Esempio n. 1
0
def _check_input_args(list_of_baseline_matrices, list_of_trial_matrices,
                      num_iterations, confidence_level):
    """Error-checks input args for Monte Carlo test.

    :param list_of_baseline_matrices: See doc for `run_monte_carlo_test`.
    :param list_of_trial_matrices: Same.
    :param num_iterations: Same.
    :param confidence_level: Same.
    :raises: ValueError: if number of baseline matrices (input tensors to model)
        != number of trial matrices.
    :raises: TypeError: if all "input matrices" are None.
    :return: num_examples_per_set: Number of examples in each set.
    """

    error_checking.assert_is_integer(num_iterations)
    error_checking.assert_is_geq(num_iterations, 100)
    error_checking.assert_is_geq(confidence_level, 0.)
    error_checking.assert_is_leq(confidence_level, 1.)

    num_baseline_matrices = len(list_of_baseline_matrices)
    num_trial_matrices = len(list_of_trial_matrices)

    if num_baseline_matrices != num_trial_matrices:
        error_string = (
            'Number of baseline matrices ({0:d}) should = number of trial '
            'matrices ({1:d}).').format(num_baseline_matrices,
                                        num_trial_matrices)

        raise ValueError(error_string)

    num_matrices = num_trial_matrices
    num_examples_per_set = None

    for i in range(num_matrices):
        if (list_of_baseline_matrices[i] is None
                and list_of_trial_matrices[i] is None):
            continue

        error_checking.assert_is_numpy_array(list_of_baseline_matrices[i])

        if num_examples_per_set is None:
            num_examples_per_set = list_of_baseline_matrices[i].shape[0]

        these_expected_dim = numpy.array(
            (num_examples_per_set, ) + list_of_baseline_matrices[i].shape[1:],
            dtype=int)

        error_checking.assert_is_numpy_array(
            list_of_baseline_matrices[i], exact_dimensions=these_expected_dim)

        these_expected_dim = numpy.array(list_of_baseline_matrices[i].shape,
                                         dtype=int)

        error_checking.assert_is_numpy_array(
            list_of_trial_matrices[i], exact_dimensions=these_expected_dim)

    if num_examples_per_set is None:
        raise TypeError('All "input matrices" are None.')

    return num_examples_per_set
Esempio n. 2
0
def get_confidence_interval(stat_values,
                            confidence_level=DEFAULT_CONFIDENCE_LEVEL):
    """Computes confidence interval for bootstrapped statistic.

    K = number of bootstrapping iterations (number of samples drawn)

    :param stat_values: length-K numpy array with values of bootstrapped
        statistic.  Each value comes from a different sample ("bootstrap
        replicate").
    :param confidence_level: Level for confidence interval (may range from
        0...1).  For example, if confidence_level = 0.95, this method will
        create a 95% confidence interval.
    :return: confidence_interval_min: Minimum value in confidence interval.
    :return: confidence_interval_max: Maximum value in confidence interval.
    """

    error_checking.assert_is_numpy_array(stat_values, num_dimensions=1)
    error_checking.assert_is_real_numpy_array(stat_values)
    error_checking.assert_is_geq(confidence_level, 0.)
    error_checking.assert_is_leq(confidence_level, 1.)

    min_percentile = 50. * (1. - confidence_level)
    max_percentile = 50. * (1. + confidence_level)

    confidence_interval_min = numpy.nanpercentile(stat_values,
                                                  min_percentile,
                                                  interpolation='linear')
    confidence_interval_max = numpy.nanpercentile(stat_values,
                                                  max_percentile,
                                                  interpolation='linear')
    return confidence_interval_min, confidence_interval_max
def get_noisings(num_noisings, max_standard_deviation):
    """Creates an array of standard deviations for Gaussian noising.

    These standard deviations are meant for use in `noise_radar_images`.

    N = number of noisings

    :param num_noisings: Number of times to noise the image.
    :param max_standard_deviation: Max standard deviation of Gaussian noise.
    :return: standard_deviations: length-N numpy array of standard deviations.
    """

    error_checking.assert_is_integer(num_noisings)
    if num_noisings == 0:
        return numpy.array([], dtype=float)

    error_checking.assert_is_greater(num_noisings, 0)
    error_checking.assert_is_geq(max_standard_deviation,
                                 MIN_NOISE_STANDARD_DEVIATION)
    error_checking.assert_is_leq(max_standard_deviation,
                                 MAX_NOISE_STANDARD_DEVIATION)

    return numpy.random.uniform(low=0.,
                                high=max_standard_deviation,
                                size=num_noisings)
Esempio n. 4
0
def _check_args_one_step(predictor_matrix, permuted_flag_matrix,
                         scalar_channel_flags, shuffle_profiles_together,
                         num_bootstrap_reps):
    """Checks input args for `run_*_test_one_step`.

