Esempio n. 1
0
def _shuffle_one_input_file(input_example_file_name, radar_field_names,
                            num_examples_per_out_chunk,
                            output_example_file_names):
    """Shuffles examples from one input file to many output files.

    :param input_example_file_name: Path to input file.
    :param radar_field_names: See documentation at top of file.
    :param num_examples_per_out_chunk: Same.
    :param output_example_file_names: 1-D list of paths to output files.
    """

    print('Reading data from: "{0:s}"...'.format(input_example_file_name))
    example_dict = input_examples.read_example_file(
        netcdf_file_name=input_example_file_name,
        read_all_target_vars=True,
        radar_field_names_to_keep=radar_field_names)

    num_examples = len(example_dict[input_examples.FULL_IDS_KEY])
    shuffled_indices = numpy.linspace(0,
                                      num_examples - 1,
                                      num=num_examples,
                                      dtype=int)
    numpy.random.shuffle(shuffled_indices)

    example_dict = input_examples.subset_examples(
        example_dict=example_dict, indices_to_keep=shuffled_indices)

    for j in range(0, num_examples, num_examples_per_out_chunk):
        this_first_index = j
        this_last_index = min(
            [j + num_examples_per_out_chunk - 1, num_examples - 1])

        these_indices = numpy.linspace(this_first_index,
                                       this_last_index,
                                       num=this_last_index - this_first_index +
                                       1,
                                       dtype=int)

        this_example_dict = input_examples.subset_examples(
            example_dict=example_dict,
            indices_to_keep=these_indices,
            create_new_dict=True)

        this_output_file_name = random.choice(output_example_file_names)
        print('Writing shuffled examples to: "{0:s}"...'.format(
            this_output_file_name))

        input_examples.write_example_file(
            netcdf_file_name=this_output_file_name,
            example_dict=this_example_dict,
            append_to_file=os.path.isfile(this_output_file_name))
    def test_subset_examples_2d3d(self):
        """Ensures correct output from subset_examples.

        In this case examples contain both 2-D and 3-D radar images.
        """

        this_example_dict = input_examples.subset_examples(
            example_dict=EXAMPLE_DICT_2D3D_ORIG,
            indices_to_keep=INDICES_TO_KEEP, create_new_dict=True)

        self.assertTrue(_compare_example_dicts(
            this_example_dict, EXAMPLE_DICT_2D3D_SUBSET))
Esempio n. 3
0
def gridrad_generator_2d_reduced(option_dict, list_of_operation_dicts,
                                 num_examples_total):
    """Generates examples with 2-D GridRad images.

    These 2-D images are produced by applying layer operations to the native 3-D
    images.  The layer operations are specified by `list_of_operation_dicts`.

    Each example (storm object) consists of the following:

    - Storm-centered radar images (one 2-D image for each layer operation)
    - Storm-centered sounding (optional)
    - Target value (class)

    :param option_dict: Dictionary with the following keys.
    option_dict['example_file_names']: See doc for
        `training_validation_io.gridrad_generator_2d_reduced`.
    option_dict['binarize_target']: Same.
    option_dict['sounding_field_names']: Same.
    option_dict['sounding_heights_m_agl']: Same.
    option_dict['first_storm_time_unix_sec']: Same.
    option_dict['last_storm_time_unix_sec']: Same.
    option_dict['num_grid_rows']: Same.
    option_dict['num_grid_columns']: Same.
    option_dict['normalization_type_string']: Same.
    option_dict['normalization_param_file_name']: Same.
    option_dict['min_normalized_value']: Same.
    option_dict['max_normalized_value']: Same.
    option_dict['class_to_sampling_fraction_dict']: Same.

    :param list_of_operation_dicts: See doc for
        `input_examples.reduce_examples_3d_to_2d`.
    :param num_examples_total: Number of examples to generate.

