Esempio n. 1
0
    def find_all_slopes(self, filename_or_data, plotfun=None):
        """Returns a dict of regressoion objects.

        A regression object has slots named intercept, slope, se_intercept,
        se_slope, mse, start, and stop Each of these is a float. se is
        standard error, mse is mean squared error.
        """
        reg = regression.regression2
        # regression.regression2 is a function which returns a regression object
        if isinstance(filename_or_data, str):
            data = get_data.get_file_data(filename_or_data)
        else:
            data = filename_or_data
        # data is a dict with keys 'CO2', 'N2O', 'Wind', and so on
        # data['CO2'][0] is a list of seconds
        # data['CO2'][1] is a list of ppmv values
        # similarly for 'N2O'
        # Wind is a little bit different; it has not ppmv, but m/s
        # We show here just the simple linear regression using all the data,
        # but wind and self.options is available and may be used in this function,
        print('this is my own regression function')
        print('self.options is:', self.options)
        print('wind was on average:', np.mean(data['Wind'][1]), 'm/s')
        resdict = divide_left_and_right.group_all(data)
        co2 = resdict['CO2']
        n2o = resdict['N2O']
        regressions = dict()
        regressions['left'] = dict()
        regressions['right'] = dict()
        regressions['left']['CO2'] = reg(co2['left'][0], co2['left'][1])
        regressions['left']['N2O'] = reg(n2o['left'][0], n2o['left'][1])
        regressions['right']['CO2'] = reg(co2['right'][0], co2['right'][1])
        regressions['right']['N2O'] = reg(n2o['right'][0], n2o['right'][1])
        return regressions
Esempio n. 2
0
def plot_gas(filename, gas='CO2'):
    #fix single filename with directory path
    if not os.path.isfile(filename):
        filename = os.path.join(resdir.raw_data_path, filename)
    #load data for one  file
    a = get_data.get_file_data(filename)
    #make simple plot of either N2O or CO2
    plt.plot(a[gas][0], a[gas][1], '.')
Esempio n. 3
0
def plot_raw(examplefilename, key='N2O'):
    "key may be 'N2O', 'CO2', 'Wind'"
    if not os.path.isfile(examplefilename):
        examplefilename = with_raw_dir(examplefilename)
    a = get_data.get_file_data(examplefilename)
    plt.plot(a[key][0], a[key][1], '.')
    plt.gca().set_xlabel('seconds')
    if key in ['N2O', 'CO2', 'CO']:
        plt.gca().set_ylabel('ppm')
    return a
Esempio n. 4
0
def _write_raw(raw_filename, worksheet, column_start=0):
    data = get_data.get_file_data(raw_filename)
    reg = regr.find_all_slopes(raw_filename, do_plot=False)
    segments = find_regressions.get_regression_segments(data, reg)
    column = column_start
    w = worksheet
    w.write(0, column, raw_filename)

    def write_columns(title, columns, column_start, under_titles):
        w.write(1, column_start, title)
        for i, vector in enumerate(columns):
            w.write(2, column_start, under_titles[i])
            for j, v in enumerate(vector):
                w.write(j + 3, column_start, v)
            column_start += 1
        return column_start

    for subst, vals in data.items():
        if not (isinstance(vals, list) and len(vals)==2\
                and isinstance(vals[0], list) and isinstance(vals[1], list)\
                and len(vals[0])==len(vals[1])):
            continue
        column = write_columns(subst, vals, column, ['time', 'signal'])
        t_orig, y_orig = vals
        for side in ['right', 'left']:
            if side in segments:
                if subst in segments[side]:
                    tside, yside = segments[side][subst][2:]
                    yy = [
                        y if t_orig[i] in tside else None
                        for i, y in enumerate(y_orig)
                    ]
                    deb.append([segments, side, subst, t_orig])
                    column = write_columns(
                        '%s_%s' % (subst, side),
                        [yy],  #segments[side][subst][2:], 
                        column,
                        ['signal'])
        column += 1
    reg_attrs = ['slope', 'intercept', 'se_slope', 'se_intercept', 'mse']
    for side, regs in reg.items():
        for gas in regs.keys():
            if regs[gas] is None:
                continue
            w.write(1, column, 'reg:%s_%s' % (side, gas))
            for i, s in enumerate(reg_attrs):
                w.write(i * 2 + 2, column, s)
                w.write(i * 2 + 3, column, getattr(regs[gas], s))
            column += 1
    return column + 2
Esempio n. 5
0
#OR change y limits (apparently can't use ymin or ymax alone)
plot_gas(filename)
plt.gca().set_ylim(ymin=200, ymax=800)