    :param predictor_matrix: See doc for `run_forward_test_one_step` or
        `run_backwards_test_one_step`.
    :param permuted_flag_matrix: Same.
    :param scalar_channel_flags: Same.
    :param shuffle_profiles_together: Same.
    :param num_bootstrap_reps: Same.
    :return: num_bootstrap_reps: Same as input but maxxed with 1.
    """

    error_checking.assert_is_numpy_array_without_nan(predictor_matrix)
    num_predictor_dim = len(predictor_matrix.shape)
    error_checking.assert_is_geq(num_predictor_dim, 3)
    error_checking.assert_is_leq(num_predictor_dim, 3)

    error_checking.assert_is_boolean_numpy_array(permuted_flag_matrix)
    these_expected_dim = numpy.array(predictor_matrix.shape[1:], dtype=int)
    error_checking.assert_is_numpy_array(permuted_flag_matrix,
                                         exact_dimensions=these_expected_dim)

    error_checking.assert_is_boolean_numpy_array(scalar_channel_flags)
    these_expected_dim = numpy.array([predictor_matrix.shape[-1]], dtype=int)
    error_checking.assert_is_numpy_array(scalar_channel_flags,
                                         exact_dimensions=these_expected_dim)

    error_checking.assert_is_boolean(shuffle_profiles_together)
    error_checking.assert_is_integer(num_bootstrap_reps)

    return numpy.maximum(num_bootstrap_reps, 1)
def get_rotations(num_rotations, max_absolute_rotation_angle_deg):
    """Creates an array of rotation angles.

    These angles are meant for use in `rotate_radar_images`.

    N = number of rotations

    :param num_rotations: Number of rotations.  Image will be rotated only in
        the xy-plane (about the z-axis).
    :param max_absolute_rotation_angle_deg: Max absolute rotation angle
        (degrees).  In general, the image will be rotated both clockwise and
        counterclockwise, up to this angle.
    :return: ccw_rotation_angles_deg: length-N numpy array of counterclockwise
        rotation angles (degrees).
    """

    error_checking.assert_is_integer(num_rotations)
    if num_rotations == 0:
        return numpy.array([], dtype=float)

    error_checking.assert_is_greater(num_rotations, 0)
    error_checking.assert_is_geq(max_absolute_rotation_angle_deg,
                                 MIN_ABSOLUTE_ROTATION_ANGLE_DEG)
    error_checking.assert_is_leq(max_absolute_rotation_angle_deg,
                                 MAX_ABSOLUTE_ROTATION_ANGLE_DEG)

    absolute_rotation_angles_deg = numpy.random.uniform(
        low=1., high=max_absolute_rotation_angle_deg, size=num_rotations)

    possible_signs = numpy.array([-1, 1], dtype=int)
    return absolute_rotation_angles_deg * numpy.random.choice(
        possible_signs, size=num_rotations, replace=True)
def get_saliency_maps_for_class_activation(model_object, target_class,
                                           list_of_input_matrices):
    """For each input example, creates saliency map for prob of target class.

    :param model_object: Instance of `keras.models.Model`.
    :param target_class: Saliency maps will be created for this class.  Must be
        an integer in 0...(K - 1), where K = number of classes.
    :param list_of_input_matrices: See doc for `_do_saliency_calculations`.
    :return: list_of_saliency_matrices: See doc for `_do_saliency_calculations`.
    """

    check_metadata(
        component_type_string=model_interpretation.CLASS_COMPONENT_TYPE_STRING,
        target_class=target_class)

    num_output_neurons = model_object.layers[-1].output.get_shape().as_list(
    )[-1]

    if num_output_neurons == 1:
        error_checking.assert_is_leq(target_class, 1)
        if target_class == 1:
            loss_tensor = K.mean(
                (model_object.layers[-1].output[..., 0] - 1)**2)
        else:
            loss_tensor = K.mean(model_object.layers[-1].output[..., 0]**2)
    else:
        error_checking.assert_is_less_than(target_class, num_output_neurons)
        loss_tensor = K.mean(
            (model_object.layers[-1].output[..., target_class] - 1)**2)

    return _do_saliency_calculations(
        model_object=model_object,
        loss_tensor=loss_tensor,
        list_of_input_matrices=list_of_input_matrices)
Esempio n. 7
0
def do_batch_normalization(feature_matrix,
                           scale_parameter=1.,
                           shift_parameter=0.):
    """Performs batch normalization on each feature in the batch.

    E = number of examples in batch

    :param feature_matrix: Input feature maps (numpy array).  Dimensions must be
        E x M x N x C or E x M x N x H x C.
    :param scale_parameter: Scale parameter (beta in the equation on page 3 of
        Ioffe and Szegedy 2015).
    :param shift_parameter: Shift parameter (gamma in the equation).
    :return: feature_matrix: Feature maps after batch normalization (same
        dimensions).
    """

    error_checking.assert_is_numpy_array_without_nan(feature_matrix)
    error_checking.assert_is_greater(scale_parameter, 0.)

    num_dimensions = len(feature_matrix.shape)
    error_checking.assert_is_geq(num_dimensions, 4)
    error_checking.assert_is_leq(num_dimensions, 5)

    stdev_matrix = numpy.std(feature_matrix, axis=0, ddof=1)
    stdev_matrix = numpy.expand_dims(stdev_matrix, axis=0)
    stdev_matrix = numpy.repeat(stdev_matrix, feature_matrix.shape[0], axis=0)

    mean_matrix = numpy.mean(feature_matrix, axis=0)
    mean_matrix = numpy.expand_dims(mean_matrix, axis=0)
    mean_matrix = numpy.repeat(mean_matrix, feature_matrix.shape[0], axis=0)

    return shift_parameter + scale_parameter * (
        (feature_matrix - mean_matrix) / (stdev_matrix + K.epsilon()))
Esempio n. 8
0
def determinize_probabilities(class_probability_matrix, binarization_threshold):
    """Determinizes probabilistic predictions.