    :return: storm_object_dict: Dictionary with the following keys.
    storm_object_dict['list_of_input_matrices']: length-T list of numpy arrays,
        where T = number of input tensors to model.  The first axis of each
        array has length E.
    storm_object_dict['storm_ids']: length-E list of storm IDs.
    storm_object_dict['storm_times_unix_sec']: length-E numpy array of storm
        times.
    storm_object_dict['target_array']: See output doc for
        `training_validation_io.gridrad_generator_2d_reduced`.
    storm_object_dict['sounding_pressure_matrix_pascals']: numpy array (E x H_s)
        of pressures.  If soundings were not read, this is None.
    storm_object_dict['radar_field_names']: length-C list of field names, where
        the [j]th item corresponds to the [j]th channel of the 2-D radar images
        returned in "list_of_input_matrices".
    storm_object_dict['min_radar_heights_m_agl']: length-C numpy array with
        minimum height for each layer operation (used to reduce 3-D radar images
        to 2-D).
    storm_object_dict['max_radar_heights_m_agl']: Same but with max heights.
    storm_object_dict['radar_layer_operation_names']: length-C list with names
        of layer operations.  Each name must be accepted by
        `input_examples._check_layer_operation`.
    """

    unique_radar_field_names, unique_radar_heights_m_agl = (
        trainval_io.layer_ops_to_field_height_pairs(list_of_operation_dicts)
    )

    option_dict[trainval_io.RADAR_FIELDS_KEY] = unique_radar_field_names
    option_dict[trainval_io.RADAR_HEIGHTS_KEY] = unique_radar_heights_m_agl

    storm_ids, storm_times_unix_sec = _find_examples_to_read(
        option_dict=option_dict, num_examples_total=num_examples_total)
    print '\n'

    example_file_names = option_dict[trainval_io.EXAMPLE_FILES_KEY]

    first_storm_time_unix_sec = option_dict[trainval_io.FIRST_STORM_TIME_KEY]
    last_storm_time_unix_sec = option_dict[trainval_io.LAST_STORM_TIME_KEY]
    num_grid_rows = option_dict[trainval_io.NUM_ROWS_KEY]
    num_grid_columns = option_dict[trainval_io.NUM_COLUMNS_KEY]
    sounding_field_names = option_dict[trainval_io.SOUNDING_FIELDS_KEY]
    sounding_heights_m_agl = option_dict[trainval_io.SOUNDING_HEIGHTS_KEY]

    normalization_type_string = option_dict[trainval_io.NORMALIZATION_TYPE_KEY]
    normalization_param_file_name = option_dict[
        trainval_io.NORMALIZATION_FILE_KEY]
    min_normalized_value = option_dict[trainval_io.MIN_NORMALIZED_VALUE_KEY]
    max_normalized_value = option_dict[trainval_io.MAX_NORMALIZED_VALUE_KEY]

    binarize_target = option_dict[trainval_io.BINARIZE_TARGET_KEY]

    this_example_dict = input_examples.read_example_file(
        netcdf_file_name=example_file_names[0], metadata_only=True)
    target_name = this_example_dict[input_examples.TARGET_NAME_KEY]

    num_classes = target_val_utils.target_name_to_num_classes(
        target_name=target_name, include_dead_storms=False)

    if sounding_field_names is None:
        sounding_field_names_to_read = None
    else:
        if soundings.PRESSURE_NAME in sounding_field_names:
            sounding_field_names_to_read = sounding_field_names + []
        else:
            sounding_field_names_to_read = (
                sounding_field_names + [soundings.PRESSURE_NAME]
            )

    radar_image_matrix = None
    sounding_matrix = None
    target_values = None
    sounding_pressure_matrix_pascals = None

    reduction_metadata_dict = {}
    file_index = 0

    while True:
        if file_index >= len(example_file_names):
            raise StopIteration

        print 'Reading data from: "{0:s}"...'.format(
            example_file_names[file_index])

        this_example_dict = input_examples.read_example_file(
            netcdf_file_name=example_file_names[file_index],
            include_soundings=sounding_field_names is not None,
            radar_field_names_to_keep=unique_radar_field_names,
            radar_heights_to_keep_m_agl=unique_radar_heights_m_agl,
            sounding_field_names_to_keep=sounding_field_names_to_read,
            sounding_heights_to_keep_m_agl=sounding_heights_m_agl,
            first_time_to_keep_unix_sec=first_storm_time_unix_sec,
            last_time_to_keep_unix_sec=last_storm_time_unix_sec,
            num_rows_to_keep=num_grid_rows,
            num_columns_to_keep=num_grid_columns)

        file_index += 1
        if this_example_dict is None:
            continue

        indices_to_keep = tracking_utils.find_storm_objects(
            all_storm_ids=this_example_dict[input_examples.STORM_IDS_KEY],
            all_times_unix_sec=this_example_dict[
                input_examples.STORM_TIMES_KEY],
            storm_ids_to_keep=storm_ids,
            times_to_keep_unix_sec=storm_times_unix_sec, allow_missing=True)