#custom
filename = '2018-01-03-13-06-39-x599263_542108-y6615221_28657-z0_0-h-2_39905751122_right_Plot_1_'
plot_gas(filename, gas='CO2')
plt.gca().set_ylim(ymin=200, ymax=800)

#%%
"""
Standard deviation of CO2
"""
for i in range(18691, 18875):
    print(filenames[i])
    a = get_data.get_file_data(filenames[i])
    print(np.std(a['CO2'][1]))
    #print(a['CO2'][1])
#%%
"""
A more extensive shart showing N2O, CO2, points used, and regression lines
"""
#%%
#Display charts for all files, or a subset:  for filename in filenames[0:10]
#To run for only one file, don't highlight the for loop beginning line. will run file currently in "filename"
for filename in filenames[18645:18648]:
    filename = '2018-01-04-14-17-31-x599263_5599-y6615221_32418-z0_0-h-2_40099505776_right_Plot_1_'

    if not os.path.isfile(filename):
        filename = os.path.join(resdir.raw_data_path, filename)
    reg = regr.find_all_slopes(filename, do_plot=True)
Esempio n. 6
0
    def do_regressions(self, files, write_mode='w'):
        
        def print_info_maybe(i, n, t0, n_on_line):
            t = time.time()
            if t - t0 > 10:
                print('%d/%d   ' % (i+1, n), end='')
                t0 = t
                n_on_line += 1
                if n_on_line > 4:
                    n_on_line = 0
                    print('')
            return t0, n_on_line

        if not files:
            print('\nNo regressions to do\n')
            return dict(), []
        print('Doing regressions')
        n = len(files)
        t0 = time.time()
        resdict = {}
        n_on_line = 0
        errors = []
        with open(self.slopes_file_name, write_mode) as f:
            for i, name in enumerate(files):                                 #do regression for each file
                t0, n_on_line = print_info_maybe(i, n, t0, n_on_line)
                try:
                    data = get_data.get_file_data(name)
                    reg = self.find_all_slopes(data)
                    self.write_result_to_file(reg, name, f)
                    resdict[os.path.split(name)[1]] = reg
                                        
                    # Save images of each regression if wanted
                    if self.save_options['show_images'] or self.save_options['save_images']:
                        title_filename = data['filename']
                        title_options = 'options: ' + self.options.get_options_string(data['filename'])
                        try:
                            left_QC = reg['left']['N2O'].quality_check
                        except:
                            left_QC = None
                        try:
                            right_QC = reg['right']['N2O'].quality_check
                        except:
                            right_QC = None
                        title_left_QC = 'Left: '+left_QC if left_QC else "" 
                        title_right_QC = 'Right: '+right_QC if right_QC else ""
                        plt.title(title_filename + '\n' + title_options + '\n' + title_left_QC + '\n' + title_right_QC )
                        if self.save_options['save_images']:
                            plt.savefig(os.path.join(self.detailed_output_path+"\\images", title_filename +'.png'))
                            if left_QC:
                                plt.savefig(os.path.join(self.detailed_output_path+"\\Check\\"+left_QC,  "LEFT " + left_QC  +" "+ title_filename +'.png'))
                            elif right_QC:
                                plt.savefig(os.path.join(self.detailed_output_path+"\\Check\\"+right_QC, "RIGHT "+ right_QC +" "+ title_filename +'.png'))
                        if self.save_options['show_images']:
                            plt.show()
                        plt.clf()
                        
