_file.write('  </Style>\n')
    
    counter = 0
    for g in grids:
        #print(g)
        corners = g
        bot_left_s = ''
        top_left_s = ''
        top_right_s = ''
        bot_right_s = ''
        for i in reversed(corners[0]):
            bot_left_s = bot_left_s+str(i)+','
        for i in reversed(corners[1]):
            top_left_s = top_left_s+str(i)+','
        for i in reversed(corners[2]):
            top_right_s = top_right_s+str(i)+','
        for i in reversed(corners[3]):
            bot_right_s = bot_right_s+str(i)+','
            
        bot_left = '     '+bot_left_s+'0\n'
        top_left = '     '+top_left_s+'0\n'
        top_right = '     '+top_right_s+'0\n'
        bot_right = '     '+bot_right_s+'0\n'

        i = random.randint(1,5)
        
        export_file.write('  <Placemark>\n')
        if a_vals[counter] <= .1:
            export_file.write('   <styleUrl>#black</styleUrl>\n')
        elif a_vals[counter] <= .8:
            export_file.write('   <styleUrl>#blue</styleUrl>\n')
        elif a_vals[counter] <= 1.2:
            export_file.write('   <styleUrl>#green</styleUrl>\n')

        elif a_vals[counter] <= 1.4:
            export_file.write('   <styleUrl>#yellow</styleUrl>\n')
        else:
            export_file.write('   <styleUrl>#red</styleUrl>\n')


        export_file.write('   <Polygon> <outerBoundaryIs>  <LinearRing> \n')
        export_file.write('    <coordinates>\n')
        export_file.write(bot_left)
        export_file.write(bot_right)
        export_file.write(top_right)
        export_file.write(top_left)
        export_file.write(bot_left)
        
       

        export_file.write('   </coordinates>\n')
        export_file.write('  </LinearRing> </outerBoundaryIs> </Polygon>\n')
        export_file.write(' </Placemark>\n')
        counter+=1

        
    export_file.write(' </Document>\n')
    export_file.write('</kml>')
   
    export_file.close()
    def subset(self, query):

        # Ensure we have an output folder that will be cleaned by tmpreaper
        if not os.path.isdir("/tmp/subset"):
            os.makedirs("/tmp/subset")
        working_dir = "/tmp/subset/"

        entire_globe = True  # subset the globe?
        if 'min_range' in query:
            # Area explicitly specified
            entire_globe = False
            # Bounding box extents
            bottom_left = [float(x) for x in query.get('min_range').split(',')]
            top_right = [float(x) for x in query.get('max_range').split(',')]

        # Time range
        try:
            # Time is an index into timestamps array
            time_range = [int(x) for x in query.get('time').split(',')]
        except ValueError:
            # Time is in ISO 8601 format and we need the dataset quantum

            quantum = query.get('quantum')
            if quantum == 'day' or quantum == 'hour':

                def find_time_index(isoDate: datetime.datetime):
                    for idx, date in enumerate(self.timestamps):
                        # Only compare year, month, day.
                        # Some daily/hourly average datasets have an
                        # hour and minute offset that messes up
                        # the index search.
                        if date.date() == isoDate.date():
                            return idx

            else:

                def find_time_index(isoDate: datetime.datetime):
                    for idx, date in enumerate(self.timestamps):
                        # Only compare year and month
                        if date.date().year == isoDate.date().year and \
                        date.date().month == isoDate.date().month:
                            return idx

            time_range = [
                dateutil.parser.parse(x) for x in query.get('time').split(',')
            ]
            time_range = [find_time_index(x) for x in time_range]

        apply_time_range = False
        if time_range[0] != time_range[1]:
            apply_time_range = True

        # Finds a variable in a dictionary given a substring containing common characters.
        # Don't use regex here since compiling a new pattern every call WILL add huge overhead.
        # This is guaranteed to be the fastest method.
        def find_variable(substring: str, variables: list):
            for key in variables:
                if substring in key:
                    return key
            return None

        variable_list = list(self._dataset.variables.keys())

        # Get lat/lon variable names from dataset (since they all differ >.>)
        lat_var = find_variable("lat", variable_list)
        lon_var = find_variable("lon", variable_list)

        depth_var = find_variable("depth", variable_list)

        if not entire_globe:
            # Find closest indices in dataset corresponding to each calculated point
            ymin_index, xmin_index, _ = find_nearest_grid_point(
                bottom_left[0], bottom_left[1], self._dataset,
                self._dataset.variables[lat_var],
                self._dataset.variables[lon_var])
            ymax_index, xmax_index, _ = find_nearest_grid_point(
                top_right[0], top_right[1], self._dataset,
                self._dataset.variables[lat_var],
                self._dataset.variables[lon_var])

            # Compute min/max for each slice in case the values are flipped
            # the netCDF4 module does not support unordered slices
            y_slice = slice(min(ymin_index, ymax_index),
                            max(ymin_index, ymax_index))
            x_slice = slice(min(xmin_index, xmax_index),
                            max(xmin_index, xmax_index))

            # Get nicely formatted bearings
            p0 = geopy.Point(bottom_left)
            p1 = geopy.Point(top_right)
        else:
            y_slice = slice(self._dataset.variables[lat_var].size)
            x_slice = slice(self._dataset.variables[lon_var].size)

            p0 = geopy.Point([-85.0, -180.0])
            p1 = geopy.Point([85.0, 180.0])

