Esempio n. 1
0
def get_predict_result():
    diff_number = windows_size - 1
    data = spider(str(int(get_current_number()) - diff_number), get_current_number(), "predict")
    red_name_list = [(BOLL_NAME[0], i + 1) for i in range(sequence_len)]
    red_data = data[["{}号码_{}".format(name[0], i) for name, i in red_name_list]].values.astype(int) - 1
    blue_data = data[[BOLL_NAME[1][0]]].values.astype(int) - 1
    if len(data) != 3:
        print("[WARN] 期号出现跳期,期号不连续!开始查找最近上一期期号!本期预测时间较久!")
        last_current_year = (get_year() - 1) * 1000
        max_times = 160
        while len(data) != 3:
            data = spider(last_current_year + max_times, get_current_number(), "predict")[[x[0] for x in BOLL_NAME]]
            time.sleep(np.random.random(1).tolist()[0])
            max_times -= 1
    # 预测红球
    with red_graph.as_default():
        reverse_sequence = tf.compat.v1.get_default_graph().get_tensor_by_name(pred_key_d[BOLL_NAME[0][0]])
        red_pred = red_sess.run(reverse_sequence, feed_dict={
            "red_inputs:0": red_data.reshape(batch_size, windows_size, sequence_len),
            "sequence_length:0": np.array([sequence_len] * 1)
        })
    # 预测蓝球
    with blue_graph.as_default():
        softmax = tf.compat.v1.get_default_graph().get_tensor_by_name(pred_key_d[BOLL_NAME[1][0]])
        blue_pred = blue_sess.run(softmax, feed_dict={
            "blue_inputs:0": blue_data.reshape(batch_size, windows_size)
        })
    # 拼接结果
    ball_name_list = ["{}_{}".format(name[1], i) for name, i in red_name_list] + [BOLL_NAME[1][1]]
    pred_result_list = red_pred[0].tolist() + blue_pred.tolist()
    return json.dumps(
        {b_name: int(res) + 1 for b_name, res in zip(ball_name_list, pred_result_list)}
    ).encode('utf-8').decode('unicode_escape')
def get_predict_result():
    data = spider(str(int(get_current_number()) - 2), get_current_number(),
                  "predict")[BOLL_NAME]
    result = []
    for i, model in enumerate(model_list):
        boll_name = BOLL_NAME[i]
        data_list = [int(x) for x in data[boll_name].tolist()]
        p_data = np.array(data_list).reshape([-1, 3, 1]).astype(np.float32)
        result.extend(model.predict_classes(p_data))
    return json.dumps(
        {b_name: int(res) + 1
         for b_name, res in zip(BOLL_NAME, result)})
Esempio n. 3
0
def get_predict_result():
    diff_number = windows_size - 1
    data = spider(str(int(get_current_number()) - diff_number),
                  get_current_number(), "predict")[BOLL_NAME]
    if len(data) != 3:
        print("[WARN] 期号出现跳期,期号不连续!开始查找最近上一期期号!本期预测时间较久!")
        last_current_year = (get_year() - 1) * 1000
        max_times = 160
        while len(data) != 3:
            data = spider(last_current_year + max_times, get_current_number(),
                          "predict")[BOLL_NAME]
            time.sleep(np.random.random(1).tolist()[0])
            max_times -= 1
    result = []
    for i, model in enumerate(model_list):
        boll_name = BOLL_NAME[i]
        data_list = [int(x) for x in data[boll_name].tolist()]
        p_data = np.array(data_list).reshape([-1, windows_size,
                                              1]).astype(np.float32)
        result.extend(model.predict_classes(p_data))
    return json.dumps({
        b_name: int(res) + 1
        for b_name, res in zip(BOLL_NAME, result)
    }).encode('utf-8').decode('unicode_escape')
def get_predict_result():
    if locked():
        return "正在计算中,请稍后再请求..."
    create_lock()
    try:
        data = spider(str(int(get_current_number()) - 2), get_current_number(), "predict")[BOLL_NAME]
        model_list = load_model_list()
        result = []
        for i, model in enumerate(model_list):
            boll_name = BOLL_NAME[i]
            data_list = [int(x) for x in data[boll_name].tolist()]
            p_data = np.array(data_list).reshape([-1, 3, 1]).astype(np.float32)
            result.extend(model.predict_classes(p_data))
        result_json = json.dumps({b_name: int(res) + 1 for b_name, res in zip(BOLL_NAME, result)}, ensure_ascii=False)
        remove_lock()
        return result_json
    except Exception as e:
        remove_lock()
        return "计算出错,稍后重新请求后再试..."