    P = number of evaluation pairs

    :param class_probability_matrix: See documentation for
        `check_evaluation_pairs`.
    :param binarization_threshold: See documentation for
        `find_best_binarization_threshold`.
    :return: predicted_labels: length-P numpy array of predicted class labels
        (integers).
    """

    error_checking.assert_is_numpy_array(
        class_probability_matrix, num_dimensions=2)
    error_checking.assert_is_geq_numpy_array(class_probability_matrix, 0.)
    error_checking.assert_is_leq_numpy_array(class_probability_matrix, 1.)
    error_checking.assert_is_geq(binarization_threshold, 0.)
    error_checking.assert_is_leq(binarization_threshold, 1.01)

    num_evaluation_pairs = class_probability_matrix.shape[0]
    predicted_labels = numpy.full(num_evaluation_pairs, -1, dtype=int)

    for i in range(num_evaluation_pairs):
        if class_probability_matrix[i, 0] >= binarization_threshold:
            predicted_labels[i] = 0
            continue

        predicted_labels[i] = 1 + numpy.argmax(class_probability_matrix[i, 1:])

    return predicted_labels
def write_pmm_file(pickle_file_name,
                   mean_denorm_predictor_matrices,
                   mean_saliency_matrices,
                   model_file_name,
                   non_pmm_file_name,
                   pmm_max_percentile_level,
                   mean_sounding_pressures_pa=None):
    """Writes composite saliency map to Pickle file.

    The composite should be created by probability-matched means (PMM).

    H = number of sounding heights

    :param pickle_file_name: Path to output file.
    :param mean_denorm_predictor_matrices: See doc for
        `_check_in_and_out_matrices`.
    :param mean_saliency_matrices: Same.
    :param model_file_name: Path to model that created saliency maps (readable
        by `cnn.read_model`).
    :param non_pmm_file_name: Path to standard saliency file (containing
        non-composited saliency maps).
    :param pmm_max_percentile_level: Max percentile level for PMM.
    :param mean_sounding_pressures_pa: length-H numpy array of PMM-composited
        sounding pressures.  Needed only if the model is trained with soundings
        but without pressure as a predictor.
    """

    error_checking.assert_is_string(model_file_name)
    error_checking.assert_is_string(non_pmm_file_name)
    error_checking.assert_is_geq(pmm_max_percentile_level, 90.)
    error_checking.assert_is_leq(pmm_max_percentile_level, 100.)

    _check_in_and_out_matrices(
        predictor_matrices=mean_denorm_predictor_matrices,
        num_examples=None,
        saliency_matrices=mean_saliency_matrices)

    if mean_sounding_pressures_pa is not None:
        num_heights = mean_denorm_predictor_matrices[-1].shape[-2]
        these_expected_dim = numpy.array([num_heights], dtype=int)

        error_checking.assert_is_geq_numpy_array(mean_sounding_pressures_pa,
                                                 0.)
        error_checking.assert_is_numpy_array(
            mean_sounding_pressures_pa, exact_dimensions=these_expected_dim)

    mean_saliency_dict = {
        MEAN_PREDICTOR_MATRICES_KEY: mean_denorm_predictor_matrices,
        MEAN_SALIENCY_MATRICES_KEY: mean_saliency_matrices,
        MODEL_FILE_KEY: model_file_name,
        NON_PMM_FILE_KEY: non_pmm_file_name,
        PMM_MAX_PERCENTILE_KEY: pmm_max_percentile_level,
        MEAN_SOUNDING_PRESSURES_KEY: mean_sounding_pressures_pa
    }

    file_system_utils.mkdir_recursive_if_necessary(file_name=pickle_file_name)
    pickle_file_handle = open(pickle_file_name, 'wb')
    pickle.dump(mean_saliency_dict, pickle_file_handle)
    pickle_file_handle.close()
def get_translations(num_translations, max_translation_pixels, num_grid_rows,
                     num_grid_columns):
    """Creates an array of x- and y-translations.

    These translations ("offsets") are meant for use in `shift_radar_images`.