        # Get timestamp
        time_var = find_variable("time", variable_list)
        timestamp = str(
            format_date(
                pandas.to_datetime(
                    np.float64(self._dataset[time_var][time_range[0]].values)),
                "yyyyMMdd"))
        endtimestamp = ""
        if apply_time_range:
            endtimestamp = "-" + str(
                format_date(
                    pandas.to_datetime(
                        np.float64(
                            self._dataset[time_var][time_range[1]].values)),
                    "yyyyMMdd"))

        dataset_name = query.get('dataset_name')
        # Figure out coordinate dimension names
        if "riops" in dataset_name:
            lon_coord = "xc"
            lat_coord = "yc"
        elif dataset_name == "giops_forecast":
            lon_coord = "longitude"
            lat_coord = "latitude"
        else:
            lon_coord = "x"
            lat_coord = "y"
        # Do subset along coordinates
        subset = self._dataset.isel(**{lat_coord: y_slice, lon_coord: x_slice})

        # Select requested time (time range if applicable)
        if apply_time_range:
            subset = subset.isel(**{
                time_var:
                slice(int(time_range[0]),
                      int(time_range[1]) + 1)
            })  # slice doesn't include the last element
        else:
            subset = subset.isel(
                **
                {time_var: slice(int(time_range[0]),
                                 int(time_range[0]) + 1)})

        # Filter out unwanted variables
        output_vars = query.get('variables').split(',')
        output_vars.extend([depth_var, time_var, lat_var,
                            lon_var])  # Keep the coordinate variables
        for variable in subset.data_vars:
            if variable not in output_vars:
                subset = subset.drop(variable)

        output_format = query.get('output_format')
        filename =  dataset_name + "_" + "%dN%dW-%dN%dW" % (p0.latitude, p0.longitude, p1.latitude, p1.longitude) \
                    + "_" + timestamp + endtimestamp + "_" + output_format

        # "Special" output
        if output_format == "NETCDF3_NC":
            # Regrids an input data array according to it's input grid definition
            # to the output definition
            def regrid(data: np.ndarray,
                       input_def: pyresample.geometry.SwathDefinition,
                       output_def: pyresample.geometry.SwathDefinition):

                data = np.rollaxis(data, 0, 4)  # Roll time axis backward
                data = np.rollaxis(data, 0, 4)  # Roll depth axis backward
                data = data.reshape([data.shape[0], data.shape[1],
                                     -1])  # Merge time + depth axis together

                # Perform regridding using nearest neighbour weighting
                regridded = pyresample.kd_tree.resample_nearest(
                    input_def,
                    data,
                    output_def,
                    50000,
                    fill_value=None,
                    nprocs=8)
                return np.moveaxis(regridded, -1,
                                   0)  # Move merged axis back to front

            GRID_RESOLUTION = 50

            # Check lat/lon wrapping
            lon_vals, lat_vals = pyresample.utils.check_and_wrap(
                lons=subset[lon_var].values, lats=subset[lat_var].values)

            # Generate our lat/lon grid of 50x50 resolution
            min_lon, max_lon = np.amin(lon_vals), np.amax(lon_vals)
            min_lat, max_lat = np.amin(lat_vals), np.amax(lat_vals)
            XI = np.linspace(min_lon,
                             max_lon,
                             num=GRID_RESOLUTION,
                             dtype=lon_vals.dtype)
            YI = np.linspace(min_lat,
                             max_lat,
                             num=GRID_RESOLUTION,
                             dtype=lat_vals.dtype)
            XI_mg, YI_mg = np.meshgrid(XI, YI)

            # Define input/output grid definitions
            input_def = pyresample.geometry.SwathDefinition(lons=lon_vals,
                                                            lats=lat_vals)
            output_def = pyresample.geometry.SwathDefinition(lons=XI_mg,
                                                             lats=YI_mg)

            # Find correct variable names in subset
            temp_var = find_variable('temp', subset.variables)
            saline_var = find_variable('salin', subset.variables)
            x_vel_var = find_variable('crtx', subset.variables)
            y_vel_var = find_variable('crty', subset.variables)

            # Create file
            time_range = len(subset[time_var][:]) - 1
            filename = dataset_name.upper() + "_" + \
                datetime.date.today().strftime("%Y%m%d") +"_d0" + \
                (("-"+str(time_range)) if time_range > 0 else "") + "_" + \
                str(np.round(top_right[0]).astype(int)) + "N" + str(np.abs(np.round(bottom_left[1]).astype(int))).zfill(3) + "W" + \
                str(np.round(bottom_left[0]).astype(int)) + "N" + str(np.abs(np.round(top_right[1])).astype(int)).zfill(3) + "W" + \
                "_" + output_format
            ds = netCDF4.Dataset(working_dir + filename + ".nc",
                                 'w',
                                 format="NETCDF3_CLASSIC")
            ds.description = "Converted " + dataset_name
            ds.history = "Created: " + str(datetime.datetime.now())
            ds.source = "www.navigator.oceansdata.ca"

            # Create the netcdf dimensions
            ds.createDimension('lat', GRID_RESOLUTION)
            ds.createDimension('lon', GRID_RESOLUTION)
            ds.createDimension('time', len(subset[time_var][:]))

