Esempio n. 1
0
def main():
    raw_tickers = input('Enter stocks separated by a comma: ')
    investment = int(input("Enter total investment to allocate: "))

    stock_tickers = raw_tickers.split(", ")
    print(stock_tickers)
    listed_prices, returns, cov_mat, avg_rets = gd.get_stock_data(
        stock_tickers)

    section("Example returns")
    print(returns.head(10))
    print("...")

    section("Average returns")
    print(avg_rets)

    section("Covariance matrix")
    print(cov_mat)

    section("Minimum variance portfolio (long only)")
    weights = pfopt.min_var_portfolio(cov_mat)
    print_portfolio_info(returns, avg_rets, weights)
    allocation = investment * weights
    print(allocation)

    # Define some target return, here the 70% quantile of the average returns
    target_ret = avg_rets.quantile(0.7)

    section("Markowitz portfolio (long only, target return: {:.5f})".format(
        target_ret))
    weights = pfopt.markowitz_portfolio(cov_mat, avg_rets, target_ret)
    print_portfolio_info(returns, avg_rets, weights)
    allocation = investment * weights
    print(allocation)
Esempio n. 2
0
def intrinsic_val_calculation(stock_ticker):
    global stock_eps_input, stock_growth_rate_input
    while True:
        try:
            print(
                Fore.RED +
                "Warning! The EPS must be positive to do this Intrinsic Value Calculation"
                + Style.RESET_ALL)
            stock_eps_input = float(
                input("\nWhat is " + stock_ticker + "'s EPS? "))
            if stock_eps_input < 0:
                print(
                    "Sorry! We can't calculate the intrinsic value with a negative EPS"
                )
            stock_growth_rate_input = float(
                input("What is " + stock_ticker + "'s Growth Rate? "))
            break
        except ValueError:
            print("The input must be numbers (Example: '25', '2.5', etc.)")
    pe_ratio = 7
    corp_Bond_Yield = 4.4
    aaa_Bond_Yield = 2.41
    # Basic Graham Intrinsic Value
    # Source: https://www.youtube.com/channel/UCOi_Zu4asFEMKISIbL9yuUA
    graham_intrinsic = (stock_eps_input *
                        (pe_ratio + stock_growth_rate_input) *
                        corp_Bond_Yield) / aaa_Bond_Yield

    # Basic EPS Intrinsic Value
    # Source: https://www.youtube.com/channel/UCOi_Zu4asFEMKISIbL9yuUA
    index_num_years = list(range(0, 4))
    pe_ratio = stock_growth_rate_input * 2
    eps_prediction_list = [stock_eps_input]
    discount_rate = 0.1
    for year in index_num_years:
        eps_prediction_list.append(
            (eps_prediction_list[year] * (1 + stock_growth_rate_input / 100)))
    stock_price_prediction_list = [0] * 5
    stock_price_prediction_list[0] = eps_prediction_list[4] * pe_ratio
    index = list(range(1, 5))
    for i in index:
        stock_price_prediction_list[i] = stock_price_prediction_list[i - 1] / (
            1 + discount_rate)
    stock_price_prediction_list.reverse()
    eps_intrinsic = stock_price_prediction_list[0]