    N = number of translations

    :param num_translations: Number of translations.  Image will be translated
        in only the x- and y-directions, not the z-direction.
    :param max_translation_pixels: Max translation in either direction.  Must be
        an integer.
    :param num_grid_rows: Number of rows in the image.
    :param num_grid_columns: Number of columns in the image.
    :return: x_offsets_pixels: length-N numpy array of x-translations
        (integers).
    :return: y_offsets_pixels: length-N numpy array of y-translations
        (integers).
    """

    error_checking.assert_is_integer(num_translations)
    if num_translations == 0:
        return numpy.array([], dtype=int), numpy.array([], dtype=int)

    error_checking.assert_is_greater(num_translations, 0)
    error_checking.assert_is_integer(num_grid_rows)
    error_checking.assert_is_geq(num_grid_rows, 2)
    error_checking.assert_is_integer(num_grid_columns)
    error_checking.assert_is_geq(num_grid_columns, 2)
    error_checking.assert_is_integer(max_translation_pixels)
    error_checking.assert_is_greater(max_translation_pixels, 0)

    smallest_horiz_dimension = min([num_grid_rows, num_grid_columns])
    max_max_translation_pixels = int(
        numpy.floor(float(smallest_horiz_dimension) / 2))
    error_checking.assert_is_leq(max_translation_pixels,
                                 max_max_translation_pixels)

    x_offsets_pixels = numpy.random.random_integers(
        low=-max_translation_pixels,
        high=max_translation_pixels,
        size=num_translations * 4)
    y_offsets_pixels = numpy.random.random_integers(
        low=-max_translation_pixels,
        high=max_translation_pixels,
        size=num_translations * 4)

    good_indices = numpy.where(
        numpy.absolute(x_offsets_pixels) +
        numpy.absolute(y_offsets_pixels) > 0)[0]
    good_indices = numpy.random.choice(good_indices,
                                       size=num_translations,
                                       replace=False)

    return x_offsets_pixels[good_indices], y_offsets_pixels[good_indices]
Esempio n. 11
0
def _check_regression_params(min_lead_time_sec=None,
                             max_lead_time_sec=None,
                             min_distance_metres=None,
                             max_distance_metres=None,
                             percentile_level=None):
    """Error-checks (and if necessary, rounds) parameters for regression labels.

    t = time of a given storm object

    :param min_lead_time_sec: Minimum lead time (wind time minus storm-object
        time).  Wind observations occurring before t + min_lead_time_sec are
        ignored.
    :param max_lead_time_sec: Maximum lead time (wind time minus storm-object
        time).  Wind observations occurring after t + max_lead_time_sec are
        ignored.
    :param min_distance_metres: Minimum distance between storm boundary and wind
        observations.  Wind observations nearer to the storm are ignored.
    :param max_distance_metres: Maximum distance between storm boundary and wind
        observations.  Wind observations farther from the storm are ignored.
    :param percentile_level: The label for each storm object will be the [q]th-
        percentile speed of wind observations in the given time and distance
        ranges, where q = percentile_level.
    :return: parameter_dict: Dictionary with the following keys.
    parameter_dict['min_lead_time_sec']: Same as input, but maybe rounded.
    parameter_dict['max_lead_time_sec']: Same as input, but maybe rounded.
    parameter_dict['min_distance_metres']: Same as input, but maybe rounded.
    parameter_dict['max_distance_metres']: Same as input, but maybe rounded.
    parameter_dict['percentile_level']: Same as input, but maybe rounded.
    """

    error_checking.assert_is_integer(min_lead_time_sec)
    error_checking.assert_is_geq(min_lead_time_sec, 0)
    error_checking.assert_is_integer(max_lead_time_sec)
    error_checking.assert_is_geq(max_lead_time_sec, min_lead_time_sec)
    error_checking.assert_is_geq(min_distance_metres, 0.)
    error_checking.assert_is_geq(max_distance_metres, min_distance_metres)
    error_checking.assert_is_geq(percentile_level, 0.)
    error_checking.assert_is_leq(percentile_level, 100.)

    min_distance_metres = rounder.round_to_nearest(min_distance_metres,
                                                   DISTANCE_PRECISION_METRES)
    max_distance_metres = rounder.round_to_nearest(max_distance_metres,
                                                   DISTANCE_PRECISION_METRES)
    percentile_level = rounder.round_to_nearest(percentile_level,
                                                PERCENTILE_LEVEL_PRECISION)

    return {
        MIN_LEAD_TIME_NAME: min_lead_time_sec,
        MAX_LEAD_TIME_NAME: max_lead_time_sec,
        MIN_DISTANCE_NAME: min_distance_metres,
        MAX_DISTANCE_NAME: max_distance_metres,
        PERCENTILE_LEVEL_NAME: percentile_level
    }
Esempio n. 12
0
def check_target_array(target_array, num_dimensions, num_classes):
    """Error-checks target values.

    :param target_array: numpy array in one of two formats.
    [1] length-E integer numpy array of target values.  All values are -2
        ("dead storm") or 0...[K - 1], where K = number of classes.
    [2] E-by-K numpy array, where each value is 0 or 1.  If target_array[i, k] =
        1, the [i]th storm object belongs to the [k]th class.  Classes are
        mutually exclusive and collectively exhaustive, so the sum across each
        row of the matrix is 1.