            # Create the netcdf variables and assign the values
            latitudes = ds.createVariable('lat', 'd', ('lat', ))
            longitudes = ds.createVariable('lon', 'd', ('lon', ))
            latitudes[:] = YI
            longitudes[:] = XI

            # Variable Attributes
            latitudes.long_name = "Latitude"
            latitudes.units = "degrees_north"
            latitudes.NAVO_code = 1

            longitudes.long_name = "Longitude"
            longitudes.units = "degrees_east"
            longitudes.NAVO_code = 2

            # LOL I had CreateDimension vs createDimension here >.< Stumped Clyde too hehe :P
            ds.createDimension('depth', len(subset[depth_var][:]))
            levels = ds.createVariable('depth', 'i', ('depth', ))
            levels[:] = subset[depth_var][:]
            levels.long_name = "Depth"
            levels.units = "meter"
            levels.positive = "down"
            levels.NAVO_code = 5

            if temp_var is not None:
                origshape = subset[temp_var].shape
                temp_data = regrid(subset[temp_var].values, input_def,
                                   output_def)
                temp_data = np.reshape(temp_data,
                                       (origshape[0], origshape[1],
                                        GRID_RESOLUTION, GRID_RESOLUTION))

                temp = ds.createVariable('water_temp',
                                         'd', ('time', 'depth', 'lat', 'lon'),
                                         fill_value=-30000.0)
                # Convert from Kelvin to Celcius
                for i in range(0, len(subset[depth_var][:])):
                    temp[:, i, :, :] = temp_data[:, i, :, :] - 273.15
                temp.valid_min = -100.0
                temp.valid_max = 100.0
                temp.long_name = "Water Temperature"
                temp.units = "degC"
                temp.NAVO_code = 15
            if saline_var is not None:
                salinity = ds.createVariable('salinity',
                                             'd',
                                             ('time', 'depth', 'lat', 'lon'),
                                             fill_value=-30000.0)
                salinity[:] = regrid(
                    subset[saline_var].values, input_def, output_def
                )[:]  # Note the automatic reshaping by numpy here ^.^
                salinity.long_name = "Salinity"
                salinity.units = "psu"
                salinity.valid_min = 0.0
                salinity.valid_max = 45.0
                salinity.NAVO_code = 16
            if x_vel_var is not None:
                x_velo = ds.createVariable('water_u',
                                           'd',
                                           ('time', 'depth', 'lat', 'lon'),
                                           fill_value=-30000.0)
                x_velo[:] = regrid(subset[x_vel_var].values, input_def,
                                   output_def)[:]
                x_velo.long_name = "Eastward Water Velocity"
                x_velo.units = "meter/sec"
                x_velo.NAVO_code = 17
            if y_vel_var is not None:
                y_velo = ds.createVariable('water_v',
                                           'd',
                                           ('time', 'depth', 'lat', 'lon'),
                                           fill_value=-30000.0)
                y_velo[:] = regrid(subset[y_vel_var].values, input_def,
                                   output_def)[:]
                y_velo.long_name = "Northward Water Velocity"
                y_velo.units = "meter/sec"
                y_velo.NAVO_code = 18

            temp_file_name = working_dir + str(uuid.uuid4()) + ".nc"
            subset.to_netcdf(temp_file_name)
            subset.close()

            # Reopen using netCDF4 to get non-encoded time values
            subset = netCDF4.Dataset(temp_file_name, 'r')

            times = ds.createVariable('time', 'i', ('time', ))
            # Convert time from seconds to hours
            for i in range(0, len(subset[time_var])):
                times[i] = subset[time_var][i] / 3600

            times.long_name = "Validity time"
            times.units = "hours since 1950-01-01 00:00:00"
            times.time_origin = "1950-01-01 00:00:00"

            ds.close()
            subset.close()
        else:
            # Save subset normally
            subset.to_netcdf(working_dir + filename + ".nc",
                             format=output_format)

        if int(query.get('should_zip')) == 1:
            myzip = zipfile.ZipFile('%s%s.zip' % (working_dir, filename),
                                    mode='w')
            myzip.write('%s%s.nc' % (working_dir, filename),
                        os.path.basename('%s%s.nc' % (working_dir, filename)))
            myzip.comment = b"Generated from www.navigator.oceansdata.ca"
            myzip.close()  # Must be called to actually create zip
            return working_dir, filename + ".zip"

        return working_dir, filename + ".nc"
Esempio n. 14
0
def run():
    content =""

    with open('tmp/op.json', 'r') as content_file:
        content = content_file.read()

    content = content.replace("var somepoints = ","")
    json_data = json.loads(content)

    for way in json_data:
        curr=None
        prev = None
        for latlongs in way['latlongs']:
            if not prev:
                prev = geopy.Point(latlongs["lat"],latlongs["lng"])
                continue
            curr = geopy.Point(latlongs["lat"],latlongs["lng"])
            distance = calculateDistance(prev,curr)
            bearing = bearing_tuple(prev,curr)
            
            prev = curr

    print("++++++++++++++++++++++++")

    new_json_data = []
    for way in json_data:
        payload ={}
        payload['id'] = way['id']
        payload['latlongs'] = []
        curr = None
        prev = None
        for latlongs in way['latlongs']:
            if not prev:
                prev = geopy.Point(latlongs["lat"],latlongs["lng"])
                payload['latlongs'].append(latlongs)
                continue
            curr = geopy.Point(latlongs["lat"],latlongs["lng"])
            