                    # Save detailed raw excel if wanted
                    if self.save_options['save_detailed_excel']:
                       
                        filename = data['filename']
                        xls_write_raw_data_file(filename, 
                                                self.detailed_output_path+'\\Values\\'+
                                                'DetailedRawData_'+ filename+'.xls', 
                                                data, reg, False)
                
                    
                except Exception as e:
                    import traceback
                    errors.append([name, traceback.format_exc()])
                    # continue
        print_info_maybe(i, n, 0, 100000)
        print('Regression done on %d files with %d errors' %
              (len(files), len(errors)))
        if len(errors):
            regression_errors.append(errors)
            print('See find_regressions.regression_errors[-1]')
        return resdict, errors
Esempio n. 7
0
    def find_all_slopes(self, filename_or_data, do_plot=False, given_specific_options=False):
        """Finds the regression lines for N2O and CO2, for left and right
        side
        returns {'left':{'CO2':(Regression, (x,y)),'N2O':...}, {'right': ...}}

        given_specific_options may be given; if not, specific_options will be found from the filename
        """
        if isinstance(filename_or_data, str):
            data = get_data.get_file_data(filename_or_data)

        
        else:
            data = filename_or_data
            
        if given_specific_options is False:
            specific_options = self.options.get_specific_options(data['filename'])
        else:
            specific_options = given_specific_options
        
        
        cut_param = self._get_divide_cut_param(specific_options)
        rawdict = divide_left_and_right.group_all(data, **cut_param)

        keys = ['CO2',  'N2O', 'CO', 'H2O', 'licor_H2O']
        regressions = {'left': {}, 'right': {}}
        regressions_tmp = {'left': {}, 'right': {}}
        
        for side in list(regressions.keys()):
            tbest = None
            for key in keys:
                tbest_orig = tbest
                regressions[side][key], tbest = self._regress1(rawdict, side, key,
                                                               specific_options, tbest)
                
                if(regressions[side][key] != None and self.options.options["correct_negatives"] == True):
                    specific_options_bcp = specific_options
                    #print(data['filename'],specific_options_bcp)
                    if((key=="N2O") and (regressions[side][key].slope < 0)):
                        specific_options["co2_guides"] = False
                        regressions_tmp[side][key], tbest_tmp = self._regress1(rawdict, side, key,
                                                                   specific_options, tbest_orig)
                        #print(" trying co2 OFF")
                        
                        if(regressions_tmp[side][key].slope < 0):
                            specific_options = specific_options_bcp
                            specific_options[side] = {'N2O': {'start': 1, 'stop': 190}}
                            regressions_tmp[side][key], tbest_tmp = self._regress1(rawdict, side, key,
                                                                       specific_options, tbest_orig)
                            #print(", trying 190s")
                            
                        if(regressions_tmp[side][key].slope  > 0):
                            regressions[side][key] = regressions_tmp[side][key]
                            tbest = tbest_tmp
                        else:
                            specific_options = specific_options_bcp
                            #print(", positive N2O not found")
                        self.options.specific_options_dict[data['filename']] = specific_options  #this is not updating properly
                        #print(specific_options)
                       
            if len(list(regressions[side].keys())) == 0:
                regressions.pop(side)
                
        # Begin image and detailed excel output functionality ... move to their own functions and call here?
        if self.do_plot or do_plot or self.save_options['save_images'] or self.save_options['show_images']:
            self.plot_fun(data, regressions) #this calls plot_regressions, also defined in this .py file        
            
#        if self.save_options['excel']: Fredrik was here! 
#            self.xls_write_raw_data_file(title_filename, os.path.join(self.detailed_output_path+"\\excel",'DetailedRawData_'
#                                                      +title_filename
#                                                      +'.xls'), do_open=False)
        return regressions