    # Average of both intrinsic values
    stock_data = get_stock_data(
        stock_ticker
    )  # Can put it as a variable in the menu to avoid this step over and over
    intrinsic_value = (eps_intrinsic + graham_intrinsic) / 2
    current_value = stock_data['Adj Close'][stock_data.shape[0] - 1]
    upside = ((intrinsic_value / current_value) - 1) * 100
    return intrinsic_value, upside, current_value
Esempio n. 3
0
def current_earnings(portfolio_data):
    stocks_tickers_owned_list = portfolio_data['Ticker']
    stocks_purchase_price_owned = portfolio_data['Purchase_Price']
    earnings_percentage_list = []
    earnings_dollars_list = []
    for ticker, shares, purchased_price in zip(stocks_tickers_owned_list,
                                               portfolio_data['Shares'],
                                               stocks_purchase_price_owned):
        stock_data = get_stock_data(
            ticker
        )  # Can put it as a variable in the menu to avoid this step over again
        current_value = stock_data['Adj Close'][stock_data.shape[0] - 1]
        earnings_percentage_list.append(
            ((current_value / purchased_price) - 1) * 100)
        earnings_dollars_list.append(
            (current_value - purchased_price) * shares)
    return earnings_percentage_list, earnings_dollars_list
Esempio n. 4
0
def home_input():
    continue_program = True
    print("\nHello Santiago,")
    while continue_program:
        print(
            "\nThis is your Virtual Stock Portfolio (VSP), where you can manage your stocks.\n"
            "You can:\n"
            "a) 'Current': See My Portfolio and current earnings.\n"
            "b) 'Edit': Change My Portfolio or Add a new stock.\n"
            "c) 'Explore': Check out and analyze a new stock.\n"
            "d) 'Exit': Stop the program.\n")
        intro_command_input = input("Enter the command: ")
        if intro_command_input == 'Current':
            myPortfolio = get_data.open_portfolio()  # IDK WHY DOESN'T WORK
            print("\nmyPortfolio:")
            print(myPortfolio)
            earnings_percentage_list, earnings_dollars_list = current_command.current_earnings(
                myPortfolio)
            current_command.print_earnings(myPortfolio,
                                           earnings_percentage_list,
                                           earnings_dollars_list)
            in_depth_command = input(
                "\nDo you want to take a look at a specific stock? Yes or No? "
            )
            current_continue = False if ((in_depth_command == 'No') or
                                         (in_depth_command == 'no')) else True
            while current_continue:
                stock_evaluating = input(
                    "From MyPortfolio, Which stock do you want to take a look at? "
                )

                print(
                    "\nWith the stocks of My Portfolio, you can:\n"
                    "a) 'Graphs': Get the current graph for the stock and the analytics graph\n"
                    "b) 'Intrinsic': Calculate the intrinsic value\n"
                    "c) 'Back': Go back\n")
                current_command_input = input("Enter the command: ")
                if current_command_input == 'Graphs':
                    stock_data = get_data.get_stock_data(
                        stock_evaluating
                    )  # Can put it as a variable in the menu to avoid this step over and over
                    current_command.stock_graph(stock_evaluating, stock_data)
                    current_command.stock_graph_MACD(stock_evaluating,
                                                     stock_data)
                elif current_command_input == 'Intrinsic':
                    stock_intrinsic_val, stock_upside, current_value = current_command. \
                        intrinsic_val_calculation(stock_evaluating)
                    print("\nIntrinsic Value Calculation:")
                    print("Stock:", stock_evaluating)
                    print("Current Value : $ {:.2f}".format(current_value))
                    print("Intrinsic Value: $ {:.2f}".format(
                        stock_intrinsic_val))
                    print("Upside : % {:.2f}\n".format(stock_upside))
                elif current_command_input == 'Back':
                    break
                else:
                    print("Please type the command correctly")
                current_repeat = input(
                    "Do you want to check something else in 'Current'? 'Yes' or 'No': "
                )
                current_continue = False if (
                    (current_repeat == 'No') or
                    (current_repeat == 'no')) else True

        elif intro_command_input == 'Edit':
            edit_continue = True
            while edit_continue:
                print("For this section you can:\n"
                      "a) 'Add': Add a new stock to your portfolio\n"
                      "b) 'Delete': Delete a stock\n"
                      "c) 'Back': Go back\n")
                edit_command_input = input("Enter the command: ")
                if edit_command_input == 'Add':
                    edit_command.add_to_csv()
                elif edit_command_input == 'Delete':
                    edit_command.delete_csv_row()
                elif edit_command_input == 'Back':
                    break
                else:
                    print("Please type the command correctly")
                edit_repeat = input(
                    "Do you want to check something else in 'Edit'? 'Yes' or 'No'? "
                )
                edit_continue = False if ((edit_repeat == 'No') or
                                          (edit_repeat == 'no')) else True