            bearing = bearing_tuple(prev,curr)
            distance = calculateDistance(prev,curr)
            distance = int(distance)
            
            if distance > min_distance_in_m:
                np = getNextPoint(prev,bearing)
                payload['latlongs'].append({
                        "lat":np.latitude,
                        "lng": np.longitude
                    })
                for i in range(int(distance/min_distance_in_m -1) ):
                    np = getNextPoint(np,bearing)\
                    payload['latlongs'].append({
                        "lat":np.latitude,
                        "lng": np.longitude
                    })
            payload['latlongs'].append({
                    "lat":curr.latitude,
                    "lng":curr.longitude
            })
            prev = curr
        new_json_data.append(payload)
    f = open("tmp/all_road_10m_min_distance.json", "w")
    f.write("var all_road_10m_min_distance = " + json.dumps(new_json_data))
    f.close()
Esempio n. 15
0
country = 'malawi'

clustering = np.load(os.path.join(out_dir, country, 'clustering.npy'))
counting = np.load(os.path.join(out_dir, country, 'counting.npy'))

nlats = np.load("../data/output/LSMS/malawi/nlats.npy")
nlons = np.load("../data/output/LSMS/malawi/nlons.npy")

nlats_min = np.min(nlats)
nlats_max = np.max(nlats)
nlons_min = np.min(nlons)
nlons_max = np.max(nlons)

lats_dif = nlats_max - nlats_min
lons_dif = nlons_max - nlons_min
mid_point = geopy.Point(((nlats_max + nlats_min) / 2),
                        ((nlons_max + nlons_min) / 2))

d = geopy.distance.great_circle(kilometers=1)
onek_lats = mid_point.latitude - d.destination(point=mid_point,
                                               bearing=180).latitude
onek_lons = mid_point.longitude - d.destination(point=mid_point,
                                                bearing=270).longitude

size_y = math.ceil(lats_dif / onek_lats)
size_x = math.ceil(lons_dif / onek_lons)

df = pd.read_csv(os.path.join(out_dir, country, 'data.csv'), index_col='id')
cdl = pd.read_csv(os.path.join(out_dir, country,
                               'candidate_download_locs.csv'),
                  index_col='name')
Esempio n. 16
0
startTime = datetime.now()

# Enter the lat long of location that is the center of the area. We choose an area of 20KmX20Km. lat_S and long_S
# are the latitude and longitude of the chosen city

Side_secon_net = 70
Side_of_cell = 10
diag_secon_net = ((Side_secon_net**2 + Side_secon_net**2)**0.5) / 2
lat_S = 39.9612
long_S = -82.9988
d = [diag_secon_net] * 4
dis = [400] * 4
num_of_cells = (Side_secon_net**2) / (Side_of_cell**2)

# given: lat1, lon1, b = bearing in degrees, d = distance in kilometers
origin = geopy.Point(lat_S, long_S)

# With the north line across the city we find the bearing of the diagonal corners(lower left and upper right) of the square around
# the city. Convert bearing from degrees to radians
bearing_deg = [45, 135, 225, 315]
des = []
des_big = []
for index in range(len(bearing_deg)):
    destination = VincentyDistance(kilometers=d[index]).destination(
        origin, bearing_deg[index])
    destination_big = VincentyDistance(kilometers=dis[index]).destination(
        origin, bearing_deg[index])
    lat2 = destination.latitude
    lon2 = destination.longitude
    latBig = destination_big.latitude
    lonBig = destination_big.longitude
# radial interpolation of atmpospheric variables
# repeated for other variables, and different radius distances (not all shown here)
# this example is for Geopotential Heights (z500) within 1,500 km of location
z500_1500km = np.empty([14880, 1081])
for k in range(8):
    lon = lons_8[k]
    lat = lats_8[k]
    latvec = []
    lonvec = []
    step = steps[k]
    # calculate interpolation grid
    for a in np.arange(50, 1550, 50):  # 50 km radial increments (rho's)
        for b in np.arange(10, 370,
                           10):  # 10 degree azimuth increments (theta's)
            start = geopy.Point(lat, lon)  # origin
            circ = geopy.distance.distance(
                kilometers=a)  # great circle distance
            dest = circ.destination(point=start,
                                    bearing=b)  # transect along great circle
            latvec.append(dest[0])
            lonvec.append(dest[1])
    latvec = np.hstack([lat, latvec])  # add origin lat
    lonvec = np.hstack([lon, lonvec])  # add origin lon
    # interpolate underlying values using radial grid
    interp_vals = scipy.interpolate.interpn((merra_lons, merra_lats), z500_ja,
                                            (lonvec, latvec))
    del latvec, lonvec
    interp_vals = np.squeeze(interp_vals)
    z500_1500km[
        step, :] = interp_vals.T  # interpolated values from r = 1,500 km grid
Esempio n. 18
0
 if len(close_clusters_indices) == 0:
     # create a new cluster
     new_cluster = Cluster(cid=len(clusters),
                           nb_points=1,
                           last_seen=point.timestamp,
                           lat=point.lat,
                           lon=point.lon,
                           angle=point.angle)
     clusters.append(new_cluster)
     roadnet.add_node(new_cluster.cid)
     current_cluster = new_cluster.cid
     # recompute the cluster index
     update_cluster_index = True
 else:
     # add the point to the cluster
     pt = geopy.Point(point.get_coordinates())
     close_clusters_distances = [
         geopy.distance.distance(
             pt, geopy.Point(
                 clusters[clu_index].get_coordinates())).meters
         for clu_index in close_clusters_indices
     ]
     closest_cluster_indx = close_clusters_indices[
         close_clusters_distances.index(
             min(close_clusters_distances))]
     clusters[closest_cluster_indx].add(point)
     current_cluster = closest_cluster_indx
 # Adding the edge:
 if prev_cluster == -1:
     prev_cluster = current_cluster
     continue
Esempio n. 19
0
    lon1 = radians(coord1[1])