        indices_to_keep = indices_to_keep[indices_to_keep >= 0]
        if len(indices_to_keep) == 0:
            continue

        this_example_dict = input_examples.subset_examples(
            example_dict=this_example_dict, indices_to_keep=indices_to_keep)

        this_example_dict = input_examples.reduce_examples_3d_to_2d(
            example_dict=this_example_dict,
            list_of_operation_dicts=list_of_operation_dicts)

        radar_field_names_2d = this_example_dict[
            input_examples.RADAR_FIELDS_KEY]
        for this_key in REDUCTION_METADATA_KEYS:
            reduction_metadata_dict[this_key] = this_example_dict[this_key]

        include_soundings = (
            input_examples.SOUNDING_MATRIX_KEY in this_example_dict)

        if include_soundings:
            pressure_index = this_example_dict[
                input_examples.SOUNDING_FIELDS_KEY
            ].index(soundings.PRESSURE_NAME)

            this_pressure_matrix_pascals = this_example_dict[
                input_examples.SOUNDING_MATRIX_KEY][..., pressure_index]

            this_sounding_matrix = this_example_dict[
                input_examples.SOUNDING_MATRIX_KEY]
            if soundings.PRESSURE_NAME not in sounding_field_names:
                this_sounding_matrix = this_sounding_matrix[..., :-1]

        if target_values is None:
            radar_image_matrix = (
                this_example_dict[input_examples.RADAR_IMAGE_MATRIX_KEY]
                + 0.
            )
            target_values = (
                this_example_dict[input_examples.TARGET_VALUES_KEY] + 0)

            if include_soundings:
                sounding_matrix = this_sounding_matrix + 0.
                sounding_pressure_matrix_pascals = (
                    this_pressure_matrix_pascals + 0.)
        else:
            radar_image_matrix = numpy.concatenate(
                (radar_image_matrix,
                 this_example_dict[input_examples.RADAR_IMAGE_MATRIX_KEY]),
                axis=0)
            target_values = numpy.concatenate((
                target_values,
                this_example_dict[input_examples.TARGET_VALUES_KEY]
            ))

            if include_soundings:
                sounding_matrix = numpy.concatenate(
                    (sounding_matrix, this_sounding_matrix), axis=0)
                sounding_pressure_matrix_pascals = numpy.concatenate(
                    (sounding_pressure_matrix_pascals,
                     this_pressure_matrix_pascals), axis=0)

        if normalization_type_string is not None:
            radar_image_matrix = dl_utils.normalize_radar_images(
                radar_image_matrix=radar_image_matrix,
                field_names=radar_field_names_2d,
                normalization_type_string=normalization_type_string,
                normalization_param_file_name=normalization_param_file_name,
                min_normalized_value=min_normalized_value,
                max_normalized_value=max_normalized_value).astype('float32')

            if include_soundings:
                sounding_matrix = dl_utils.normalize_soundings(
                    sounding_matrix=sounding_matrix,
                    field_names=sounding_field_names,
                    normalization_type_string=normalization_type_string,
                    normalization_param_file_name=normalization_param_file_name,
                    min_normalized_value=min_normalized_value,
                    max_normalized_value=max_normalized_value).astype('float32')

        list_of_predictor_matrices = [radar_image_matrix]
        if include_soundings:
            list_of_predictor_matrices.append(sounding_matrix)

        target_array = _finalize_targets(
            target_values=target_values, binarize_target=binarize_target,
            num_classes=num_classes)

        storm_object_dict = {
            INPUT_MATRICES_KEY: list_of_predictor_matrices,
            TARGET_ARRAY_KEY: target_array,
            STORM_IDS_KEY: this_example_dict[input_examples.STORM_IDS_KEY],
            STORM_TIMES_KEY: this_example_dict[input_examples.STORM_TIMES_KEY],
            SOUNDING_PRESSURES_KEY:
                copy.deepcopy(sounding_pressure_matrix_pascals)
        }

        for this_key in REDUCTION_METADATA_KEYS:
            storm_object_dict[this_key] = reduction_metadata_dict[this_key]

        radar_image_matrix = None
        sounding_matrix = None
        target_values = None
        sounding_pressure_matrix_pascals = None

        yield storm_object_dict
Esempio n. 4
0
def myrorss_generator_2d3d(option_dict, num_examples_total):
    """Generates examples with both 2-D and 3-D radar images.