        elif intro_command_input == 'Explore':
            explore_continue = True
            while explore_continue:
                exploring_stock = input(
                    "What stock ticker symbol you want to take a look at? ")
                print(
                    "\nFor '", exploring_stock, "' you can:\n"
                    "a) 'Graphs': Get the current graph for the stock and the analytics "
                    "graph\n"
                    "b) 'Intrinsic': Calculate the intrinsic value\n"
                    "c) 'Back': Go back\n")
                explore_command_input = input("Enter the command: ")
                if explore_command_input == 'Graphs':
                    explore_stock_data = get_data.get_stock_data(
                        exploring_stock)
                    current_command.stock_graph(exploring_stock,
                                                explore_stock_data)
                    current_command.stock_graph_MACD(exploring_stock,
                                                     explore_stock_data)
                elif explore_command_input == 'Intrinsic':
                    explore_stock_intrinsic_val, explore_stock_upside, explore_current_value = current_command. \
                        intrinsic_val_calculation(exploring_stock)
                    print("\nIntrinsic Value Calculation:")
                    print("Stock:", exploring_stock)
                    print("Current Value : $ {:.2f}".format(
                        explore_current_value))
                    print("Intrinsic Value: $ {:.2f}".format(
                        explore_stock_intrinsic_val))
                    print("Upside : % {:.2f}\n".format(explore_stock_upside))
                elif explore_command_input == 'Back':
                    break
                else:
                    print("Please type the command correctly")
                explore_repeat = input(
                    "Do you want to check something else in 'Explore'? 'Yes' or 'No'? "
                )
                explore_continue = False if (
                    (explore_repeat == 'No') or
                    (explore_repeat == 'no')) else True

        elif intro_command_input == 'Exit':
            break

        else:
            print("Please type the command correctly")

        is_repeat = input(
            "Do you want to check something else in the General Menu? 'Yes' or 'No'? "
        )
        continue_program = False if ((is_repeat == 'No') or
                                     (is_repeat == 'no')) else True
Esempio n. 5
0
def predict(ticker, pred_period=1):
    pred_values = []
    json_file = open(model_dir + '/' + ticker + '/model.json', 'r')
    loaded_model_json = json_file.read()
    json_file.close()
    model = model_from_json(loaded_model_json)
    # load weights into new model
    model.load_weights(model_dir + '/' + ticker + "/model.h5")
    #print("Loaded model from disk")
    #model.summary()

    today = date.today()
    days = timedelta(80)
    period = today - days

    data = get_stock_data(ticker, start_date=period,
                          end_date=today).reset_index(drop=True)
    clean_data = data.dropna()
    clean_data = clean_data.iloc[:-10]
    scaler = pickle.load(open(model_dir + '/' + ticker + "/scaler.pkl", "rb"))

    #print(data)
    for i in range(pred_period):

        req_data = clean_data.values
        if i == 0:
            pred_values.append({
                "Open": req_data[-1, 0],
                "High": req_data[-1, 1],
                "Low": req_data[-1, 2],
                "Close": req_data[-1, 3],
                "Day": i
            })
        scaled = scaler.transform(req_data)

        print()
        to_pred = scaled[-5:]
        to_pred = to_pred.reshape((1, 5, scaled.shape[1]))

        ######PREDICTION#######

        #print('before pred')
        pred = model.predict(to_pred)
        #print('after_pred')
        #print(pred)
        pred1 = np.zeros((to_pred.shape[0], 18))
        pred1[:, :4] = pred[0]
        pred1 = np.around(scaler.inverse_transform(pred1), decimals=2)

        pred_values.append({
            "Open": pred1[0, 0],
            "High": pred1[0, 1],
            "Low": pred1[0, 2],
            "Close": pred1[0, 3],
            "Day": i + 1
        })

        if pred_period > 1:
            data.loc[len(data)] = pred1[0]
            clean_data = calculate_indicators(data).dropna()
            #print(data)
        #print(data.loc[data.index.max()])
        #new = new + timedelta(1)
        #print("The predicted value for the next trading day for " + ticker + " is : " + str(pred1[0,3]))

    return pred_values
Esempio n. 6
0
    plt.legend()
    #fig1 = plt.gcf()
    plt.savefig(ticker + '_' + type + "conv.jpg", transparent=False)
    plt.show()