    lat2 = asin(sin(lat1) * cos(distance / R) + cos(lat1) * sin(distance / R) * cos(bearing))
    lon2 = lon1 + atan2(
        sin(bearing) * sin(distance / R) * cos(lat1),
        cos(distance / R) - sin(lat1) * sin(lat2))

    lat2 = degrees(lat2)
    lon2 = degrees(lon2)
    return lat2, lon2

import geopy
import geopy.distance

# Define starting point.
start = geopy.Point(48.853, 2.349)

# Define a general distance object, initialized with a distance of 1 km.
d = geopy.distance.VincentyDistance(meters = 1)

# Use the `destination` method with a bearing of 0 degrees (which is north)
# in order to go from point `start` 1 km to north.
print(d.destination(point=start, bearing=0).)

print(compute_offset(1, 0, (48.853, 2.349)))

chi = [41.850033,-87.650055]
nyc = [40.714268,-74.005974]
print(haversine(chi,nyc))
# https://www.movable-type.co.uk/scripts/latlong.html
Esempio n. 20
0
plot_point_ex = plt.gcf()
plot_point_ex.savefig("plot_point_ex.png")

#Clear current matplotlib plot
plt.clf()

#plt.figure(figsize=(40,20))
#plt.show()

def get_grid_cell_indices(given_lat,given_lon,lat_grid,lon_grid):
    distances = np.sqrt((given_lon - lon_grid)**2 + (given_lat - lat_grid)**2)
    #return lat_grid[np.where(distances == np.amin(distances))][0], lon_grid[np.where(distances == np.amin(distances))][0]
    return np.where(distances == np.amin(distances))[0][0], np.where(distances == np.amin(distances))[1][0]

# Define starting point.
start = geopy.Point(storm_lat, storm_lon)


# Define a general distance object, initialized with a distance of 400 km.
radius = 800
d = geopy.distance.VincentyDistance(kilometers = radius)

# Use the `destination` method with a bearing of 0 degrees (which is north)
# in order to go from point `start` 1 km to north.
north_point = d.destination(point=start, bearing=0)
south_point = d.destination(point=start, bearing=180)
east_point = d.destination(point=start, bearing=90)
west_point = d.destination(point=start, bearing=270)

urcrnrlat = north_point.latitude
urcrnrlon = east_point.longitude
Esempio n. 21
0
def main():
    """Runs the program."""

    #ask the user if a test is being run
    test = is_test()
    #if it is a test, get any extra constraints from the user
    if test:
        type_of_test = decide_test()

    #will store extra constraints if a test is being run
    extra_con = []

    #read in the databases (each database contains the city name and its
    #longitude/latitude coordinate).
    canada = read_files("canada", "Canada Cities.csv")
    america = read_files("america", "US Cities.csv")

    # create a list for canadian and american cities
    canada_cities = []
    america_cities = []
    for entry in canada:
        canada_cities.append(entry["city"].lower())
    for entry in america:
        america_cities.append(entry["city"].lower())

    #get the raw location from the user and clarify any duplicates to get the
    #starting and ending city (the countries will of course remain the same)
    raw_location = raw_location_input(canada_cities, america_cities)
    start_city, end_city = clarify_duplicates(canada, america, raw_location)
    start_country = raw_location["starting country"]
    end_country = raw_location["ending country"]

    is_urgent = get_urgency()

    #calculate the total distance between the starting and ending city
    start_coord = (start_city["latitude"], start_city["longitude"])
    end_coord = (end_city["latitude"], end_city["longitude"])
    total_dist = calc_distance(start_coord, end_coord)

    print(str(start_coord) + " " + str(end_coord))

    #tell the user the total number of km
    print("A trip from " + start_city["city"] + ", " +
          start_city["province/state"] + " to " + end_city["city"] + ", " +
          end_city["province/state"] + " is " + str(total_dist) + " km long.")

