Esempio n. 1
0
def main(args):
    args = get_arguments()
    if args.command == "report":
        get_report(args)
    elif args.command == "buy":
        buy_product(args)
    elif args.command == "sell":
        sell_product(args)
Esempio n. 2
0
        _input_fn = lambda: input_fn(
            data_dir, batch_size, is_training=True, params=params)
        model.train(input_fn=_input_fn, steps=train_steps)
        print("Training complete")

    # evaluate
    if 'eval' in args.mode:
        print("\nEvaluating...")
        _eval_input_fn = lambda: input_fn(
            data_dir, batch_size, is_training=False, params=params)
        eval_result = model.evaluate(input_fn=_eval_input_fn)

        print("global step:%7d" % eval_result['global_step'])
        print("accuracy:   %7.2f" % round(eval_result['accuracy'] * 100.0, 2))
        print("loss:       %7.2f" % round(eval_result['loss'], 2))
        print("Evaluation complete")

    if 'compile_only' in args.mode or 'validate_only' in args.mode:
        print("\CS-1 preprocessing...")
        validate_only = 'validate_only' in args.mode
        _eval_input_fn = lambda: input_fn(
            data_dir, batch_size, is_training=False, params=params)
        model.compile(input_fn=_eval_input_fn)
        print("\CS-1 preprocessing complete")


##______________________________________________________________________________
if __name__ == '__main__':
    arguments = get_arguments()
    main(arguments)
Esempio n. 3
0
    if d_analysis_option == 's':
        plt.savefig('Images/' + file_path[-5] + str(nr_crt) + '_plot.png')
        nr_crt += 1
    if d_analysis_option == 'd':
        plt.show()
    if d_analysis_option == 'sd':
        plt.savefig('Images/' + file_path[-5] + str(nr_crt) + '_plot.png')
        nr_crt += 1
        plt.show()


#######################################################################################################################
# actual code
#######################################################################################################################

# define the class objects
data_analysis = DataAnalysisModule.DataAnalysisClass()

nr_ind_start, nr_generations, genes, environment, \
nat_selection, d_analysis, d_analysis_option, file_path = get_arguments()
#######################################################################################################################
# run the natural selection algorithm from the function below
if nat_selection:
    natural_selection_algorithm(nr_ind_start, nr_generations, environment,
                                file_path)

#######################################################################################################################

if d_analysis:
    visual_analysis_df(file_path, d_analysis_option)
Esempio n. 4
0
    data_frame['TotalSF'] = data_frame['GrLivArea'] + data_frame['TotalBsmtSF']
    data_frame['TotalPorchSF'] = data_frame['OpenPorchSF'] + data_frame['EnclosedPorch'] + \
                                 data_frame['3SsnPorch'] + data_frame['ScreenPorch']
    data_frame['TotalBath'] = data_frame['FullBath'] + data_frame['BsmtFullBath'] + \
                              0.5 * (data_frame['BsmtHalfBath'] + data_frame['HalfBath'])
    return data_frame


automatic = True
display_plot = False
save_plots = False
machine_learning = False
input_file = ''

if __name__ == '__main__':
    automatic, display_plot, save_plots, machine_learning, input_file = get_arguments(
        automatic, display_plot, save_plots, machine_learning, input_file)

# counter represents the number of the figure in the /Images folder
counter = 1
train_df = pd.read_csv(input_file)

aux_df = train_df  # save the data frame for later use

########################################################################################
########################################################################################
# General information and data analysis
print('#' * 100)
print('#' * 100)

data_analysis_module = DataAnalysisModule.DataAnalysisClass()
plt = data_analysis_module.general_information_plotting(train_df, 'SalePrice')