    Each example (storm object) consists of the following:

    - Storm-centered azimuthal shear (one 2-D image for each field)
    - Storm-centered reflectivity (one 3-D image)
    - Storm-centered sounding (optional)
    - Target value (class)

    :param option_dict: Dictionary with the following keys.
    option_dict['example_file_names']: See doc for
        `training_validation_io.myrorss_generator_2d3d`.
    option_dict['binarize_target']: Same.
    option_dict['radar_field_names']: Same.
    option_dict['radar_heights_m_agl']: Same.
    option_dict['sounding_field_names']: Same.
    option_dict['sounding_heights_m_agl']: Same.
    option_dict['first_storm_time_unix_sec']: Same.
    option_dict['last_storm_time_unix_sec']: Same.
    option_dict['num_grid_rows']: Same.
    option_dict['num_grid_columns']: Same.
    option_dict['normalization_type_string']: See doc for `generator_2d_or_3d`.
    option_dict['normalization_param_file_name']: Same.
    option_dict['min_normalized_value']: Same.
    option_dict['max_normalized_value']: Same.
    option_dict['class_to_sampling_fraction_dict']: Same.

    :param num_examples_total: Total number of examples to generate.

    :return: storm_object_dict: Dictionary with the following keys.
    storm_object_dict['list_of_input_matrices']: length-T list of numpy arrays,
        where T = number of input tensors to model.  The first axis of each
        array has length E.
    storm_object_dict['storm_ids']: length-E list of storm IDs.
    storm_object_dict['storm_times_unix_sec']: length-E numpy array of storm
        times.
    storm_object_dict['target_array']: See output doc for
        `training_validation_io.myrorss_generator_2d3d`.
    storm_object_dict['sounding_pressure_matrix_pascals']: numpy array (E x H_s)
        of pressures.  If soundings were not read, this is None.
    """

    storm_ids, storm_times_unix_sec = _find_examples_to_read(
        option_dict=option_dict, num_examples_total=num_examples_total)
    print '\n'

    example_file_names = option_dict[trainval_io.EXAMPLE_FILES_KEY]

    first_storm_time_unix_sec = option_dict[trainval_io.FIRST_STORM_TIME_KEY]
    last_storm_time_unix_sec = option_dict[trainval_io.LAST_STORM_TIME_KEY]
    num_grid_rows = option_dict[trainval_io.NUM_ROWS_KEY]
    num_grid_columns = option_dict[trainval_io.NUM_COLUMNS_KEY]
    azimuthal_shear_field_names = option_dict[trainval_io.RADAR_FIELDS_KEY]
    reflectivity_heights_m_agl = option_dict[trainval_io.RADAR_HEIGHTS_KEY]
    sounding_field_names = option_dict[trainval_io.SOUNDING_FIELDS_KEY]
    sounding_heights_m_agl = option_dict[trainval_io.SOUNDING_HEIGHTS_KEY]

    normalization_type_string = option_dict[trainval_io.NORMALIZATION_TYPE_KEY]
    normalization_param_file_name = option_dict[
        trainval_io.NORMALIZATION_FILE_KEY]
    min_normalized_value = option_dict[trainval_io.MIN_NORMALIZED_VALUE_KEY]
    max_normalized_value = option_dict[trainval_io.MAX_NORMALIZED_VALUE_KEY]

    binarize_target = option_dict[trainval_io.BINARIZE_TARGET_KEY]

    this_example_dict = input_examples.read_example_file(
        netcdf_file_name=example_file_names[0], metadata_only=True)
    target_name = this_example_dict[input_examples.TARGET_NAME_KEY]

    num_classes = target_val_utils.target_name_to_num_classes(
        target_name=target_name, include_dead_storms=False)

    if sounding_field_names is None:
        sounding_field_names_to_read = None
    else:
        if soundings.PRESSURE_NAME in sounding_field_names:
            sounding_field_names_to_read = sounding_field_names + []
        else:
            sounding_field_names_to_read = (
                sounding_field_names + [soundings.PRESSURE_NAME]
            )

    reflectivity_image_matrix_dbz = None
    az_shear_image_matrix_s01 = None
    sounding_matrix = None
    target_values = None
    sounding_pressure_matrix_pascals = None
    file_index = 0

    while True:
        if file_index >= len(example_file_names):
            raise StopIteration

        print 'Reading data from: "{0:s}"...'.format(
            example_file_names[file_index])