    #calculate 1/tenth of the distance from the start to the end
    #the user will be given 10 choices of evenly spaced cities to stop at along the way
    #they can stop at 0, 1, or multiple; their choice
    next_dist = total_dist / 10

    geodesic = pyproj.Geod(ellps='WGS84')
    #calculates the initial bearing (fwd_azimuth) and the final bearing
    fwd_azimuth, back_azimuth, distance = geodesic.inv(start_city["longitude"],
                                                       start_city["latitude"],
                                                       end_city["longitude"],
                                                       end_city["latitude"])
    final_bearing = back_azimuth - 180

    #Define the starting and ending points.
    temp_start = geopy.Point(start_city["latitude"], start_city["longitude"])
    end = geopy.Point(end_city["latitude"], end_city["longitude"])
    start = temp_start

    #Define a general distance object, initialized with a distance of the stop distance (in km).
    d = geopy.distance.distance(kilometers=next_dist)

    #lists that will hold all the stops and the stops that the user chooses, respectively
    all_stops = []
    chosen_stops = []

    #define the geolocator
    geolocator = Nominatim(user_agent="Bing")

    #loop 10 times (for 10 stops)
    for i in range(10):
        # Use the destination method with our starting point and initial bearing
        # in order to go from our starting point to the next city in the line of stops.
        #finds the next point from the starting point given the bearing
        #if we are closer to the start, use our initial bearing; otherwise, use the final bearing
        if (i < 5):
            final = d.destination(point=temp_start, bearing=fwd_azimuth)
        else:
            final = d.destination(point=temp_start, bearing=final_bearing)

        #finds the location
        location = geolocator.reverse(str(final))
        print(str(i) + ": " + str(location))
        #add it to the list of all stops
        all_stops.append({"location": str(location), "coord": final})
        #reset the next starting point
        temp_start = final

    #add the starting location to the chosen stops
    chosen_stops.append({"location": start_city["city"], "coord": start})

    user_input = -2  #initizalize
    #get the user input for the stops they would like and store it in chosen_stops
    print(
        "Please enter which stops you would like to take along the way." +
        "If you are done entering stops, please enter '-1'. If you don't want to take any stops,"
        + " enter -1 right away.")
    while (user_input != -1):
        user_input = int(input("Enter your next stop: "))
        if (user_input < -1 or user_input > 9):
            print("Wrong input! Please try again!")
        else:
            if (user_input != -1):
                chosen_stops.append(all_stops[user_input])

    #add the ending location to the chosen stops
    #chosen_stops is now a list of all stops including the start and end
    chosen_stops.append({"location": end_city["city"], "coord": end})

    for i in range(len(chosen_stops) - 1):
        #calculate the distance between each stop
        distance = calc_distance(chosen_stops[i]["coord"],
                                 chosen_stops[i + 1]["coord"])
        print("The distance between " + str(chosen_stops[i]["location"]) +
              " and " + str(chosen_stops[i + 1]["location"]) + " is " +
              str(distance) + " km. ")
        dict_string = str(chosen_stops[i]["location"]) + " to " + str(
            chosen_stops[i + 1]["location"])
        #set up the dictionary and append it to the list
        entry = {"location": dict_string, "distance": distance}
        stop_info.append(entry)

    #loop through every stop
    for i in range(len(stop_info)):
        #now that we know the distance, we can calculate the time needed to travel
        #between each stop with each mode of transportation
        distance = stop_info[i]["distance"]
        drive_time = calc_time(distance, "drive")
        transit_time = calc_time(distance, "transit")
        plane_time = calc_time(distance, "plane")
        travel = determine_travel_modes(drive_time, transit_time, plane_time)

        for mode in travel:
            print(mode + " from " + stop_info[i]["location"] + ":" +
                  str(travel[mode]) + " hours.")

        all_modes = []
        urgent = {}
        #determine the FASTEST mode of travel
        if travel != {}:
            if "drive" in travel.keys():
                all_modes.append(travel["drive"])
            if "transit" in travel.keys():
                all_modes.append(travel["transit"])
            if "plane" in travel.keys():
                all_modes.append(travel["plane"])
        fastest = min(all_modes)
        for mode in travel:
            if travel[mode] <= fastest:
                urgent[mode] = travel[mode]

        #add a new key, the dictionary of available travel modes, to the list
        stop_info[i]["travel"] = travel
        #do the same with the urgent travel mode
        stop_info[i]["urgent"] = urgent

        #reset the travel modes
        travel = {}
        urgent = {}

    #determine if the travel is international or not and set the appropriate constraint
    border = get_international(start_country, end_country)

    #add constraints for the appropriate test, if it is a test
    if test:
        if type_of_test == "w":
            extra_con = test_weather(stop_info)
        elif type_of_test == "a":
            extra_con = test_affordability()
        elif type_of_test == "t":
            extra_con = test_travel()

    #solve!
    solve(border, is_urgent, test, extra_con)
Esempio n. 22
0
def google_earth_button():
    '''
    When map button is pressed
    '''
    database_wb = openpyxl.load_workbook(DATABASE_FILE)
    database_sheet = database_wb[DATABASE_SHEET_NAME]

    projects = get_project_types()
    years = get_years()  #list of years to select
    clients = get_client_types()  #list of client types

    #check if location is checked
    if loc_spec_var.get():
        #if it is get the location to select by
        coords = get_location()
        radius = int(loc_radius_var.get())
    export_file = open('RACEGIS.kml',
                       'w')  #open a text file of the date + rest
    export_file.write(kml_header_1)
    export_file.write(kml_header)
    if loc_spec_var.get():  #write radius
        long_r = radius / 52.28
        lat_r = radius / 69.01
        export_file.write(kml_circle)

        dist = geopy.distance.distance(miles=radius)
        for theta in range(361):
            pt = dist.destination(point=geopy.Point(coords), bearing=theta)
            point = str(pt[1]) + ',' + str(pt[0]) + ',0\n'
            export_file.write('\t\t' + point)
        export_file.write(kml_circle_end)
    for i in range(2, database_sheet.max_row):
        #FILTER
        proj_id = database_sheet["A" + str(i)].value
        proj_year = str(proj_id)[:4]
        if int(proj_year) in years:  #check if meets year criteria
            if database_sheet["D" + str(
                    i
            )].value in projects:  #check if meets project type criteria
                if database_sheet["F" + str(
                        i
                )].value in clients:  #check if meets client type criteria
                    if not loc_spec_var.get(
                    ):  #if we do NOT need to sort by location