    :param num_dimensions: Number of dimensions expected in `target_array`.
    :param num_classes: Number of classes that should be represented in
        `target_array`.
    """

    error_checking.assert_is_integer(num_dimensions)
    error_checking.assert_is_geq(num_dimensions, 1)
    error_checking.assert_is_leq(num_dimensions, 2)
    error_checking.assert_is_integer(num_classes)
    error_checking.assert_is_geq(num_classes, 2)

    num_examples = target_array.shape[0]

    if num_dimensions == 1:
        error_checking.assert_is_integer_numpy_array(target_array)

        these_expected_dim = numpy.array([num_examples], dtype=int)
        error_checking.assert_is_numpy_array(
            target_array, exact_dimensions=these_expected_dim)

        # TODO(thunderhoser): This is a HACK.  Should do better input-checking.

        # live_storm_object_indices = numpy.where(
        #     target_array != target_val_utils.DEAD_STORM_INTEGER
        # )[0]
        # error_checking.assert_is_geq_numpy_array(
        #     target_array[live_storm_object_indices], 0
        # )

        error_checking.assert_is_geq_numpy_array(
            target_array, target_val_utils.DEAD_STORM_INTEGER)
        error_checking.assert_is_less_than_numpy_array(target_array,
                                                       num_classes)
    else:
        error_checking.assert_is_geq_numpy_array(target_array, 0)
        error_checking.assert_is_leq_numpy_array(target_array, 1)

        these_expected_dim = numpy.array([num_examples, num_classes],
                                         dtype=int)
        error_checking.assert_is_numpy_array(
            target_array, exact_dimensions=these_expected_dim)
Esempio n. 13
0
def get_random_colours(num_colours, colour_to_exclude_rgb=None,
                       min_rgb_distance=DEFAULT_MIN_RGB_DISTANCE):
    """Returns list of random colours.

    N = number of colours

    :param num_colours: Number of colours desired.
    :param colour_to_exclude_rgb: Colour to exclude (length-3 numpy array with
        values in 0...1).
    :param min_rgb_distance: All colours returned will be at least this far away
        from `colour_to_exclude_rgb`.  Distance is Euclidean.
    :return: rgb_matrix: N-by-3 numpy array with values in 0...1.  Each row is
        one colour.
    """

    orig_num_colours = num_colours + 0

    if colour_to_exclude_rgb is not None:
        error_checking.assert_is_numpy_array(
            colour_to_exclude_rgb, exact_dimensions=numpy.array([3], dtype=int)
        )

        error_checking.assert_is_geq_numpy_array(colour_to_exclude_rgb, 0.)
        error_checking.assert_is_leq_numpy_array(colour_to_exclude_rgb, 1.)
        error_checking.assert_is_greater(min_rgb_distance, 0.)
        error_checking.assert_is_leq(min_rgb_distance, 1.)

        num_colours = 10 * num_colours

    rgb_matrix = numpy.random.uniform(low=0., high=1., size=(num_colours, 3))

    if colour_to_exclude_rgb is not None:
        colour_to_exclude_rgb = numpy.reshape(colour_to_exclude_rgb, (1, 3))

        squared_distances = euclidean_distances(
            X=rgb_matrix, Y=numpy.reshape(colour_to_exclude_rgb, (1, 3)),
            squared=True
        )

        good_indices = numpy.where(
            squared_distances >= min_rgb_distance ** 2
        )[0]

        rgb_matrix = rgb_matrix[good_indices, ...]

    num_colours = min([
        orig_num_colours, rgb_matrix.shape[0]
    ])

    rgb_matrix = rgb_matrix[:num_colours, ...]
    numpy.random.shuffle(rgb_matrix)
    return rgb_matrix
Esempio n. 14
0
def get_default_colour_scheme(field_name, opacity=DEFAULT_OPACITY):
    """Returns default colour scheme for radar field.

    :param field_name: Field name (must be accepted by
        `radar_utils.check_field_name`).
    :param opacity: Opacity (in range 0...1).
    :return: colour_map_object: Instance of `matplotlib.colors.ListedColormap`.
    :return: colour_norm_object: Instance of `matplotlib.colors.BoundaryNorm`.
    """

    radar_utils.check_field_name(field_name)
    error_checking.assert_is_greater(opacity, 0.)
    error_checking.assert_is_leq(opacity, 1.)

    colour_map_object = None
    colour_norm_object = None

    if field_name in radar_utils.REFLECTIVITY_NAMES:
        colour_map_object, colour_norm_object = (
            _get_reflectivity_colour_scheme())
    elif field_name in radar_utils.SHEAR_NAMES:
        colour_map_object, colour_norm_object = _get_az_shear_colour_scheme()
    elif field_name in radar_utils.ECHO_TOP_NAMES:
        colour_map_object, colour_norm_object = _get_echo_top_colour_scheme()
    elif field_name == radar_utils.MESH_NAME:
        colour_map_object, colour_norm_object = _get_mesh_colour_scheme()
    elif field_name == radar_utils.SHI_NAME:
        colour_map_object, colour_norm_object = _get_shi_colour_scheme()
    elif field_name == radar_utils.VIL_NAME:
        colour_map_object, colour_norm_object = _get_vil_colour_scheme()
    elif field_name == radar_utils.DIFFERENTIAL_REFL_NAME:
        colour_map_object, colour_norm_object = _get_zdr_colour_scheme()
    elif field_name == radar_utils.SPEC_DIFF_PHASE_NAME:
        colour_map_object, colour_norm_object = _get_kdp_colour_scheme()
    elif field_name == radar_utils.CORRELATION_COEFF_NAME:
        colour_map_object, colour_norm_object = _get_rho_hv_colour_scheme()
    elif field_name == radar_utils.SPECTRUM_WIDTH_NAME:
        colour_map_object, colour_norm_object = (
            _get_spectrum_width_colour_scheme())
    elif field_name == radar_utils.VORTICITY_NAME:
        colour_map_object, colour_norm_object = _get_vorticity_colour_scheme()
    elif field_name == radar_utils.DIVERGENCE_NAME:
        colour_map_object, colour_norm_object = _get_divergence_colour_scheme()