        this_example_dict = input_examples.read_example_file(
            netcdf_file_name=example_file_names[file_index],
            include_soundings=sounding_field_names is not None,
            radar_field_names_to_keep=azimuthal_shear_field_names,
            radar_heights_to_keep_m_agl=reflectivity_heights_m_agl,
            sounding_field_names_to_keep=sounding_field_names_to_read,
            sounding_heights_to_keep_m_agl=sounding_heights_m_agl,
            first_time_to_keep_unix_sec=first_storm_time_unix_sec,
            last_time_to_keep_unix_sec=last_storm_time_unix_sec,
            num_rows_to_keep=num_grid_rows,
            num_columns_to_keep=num_grid_columns)

        file_index += 1
        if this_example_dict is None:
            continue

        indices_to_keep = tracking_utils.find_storm_objects(
            all_storm_ids=this_example_dict[input_examples.STORM_IDS_KEY],
            all_times_unix_sec=this_example_dict[
                input_examples.STORM_TIMES_KEY],
            storm_ids_to_keep=storm_ids,
            times_to_keep_unix_sec=storm_times_unix_sec, allow_missing=True)

        indices_to_keep = indices_to_keep[indices_to_keep >= 0]
        if len(indices_to_keep) == 0:
            continue

        this_example_dict = input_examples.subset_examples(
            example_dict=this_example_dict, indices_to_keep=indices_to_keep)

        include_soundings = (
            input_examples.SOUNDING_MATRIX_KEY in this_example_dict)

        if include_soundings:
            pressure_index = this_example_dict[
                input_examples.SOUNDING_FIELDS_KEY
            ].index(soundings.PRESSURE_NAME)

            this_pressure_matrix_pascals = this_example_dict[
                input_examples.SOUNDING_MATRIX_KEY][..., pressure_index]

            this_sounding_matrix = this_example_dict[
                input_examples.SOUNDING_MATRIX_KEY]
            if soundings.PRESSURE_NAME not in sounding_field_names:
                this_sounding_matrix = this_sounding_matrix[..., -1]

        if target_values is None:
            reflectivity_image_matrix_dbz = (
                this_example_dict[input_examples.REFL_IMAGE_MATRIX_KEY] + 0.
            )
            az_shear_image_matrix_s01 = (
                this_example_dict[input_examples.AZ_SHEAR_IMAGE_MATRIX_KEY]
                + 0.
            )
            target_values = (
                this_example_dict[input_examples.TARGET_VALUES_KEY] + 0)

            if include_soundings:
                sounding_matrix = this_sounding_matrix + 0.
                sounding_pressure_matrix_pascals = (
                    this_pressure_matrix_pascals + 0.)
        else:
            reflectivity_image_matrix_dbz = numpy.concatenate(
                (reflectivity_image_matrix_dbz,
                 this_example_dict[input_examples.REFL_IMAGE_MATRIX_KEY]),
                axis=0)
            az_shear_image_matrix_s01 = numpy.concatenate((
                az_shear_image_matrix_s01,
                this_example_dict[input_examples.AZ_SHEAR_IMAGE_MATRIX_KEY]
            ), axis=0)
            target_values = numpy.concatenate((
                target_values,
                this_example_dict[input_examples.TARGET_VALUES_KEY]
            ))

            if include_soundings:
                sounding_matrix = numpy.concatenate(
                    (sounding_matrix, this_sounding_matrix), axis=0)
                sounding_pressure_matrix_pascals = numpy.concatenate(
                    (sounding_pressure_matrix_pascals,
                     this_pressure_matrix_pascals), axis=0)

        if normalization_type_string is not None:
            reflectivity_image_matrix_dbz = dl_utils.normalize_radar_images(
                radar_image_matrix=reflectivity_image_matrix_dbz,
                field_names=[radar_utils.REFL_NAME],
                normalization_type_string=normalization_type_string,
                normalization_param_file_name=normalization_param_file_name,
                min_normalized_value=min_normalized_value,
                max_normalized_value=max_normalized_value).astype('float32')

            az_shear_image_matrix_s01 = dl_utils.normalize_radar_images(
                radar_image_matrix=az_shear_image_matrix_s01,
                field_names=azimuthal_shear_field_names,
                normalization_type_string=normalization_type_string,
                normalization_param_file_name=normalization_param_file_name,
                min_normalized_value=min_normalized_value,
                max_normalized_value=max_normalized_value).astype('float32')