                        name = str(database_sheet["B" + str(i)].value)
                        if "&" in name:
                            name = name.replace("&", "/")

                        proj_id = str(database_sheet["A" + str(i)].value)
                        if "&" in proj_id:
                            proj_id = proj_id.replace("&", "/")

                        location = str(database_sheet["C" + str(i)].value)
                        if "&" in location:
                            location = location.replace("&", "/")

                        proj_type = str(database_sheet["D" + str(i)].value)
                        if "&" in proj_type:
                            proj_type = proj_type.replace("&", "/")

                        client = str(database_sheet["E" + str(i)].value)
                        if "&" in client:
                            client = client.replace("&", "/")

                        client_type = str(database_sheet["F" + str(i)].value)
                        if "&" in client_type:
                            client_type = client_type.replace("&", "/")

                        long_lat_str = str(
                            database_sheet["H" + str(i)].value) + "," + str(
                                database_sheet["G" + str(i)].value)
                        export_file.write('  <Placemark>\n')
                        export_file.write('    <name>' + name + '</name>\n')
                        export_file.write(
                            '    <styleUrl>#project-style</styleUrl>\n')
                        export_file.write('    <ExtendedData>\n')
                        export_file.write('      <Data name="ID">\n')
                        export_file.write('	<value>' + proj_id + '</value>\n')
                        export_file.write('      </Data>\n')
                        export_file.write('      <Data name="Address">\n')
                        export_file.write('        <value>' + location +
                                          '</value>\n')
                        export_file.write('      </Data>\n')
                        export_file.write('      <Data name="projectType">\n')
                        export_file.write('        <value>' + proj_type +
                                          '</value>\n')
                        export_file.write('      </Data>\n')
                        export_file.write('      <Data name="clientType">\n')
                        export_file.write('        <value>' + client_type +
                                          '</value>\n')
                        export_file.write('      </Data>\n')
                        export_file.write('      <Data name="clientName">\n')
                        export_file.write('        <value>' + client +
                                          '</value>\n')
                        export_file.write('      </Data>\n')
                        export_file.write('    </ExtendedData>\n')
                        export_file.write('    <Point>\n')
                        export_file.write('         <coordinates>' +
                                          long_lat_str + ',0</coordinates>\n')
                        export_file.write('    </Point>\n')
                        export_file.write('  </Placemark>\n')

                    else:
                        if database_sheet["G" + str(i)].value != None:
                            t_coords = (float(database_sheet["G" +
                                                             str(i)].value),
                                        float(database_sheet["H" +
                                                             str(i)].value))
                            distance = geodesic(coords, t_coords).miles
                            statusbar_text.set(distance)
                            if distance < radius:

                                name = str(database_sheet["B" + str(i)].value)
                                if "&" in name:
                                    name = name.replace("&", "/")

                                proj_id = str(database_sheet["A" +
                                                             str(i)].value)
                                if "&" in proj_id:
                                    proj_id = proj_id.replace("&", "/")

                                location = str(database_sheet["C" +
                                                              str(i)].value)
                                if "&" in location:
                                    location = location.replace("&", "/")

                                proj_type = str(database_sheet["D" +
                                                               str(i)].value)
                                if "&" in proj_type:
                                    proj_type = proj_type.replace("&", "/")

                                client = str(database_sheet["E" +
                                                            str(i)].value)
                                if "&" in client:
                                    client = client.replace("&", "/")

                                client_type = str(database_sheet["F" +
                                                                 str(i)].value)
                                if "&" in client_type:
                                    client_type = client_type.replace("&", "/")

                                long_lat_str = str(database_sheet[
                                    "H" + str(i)].value) + "," + str(
                                        database_sheet["G" + str(i)].value)
                                export_file.write('  <Placemark>\n')
                                export_file.write('    <name>' + name +
                                                  '</name>\n')
                                export_file.write(
                                    '    <styleUrl>#project-style</styleUrl>\n'
                                )
                                export_file.write('    <ExtendedData>\n')
                                export_file.write('      <Data name="ID">\n')
                                export_file.write('	<value>' + proj_id +
                                                  '</value>\n')
                                export_file.write('      </Data>\n')
                                export_file.write(
                                    '      <Data name="Address">\n')
                                export_file.write('        <value>' +
                                                  location + '</value>\n')
                                export_file.write('      </Data>\n')
                                export_file.write(
                                    '      <Data name="projectType">\n')
                                export_file.write('        <value>' +
                                                  proj_type + '</value>\n')
                                export_file.write('      </Data>\n')
                                export_file.write(
                                    '      <Data name="clientType">\n')
                                export_file.write('        <value>' +
                                                  client_type + '</value>\n')
                                export_file.write('      </Data>\n')
                                export_file.write(
                                    '      <Data name="clientName">\n')
                                export_file.write('        <value>' + client +
                                                  '</value>\n')
                                export_file.write('      </Data>\n')
                                export_file.write('    </ExtendedData>\n')
                                export_file.write('    <Point>\n')
                                export_file.write('         <coordinates>' +
                                                  long_lat_str +
                                                  ',0</coordinates>\n')
                                export_file.write('    </Point>\n')
                                export_file.write('  </Placemark>\n')