#print("tf.__version__ is", tf.__version__)
#print("tf.keras.__version__ is:", tf.keras.__version__)

#tfback._get_available_gpus = _get_available_gpus

ticker = input("Please enter symbol: ")
present_date = date.today()
prev_date = date.today() - timedelta(days=5457)
print(date(present_date.year, present_date.month, present_date.day))
get_stock_data(ticker, start_date=prev_date, end_date=present_date)

dataset = pd.read_csv('stock_prices' + ticker + '.csv')

scaler = MinMaxScaler(feature_range=(0, 1))
scaled = scaler.fit_transform(dataset.values)

##### TRAIN TEST SPLITTING #####
train_gen = TimeseriesGenerator(scaled,
                                scaled[:, 3],
                                start_index=0,
                                end_index=int(len(scaled) * 0.8),
                                length=3,
                                batch_size=256)
test_gen = TimeseriesGenerator(scaled,
                               scaled[:, 3],
Esempio n. 7
0
def train(ticker):

    #Initializing the Paths
    create_dir(model_dir + '/' + ticker)

    output = {}
    present_date = date.today()
    prev_date = date.today() - timedelta(days=5457)
    dataset = get_stock_data(ticker,
                             start_date=prev_date,
                             end_date=present_date,
                             drop_na=True).reset_index(drop=True)

    dataset.to_csv(model_dir + '/' + ticker + '/' + str(ticker) + '.csv',
                   index=False)

    scaler = MinMaxScaler(feature_range=(0, 1))
    scaled = scaler.fit_transform(dataset.values)

    pickle.dump(scaler, open(model_dir + '/' + ticker + '/scaler.pkl', 'wb'))

    ##### TRAIN TEST SPLITTING #####
    '''
    train_gen = TimeseriesGenerator(scaled, scaled[:,0:4], start_index = 0, end_index = int(len(scaled) * 0.90), length = 1, batch_size = 256)
    test_gen = TimeseriesGenerator(scaled, scaled[:,0:4], start_index = int(len(scaled) * 0.90), end_index = int(len(scaled) - 1), length = 1, batch_size = 256)
    '''
    train_gen = TimeseriesGenerator(scaled,
                                    scaled[:, :4],
                                    start_index=0,
                                    end_index=int(len(scaled) * 0.85),
                                    length=5,
                                    batch_size=16)
    test_gen = TimeseriesGenerator(scaled,
                                   scaled[:, :4],
                                   start_index=int(len(scaled) * 0.85),
                                   end_index=int(len(scaled) - 1),
                                   length=5,
                                   batch_size=16)
    ##### MODEL CREATION ######
    '''
    model = Sequential()
    model.add(Conv1D(18, kernel_size=3, activation='relu', padding = 'valid', strides=1, input_shape=(1,18), data_format='channels_first'))
    model.add(Conv1D(18, kernel_size=3, activation='relu', padding = 'valid', strides=1))
    #model.add(MaxPooling1D(pool_size=2))
    model.add(LSTM(100, activation = 'tanh', recurrent_activation = 'sigmoid', unroll = False, use_bias = True, recurrent_dropout = 0, return_sequences=True))
    model.add(Dropout(0.4))
    model.add(LSTM(100, activation = 'tanh', recurrent_activation = 'sigmoid', unroll = False, use_bias = True, recurrent_dropout = 0,return_sequences=True))
    model.add(Dropout(0.4))
    model.add(LSTM(100, activation = 'tanh', recurrent_activation = 'sigmoid', unroll = False, use_bias = True, recurrent_dropout = 0,return_sequences= True))
    model.add(Dropout(0.2))
    model.add(Flatten())
    model.add(Dense(4, activation = 'linear'))
    adadelta = Adadelta(learning_rate=1.0, rho=0.95)
    model.compile(loss= 'mae', optimizer = adadelta, metrics=[tf.keras.metrics.MeanAbsolutePercentageError()])
    #model.summary()
    '''
    from tensorflow.keras.regularizers import l1
    model = Sequential()
    model.add(
        Conv1D(18,
               kernel_size=3,
               activation='relu',
               padding='valid',
               strides=1,
               input_shape=(5, 18),
               data_format='channels_first'))
    model.add(
        Conv1D(18,
               kernel_size=4,
               activation='relu',
               padding='valid',
               strides=1))
    #model.add(MaxPooling1D(pool_size=2))
    model.add(
        LSTM(100,
             activation='tanh',
             recurrent_activation='sigmoid',
             unroll=False,
             use_bias=True,
             recurrent_dropout=0,
             return_sequences=True,
             kernel_regularizer=l1(0.001)))
    model.add(Dropout(0.4))
    model.add(
        LSTM(50,
             activation='tanh',
             recurrent_activation='sigmoid',
             unroll=False,
             use_bias=True,
             recurrent_dropout=0,
             return_sequences=True,
             activity_regularizer=l1(0.001)))
    model.add(Dropout(0.4))
    model.add(
        LSTM(25,
             activation='tanh',
             recurrent_activation='sigmoid',
             unroll=False,
             use_bias=True,
             recurrent_dropout=0,
             return_sequences=True,
             activity_regularizer=l1(0.001)))
    model.add(Dropout(0.2))
    model.add(Flatten())
    model.add(Dense(4, activation='linear'))
    adadelta = Adadelta(learning_rate=1.0, rho=0.95)