    num_colours = len(colour_map_object.colors)

    for i in range(num_colours):
        colour_map_object.colors[i] = matplotlib.colors.to_rgba(
            colour_map_object.colors[i], opacity)

    return colour_map_object, colour_norm_object
Esempio n. 15
0
def check_output(monte_carlo_dict):
    """Error-checks output from Monte Carlo test.

    :param monte_carlo_dict: Dictionary created by `run_monte_carlo_test`.
    :raises: ValueError: if not (number of trial matrices = number of MIN
        matrices = number of MAX matrices).
    """

    error_checking.assert_is_greater(monte_carlo_dict[MAX_PMM_PERCENTILE_KEY],
                                     50.)
    error_checking.assert_is_leq(monte_carlo_dict[MAX_PMM_PERCENTILE_KEY],
                                 100.)
    error_checking.assert_is_integer(monte_carlo_dict[NUM_ITERATIONS_KEY])
    error_checking.assert_is_geq(monte_carlo_dict[NUM_ITERATIONS_KEY], 100)
    error_checking.assert_is_geq(monte_carlo_dict[CONFIDENCE_LEVEL_KEY], 0.)
    error_checking.assert_is_leq(monte_carlo_dict[CONFIDENCE_LEVEL_KEY], 1.)

    num_trial_matrices = len(monte_carlo_dict[TRIAL_PMM_MATRICES_KEY])
    num_min_matrices = len(monte_carlo_dict[MIN_MATRICES_KEY])
    num_max_matrices = len(monte_carlo_dict[MAX_MATRICES_KEY])

    if not num_trial_matrices == num_min_matrices == num_max_matrices:
        error_string = (
            'Number of trial ({0:d}), MIN ({1:d}), and MAX ({2:d}) matrices '
            'should be the same.').format(num_trial_matrices, num_min_matrices,
                                          num_max_matrices)

        raise ValueError(error_string)

    num_matrices = num_trial_matrices

    for i in range(num_matrices):
        if (monte_carlo_dict[TRIAL_PMM_MATRICES_KEY][i] is None
                and monte_carlo_dict[MIN_MATRICES_KEY][i] is None
                and monte_carlo_dict[MAX_MATRICES_KEY][i] is None):
            continue

        error_checking.assert_is_numpy_array(
            monte_carlo_dict[TRIAL_PMM_MATRICES_KEY][i])

        these_expected_dim = numpy.array(
            monte_carlo_dict[TRIAL_PMM_MATRICES_KEY][i].shape, dtype=int)

        error_checking.assert_is_numpy_array(
            monte_carlo_dict[MIN_MATRICES_KEY][i],
            exact_dimensions=these_expected_dim)

        error_checking.assert_is_numpy_array(
            monte_carlo_dict[MAX_MATRICES_KEY][i],
            exact_dimensions=these_expected_dim)
Esempio n. 16
0
def _check_convolution_options(
        num_kernel_rows, num_rows_per_stride, padding_type_string,
        num_filters, num_kernel_dimensions, num_kernel_columns=None,
        num_columns_per_stride=None, num_kernel_heights=None,
        num_heights_per_stride=None):
    """Checks input args for 1-D, 2-D, or 3-D convolution layer.

    :param num_kernel_rows: Number of rows in kernel.
    :param num_rows_per_stride: Number of rows per stride (number of rows moved
        by the kernel at once).
    :param padding_type_string: Padding type (must be in
        `VALID_PADDING_TYPE_STRINGS`).
    :param num_filters: Number of output filters (channels).
    :param num_kernel_dimensions: Number of dimensions in kernel.
    :param num_kernel_columns: [used only if num_kernel_dimensions > 1]
        Number of columns in kernel.
    :param num_columns_per_stride: [used only if num_kernel_dimensions > 1]
        Number of columns per stride.
    :param num_kernel_heights: [used only if num_kernel_dimensions = 3]
        Number of heights in kernel.
    :param num_heights_per_stride: [used only if num_kernel_dimensions = 3]
        Number of heights per stride.
    :raises: ValueError: if
        `padding_type_string not in VALID_PADDING_TYPE_STRINGS`.
    """

    error_checking.assert_is_integer(num_kernel_rows)
    error_checking.assert_is_geq(num_kernel_rows, 3)
    error_checking.assert_is_integer(num_rows_per_stride)
    error_checking.assert_is_geq(num_rows_per_stride, 1)
    error_checking.assert_is_leq(num_rows_per_stride, num_kernel_rows)

    error_checking.assert_is_string(padding_type_string)
    if padding_type_string not in VALID_PADDING_TYPE_STRINGS:
        error_string = (
            '\n{0:s}\nValid padding types (listed above) do not include '
            '"{1:s}".'
        ).format(str(VALID_PADDING_TYPE_STRINGS), padding_type_string)