    export_file.write(kml_footer)
    export_file.close()
    os.startfile("RACEGIS.kml")
Esempio n. 23
0
def jitterLocation(location=None, maxMeters=10):
    origin = geopy.Point(location[0], location[1])
    b = random.randint(0, 360)
    d = math.sqrt(random.random()) * (float(maxMeters) / 1000)
    destination = geopy.distance.distance(kilometers=d).destination(origin, b)
    return (destination.latitude, destination.longitude, location[2])
Esempio n. 24
0
def getPath(pointToReturn):
    global px, py
    return geopy.Point(px[pointToReturn], py[pointToReturn])
poly_overall = fr.values.reshape((len(dfa), 180, 2))
center = []
Cell_coord = []
TV_Tower_Dist = []
TV_Tower_Loc = []
TV_HAAT_Data = []
TV_ERP_Data = []
TV_Chan = []
TV_Receiver_Dist = []
TV_Receiver_Loc = []
bear_degree = [45, 135, 225, 315]
out_channels = {}
for cell in range(0, len(Data)):
    CENTER = (Data[str(cell)]['location'][1], Data[str(cell)]['location'][0])
    dis = ((2 * (Side_of_cell**2))**0.5) / 2
    orig = geopy.Point(CENTER[0], CENTER[1])
    val = []
    for b in range(0, len(bear_degree)):
        destination = VincentyDistance(kilometers=dis).destination(
            orig, bear_degree[b])
        lat = destination.latitude
        lon = destination.longitude
        ext = (lat, lon)
        val.extend([ext])
    Cell_coord.append(val)
    chan_avl = (Data[str(cell)]['Available_channel'])
    TV_chan = []
    TV_TX_Dist = []
    TV_TX_loc = []
    TV_haat = []
    TV_erp = []
Esempio n. 26
0
def getGPSLocation():
    global locationIndex
    currenctLocation = gps.getPositionData()
    return geopy.Point(currenctLocation.fLatitude, currenctLocation.fLongitude)
Esempio n. 27
0
# Upper left corner
lat_a = max(ys)
lon_a = min(xs)
# Lower left corner
lat_b = min(ys)
lon_b = min(xs)
# Upper ritght corner
lat_c = max(ys)
lon_c = max(xs)

coords_a = (lat_a, lon_a)
coords_b = (lat_b, lon_b)
coords_c = (lat_c, lon_c)

# Rectangle profile
start = geopy.Point(lat_a, lon_a)
h = geopy.distance.vincenty(coords_a, coords_b).m
w = geopy.distance.vincenty(coords_a, coords_c).m
print(str(h) + ' Meters (Height)')
print(str(w) + ' Meters (Width)')

# The number of crop units placed horizontally and vertically
units_v = h / crop_y
units_h = w / crop_x

# Distance move
EAST = 90
SOUTH = 180

d = geopy.distance.VincentyDistance(meters=crop_center[1])
Esempio n. 28
0
#!/usr/bin/python
import json
import math
import geopy
import random

from geopy.distance import VincentyDistance

# given: lat1, lon1, b = bearing in degrees, d = distance in kilometers

# FIDI Manhattan
origin = geopy.Point(40.705150, -74.0085300)
orig_bearing = 139.3

# Crown Heights
#origin = geopy.Point(40.673512, -73.958879)
#orig_bearing = 195

with open('/home2/greenim9/data/data.json') as data_file:
    data_loaded = json.load(data_file)

stroke_weight = float(data_loaded['DATA']['PWR'])

destination = VincentyDistance(kilometers=15).destination(
    origin, orig_bearing + float(data_loaded['DATA']['DOA']))

lat2, lon2 = destination.latitude, destination.longitude

print "Content-type: application/json"
print
Esempio n. 29
0
 def __init__(self, data: dict) -> None:
     self.code = data["LocationCode"]
     self.point = geopy.Point(data["Latitude"], data["Longitude"])
     self.facility_owned = bool(data["FacilityOwnedByCarvana"])
     self.trips = []
     self.visited = False
Esempio n. 30
0
        return requests.post(url, data=json.dumps(param),
                             headers=headers).json()

    @classmethod
    def request(cls, urls):
        ' 以20个一轮,进行批量处理 '
        out_list = []
        obj = cls()
        for chunck in chunks(urls, 20):
            out_list.extend(obj.__batch_by_amap(chunck))
        return out_list


if __name__ == "__main__":
    # 单点绑路
    print "单点绑路: ", BindRoad.one(geopy.Point(39.9849500000, 116.3077580000))
    # 批量绑路服务测试
    SIZE = 30
    origins = [
        x for x in repeat(geopy.Point(39.9849500000, 116.3077580000), SIZE)
    ]
    result = [x for x in BindRoad.batch(origins)]
    print "批量绑路: ", SIZE
    assert len(result) == SIZE

    # 附近搜索命名
    result = Around.one(geopy.Point(39.9849500000, 116.3077580000))
    print "单点命名: ", result[0]['name'], result[0]['type'], result[0]['distance']

    # 批量调用高德接口
    SIZE = 30