    model.compile(loss='mse',
                  optimizer=adadelta,
                  metrics=[tf.keras.metrics.RootMeanSquaredError()])
    model.summary()
    ##### TRAINING #####
    my_callbacks = [
        #tf.keras.callbacks.ReduceLROnPlateau(monitor='val_loss', patience=4, factor=0.2, min_lr=0.001),
        tf.keras.callbacks.ModelCheckpoint(
            filepath=model_dir + "/" + ticker + "/model" + ".h5",
            save_weights_only=True,
            save_best_only=True,
            monitor="val_root_mean_squared_error",
            mode="min"),
    ]
    history = model.fit_generator(train_gen,
                                  epochs=300,
                                  verbose=0,
                                  shuffle=True,
                                  validation_data=test_gen,
                                  callbacks=my_callbacks)

    ##### PLOTTING LOSS ######
    '''plt.plot(history.history['loss'], label='train')
    plt.plot(history.history['val_loss'], label='test')
    plt.legend()
    plt.show()
    score = model.evaluate_generator(test_gen, verbose = 1)
    print()
    print('Test loss:', score[0])
    print('Test accuracy:', score[1])
    print()'''

    ###### RESHAPE ACTUAL DATA #######
    actual_train = reshape_actual(train_gen)
    predictions_train = model.predict_generator(train_gen, verbose=0)
    print(predictions_train)

    ##### RSME FOR TRAIN #####
    rmse_train = math.sqrt(
        mean_squared_error(actual_train[:], predictions_train[:]))
    print(rmse_train)

    ###### TEST DATA ######
    actual_test = reshape_actual(test_gen)
    predictions_test = model.predict_generator(test_gen, verbose=0)
    rmse_test = math.sqrt(
        mean_squared_error(actual_test[:], predictions_test[:]))
    print(rmse_test)

    output["Accuracy"] = {
        "Train": round(rmse_train * 100, 2),
        "Test": round(rmse_test * 100, 2)
    }

    ###### PLOT TEST ######
    output["Train"] = plot_them_graphs(actual_train, predictions_train,
                                       "train", ticker, scaler)
    output["Test"] = plot_them_graphs(actual_test, predictions_test, "test",
                                      ticker, scaler)

    ##### SAVE IT!!!!!! #####

    model_json = model.to_json()
    with open(model_dir + "/" + ticker + "/model" + ".json", "w") as json_file:
        json_file.write(model_json)
    #model.save_weights(model_dir + "/" + ticker + "/model" + ".h5")
    print("Saved model to disk")

    data = {"name": ticker, "date": present_date.strftime("%d-%b-%Y")}

    with open(model_dir + "/" + ticker + '/data.json', 'w') as outfile:
        json.dump(data, outfile)

    return output