            if include_soundings:
                sounding_matrix = dl_utils.normalize_soundings(
                    sounding_matrix=sounding_matrix,
                    field_names=sounding_field_names,
                    normalization_type_string=normalization_type_string,
                    normalization_param_file_name=normalization_param_file_name,
                    min_normalized_value=min_normalized_value,
                    max_normalized_value=max_normalized_value).astype('float32')

        list_of_predictor_matrices = [
            reflectivity_image_matrix_dbz, az_shear_image_matrix_s01
        ]
        if include_soundings:
            list_of_predictor_matrices.append(sounding_matrix)

        target_array = _finalize_targets(
            target_values=target_values, binarize_target=binarize_target,
            num_classes=num_classes)

        storm_object_dict = {
            INPUT_MATRICES_KEY: list_of_predictor_matrices,
            TARGET_ARRAY_KEY: target_array,
            STORM_IDS_KEY: this_example_dict[input_examples.STORM_IDS_KEY],
            STORM_TIMES_KEY: this_example_dict[input_examples.STORM_TIMES_KEY],
            SOUNDING_PRESSURES_KEY: sounding_pressure_matrix_pascals + 0.
        }

        reflectivity_image_matrix_dbz = None
        az_shear_image_matrix_s01 = None
        sounding_matrix = None
        target_values = None
        sounding_pressure_matrix_pascals = None

        yield storm_object_dict
def _run(input_example_dir_name, storm_metafile_name, num_examples_in_subset,
         subset_randomly, output_example_file_name):
    """Extracts desired examples and writes them to one file.

    This is effectively the main method.

    :param input_example_dir_name: See documentation at top of file.
    :param storm_metafile_name: Same.
    :param num_examples_in_subset: Same.
    :param subset_randomly: Same.
    :param output_example_file_name: Same.
    """

    print(
        'Reading storm metadata from: "{0:s}"...'.format(storm_metafile_name))
    example_id_strings, example_times_unix_sec = (
        tracking_io.read_ids_and_times(storm_metafile_name))

    if not 0 < num_examples_in_subset < len(example_id_strings):
        num_examples_in_subset = None

    if num_examples_in_subset is not None:
        if subset_randomly:
            these_indices = numpy.linspace(0,
                                           len(example_id_strings) - 1,
                                           num=len(example_id_strings),
                                           dtype=int)
            these_indices = numpy.random.choice(these_indices,
                                                size=num_examples_in_subset,
                                                replace=False)

            example_id_strings = [example_id_strings[k] for k in these_indices]
            example_times_unix_sec = example_times_unix_sec[these_indices]
        else:
            example_id_strings = example_id_strings[:num_examples_in_subset]
            example_times_unix_sec = (
                example_times_unix_sec[:num_examples_in_subset])

    example_spc_date_strings = numpy.array([
        time_conversion.time_to_spc_date_string(t)
        for t in example_times_unix_sec
    ])
    spc_date_strings = numpy.unique(example_spc_date_strings)

    example_file_name_by_day = [
        input_examples.find_example_file(
            top_directory_name=input_example_dir_name,
            shuffled=False,
            spc_date_string=d,
            raise_error_if_missing=True) for d in spc_date_strings
    ]

    num_days = len(spc_date_strings)

    for i in range(num_days):
        print('Reading data from: "{0:s}"...'.format(
            example_file_name_by_day[i]))
        all_example_dict = input_examples.read_example_file(
            netcdf_file_name=example_file_name_by_day[i],
            read_all_target_vars=True)

        these_indices = numpy.where(
            example_spc_date_strings == spc_date_strings[i])[0]

        desired_indices = tracking_utils.find_storm_objects(
            all_id_strings=all_example_dict[input_examples.FULL_IDS_KEY],
            all_times_unix_sec=all_example_dict[
                input_examples.STORM_TIMES_KEY],
            id_strings_to_keep=[example_id_strings[k] for k in these_indices],
            times_to_keep_unix_sec=example_times_unix_sec[these_indices],
            allow_missing=False)

        desired_example_dict = input_examples.subset_examples(
            example_dict=all_example_dict, indices_to_keep=desired_indices)

        print('Writing {0:d} desired examples to: "{1:s}"...'.format(
            len(desired_indices), output_example_file_name))
        input_examples.write_example_file(
            netcdf_file_name=output_example_file_name,
            example_dict=desired_example_dict,
            append_to_file=i > 0)