        raise ValueError(error_string)

    error_checking.assert_is_integer(num_filters)
    error_checking.assert_is_geq(num_filters, 1)
    error_checking.assert_is_integer(num_kernel_dimensions)
    error_checking.assert_is_geq(num_kernel_dimensions, 1)
    error_checking.assert_is_leq(num_kernel_dimensions, 3)

    if num_kernel_dimensions >= 2:
        error_checking.assert_is_integer(num_kernel_columns)
        error_checking.assert_is_geq(num_kernel_columns, 3)
        error_checking.assert_is_integer(num_columns_per_stride)
        error_checking.assert_is_geq(num_columns_per_stride, 1)
        error_checking.assert_is_leq(num_columns_per_stride, num_kernel_columns)

    if num_kernel_dimensions == 3:
        error_checking.assert_is_integer(num_kernel_heights)
        error_checking.assert_is_geq(num_kernel_heights, 3)
        error_checking.assert_is_integer(num_heights_per_stride)
        error_checking.assert_is_geq(num_heights_per_stride, 1)
        error_checking.assert_is_leq(num_heights_per_stride, num_kernel_heights)
Esempio n. 17
0
def create_gif(input_file_names,
               output_file_name,
               num_seconds_per_frame,
               resize_factor=0.5,
               convert_exe_name=DEFAULT_CONVERT_EXE_NAME):
    """Creates GIF from static images.

    :param input_file_names: 1-D list of paths to input files (static images).
    :param output_file_name: Path to output file (GIF).
    :param num_seconds_per_frame: Number of seconds per frame.
    :param resize_factor: Resize factor.  When creating GIF, each static image
        (frame) will be resized to q times its original size, where q =
        `resize_factor`.  This will affect only the GIF.  The images themselves,
        at locations specified in `input_file_names`, will not be changed.
    :param convert_exe_name: See doc for `trim_whitespace`.
    :raises: ValueError: if ImageMagick command (which is ultimately a Unix
        command) fails.
    """

    error_checking.assert_is_string_list(input_file_names)
    error_checking.assert_is_numpy_array(numpy.array(input_file_names),
                                         num_dimensions=1)

    file_system_utils.mkdir_recursive_if_necessary(file_name=output_file_name)
    error_checking.assert_file_exists(convert_exe_name)

    error_checking.assert_is_greater(num_seconds_per_frame, 0.)
    error_checking.assert_is_leq(num_seconds_per_frame, 10.)
    error_checking.assert_is_geq(resize_factor, 0.2)
    error_checking.assert_is_leq(resize_factor, 1.)

    num_centiseconds_per_frame = int(numpy.round(100 * num_seconds_per_frame))
    num_centiseconds_per_frame = max([num_centiseconds_per_frame, 1])
    resize_percentage = int(numpy.round(100 * resize_factor))
    resize_percentage = max([resize_percentage, 1])

    command_string = '"{0:s}" -delay {1:d} '.format(
        convert_exe_name, num_centiseconds_per_frame)

    command_string += ' '.join(['"{0:s}"'.format(f) for f in input_file_names])

    command_string += ' -resize {0:d}% "{1:s}"'.format(resize_percentage,
                                                       output_file_name)

    exit_code = os.system(command_string)
    if exit_code == 0:
        return

    raise ValueError(ERROR_STRING)
Esempio n. 18
0
def _run(saliency_file_name, num_examples_to_plot, colour_map_name,
         max_colour_percentile, output_dir_name):
    """Plots saliency maps for all target variables.

    This is effectively the main method.

    :param saliency_file_name: See documentation at top of file.
    :param num_examples_to_plot: Same.
    :param colour_map_name: Same.
    :param max_colour_percentile: Same.
    :param output_dir_name: Same.
    """

    colour_map_object = pyplot.get_cmap(colour_map_name)
    error_checking.assert_is_geq(max_colour_percentile, 90.)
    error_checking.assert_is_leq(max_colour_percentile, 100.)
    file_system_utils.mkdir_recursive_if_necessary(
        directory_name=output_dir_name)

    print(
        'Reading saliency values from: "{0:s}"...'.format(saliency_file_name))
    saliency_dict = saliency.read_all_targets_file(saliency_file_name)

    model_file_name = saliency_dict[saliency.MODEL_FILE_KEY]
    model_metafile_name = neural_net.find_metafile(
        model_dir_name=os.path.split(model_file_name)[0])

    print(
        'Reading model metadata from: "{0:s}"...'.format(model_metafile_name))
    model_metadata_dict = neural_net.read_metafile(model_metafile_name)

    num_examples_total = len(saliency_dict[saliency.EXAMPLE_IDS_KEY])

    if num_examples_to_plot <= 0:
        num_examples_to_plot = num_examples_total

    num_examples_to_plot = numpy.minimum(num_examples_to_plot,
                                         num_examples_total)

    print(SEPARATOR_STRING)

    for i in range(num_examples_to_plot):
        _plot_saliency_one_example(saliency_dict=saliency_dict,
                                   example_index=i,
                                   model_metadata_dict=model_metadata_dict,
                                   colour_map_object=colour_map_object,
                                   max_colour_percentile=max_colour_percentile,
                                   output_dir_name=output_dir_name)
        print(SEPARATOR_STRING)
Esempio n. 19
0
def plot_taylor_diagram(target_stdev, prediction_stdev, correlation,
                        marker_colour, figure_object):
    """Plots Taylor diagram.

    :param target_stdev: Standard deviation of target (actual) values.
    :param prediction_stdev: Standard deviation of predicted values.
    :param correlation: Correlation between actual and predicted values.
    :param marker_colour: Colour for markers (in any format accepted by
        matplotlib).
    :param figure_object: Will plot on this figure (instance of
        `matplotlib.figure.Figure`).
    :return: taylor_diagram_object: Handle for Taylor diagram (instance of
        `taylor_diagram.TaylorDiagram`).
    """

    error_checking.assert_is_geq(target_stdev, 0.)
    error_checking.assert_is_geq(prediction_stdev, 0.)
    error_checking.assert_is_geq(correlation, -1., allow_nan=True)
    error_checking.assert_is_leq(correlation, 1., allow_nan=True)

    taylor_diagram_object = taylor_diagram.TaylorDiagram(refstd=target_stdev,
                                                         fig=figure_object,
                                                         srange=(0, 2),
                                                         extend=False)

    target_marker_object = taylor_diagram_object.samplePoints[0]
    target_marker_object.set_marker(TAYLOR_TARGET_MARKER_TYPE)
    target_marker_object.set_markersize(TAYLOR_TARGET_MARKER_SIZE)
    target_marker_object.set_markerfacecolor(marker_colour)
    target_marker_object.set_markeredgewidth(0)

    if not numpy.isnan(correlation):
        taylor_diagram_object.add_sample(stddev=prediction_stdev,
                                         corrcoef=correlation)

        prediction_marker_object = taylor_diagram_object.samplePoints[-1]
        prediction_marker_object.set_marker(TAYLOR_PREDICTION_MARKER_TYPE)
        prediction_marker_object.set_markersize(TAYLOR_PREDICTION_MARKER_SIZE)
        prediction_marker_object.set_markerfacecolor(marker_colour)
        prediction_marker_object.set_markeredgewidth(0)

    crmse_contour_object = taylor_diagram_object.add_contours(levels=5,
                                                              colors='0.5')
    pyplot.clabel(crmse_contour_object, inline=1, fmt='%.0f')

    taylor_diagram_object.add_grid()
    taylor_diagram_object._ax.axis[:].major_ticks.set_tick_out(True)

    return taylor_diagram_object
Esempio n. 20
0
def _check_pooling_options(
        num_rows_in_window, num_rows_per_stride, pooling_type_string,
        num_dimensions, num_columns_in_window=None, num_columns_per_stride=None,
        num_heights_in_window=None, num_heights_per_stride=None):
    """Checks input args for 1-D, 2-D, or 3-D pooling layer.

    :param num_rows_in_window: Number of rows in pooling window.
    :param num_rows_per_stride: Number of rows per stride (number of rows moved
        by the window at once).
    :param pooling_type_string: Pooling type (must be in
        `VALID_POOLING_TYPE_STRINGS`).
    :param num_dimensions: Number of dimensions in pooling window.
    :param num_columns_in_window: [used only if num_dimensions > 1]
        Number of columns in window.
    :param num_columns_per_stride: [used only if num_dimensions > 1]
        Number of columns per stride.
    :param num_heights_in_window: [used only if num_dimensions = 3]
        Number of heights in window.
    :param num_heights_per_stride: [used only if num_dimensions = 3]
        Number of heights per stride.
    :raises: ValueError: if
        `pooling_type_string not in VALID_POOLING_TYPE_STRINGS`.
    """

    error_checking.assert_is_integer(num_rows_in_window)
    error_checking.assert_is_geq(num_rows_in_window, 2)
    error_checking.assert_is_integer(num_rows_per_stride)
    error_checking.assert_is_geq(num_rows_per_stride, 1)
    error_checking.assert_is_leq(num_rows_per_stride, num_rows_in_window)

    error_checking.assert_is_string(pooling_type_string)
    if pooling_type_string not in VALID_POOLING_TYPE_STRINGS:
        error_string = (
            '\n{0:s}\nValid pooling types (listed above) do not include '
            '"{1:s}".'
        ).format(str(VALID_POOLING_TYPE_STRINGS), pooling_type_string)

        raise ValueError(error_string)

    error_checking.assert_is_integer(num_dimensions)
    error_checking.assert_is_geq(num_dimensions, 1)
    error_checking.assert_is_leq(num_dimensions, 3)

    if num_dimensions >= 2:
        error_checking.assert_is_integer(num_columns_in_window)
        error_checking.assert_is_geq(num_columns_in_window, 2)
        error_checking.assert_is_integer(num_columns_per_stride)
        error_checking.assert_is_geq(num_columns_per_stride, 1)
        error_checking.assert_is_leq(num_columns_per_stride,
                                     num_columns_in_window)

    if num_dimensions == 3:
        error_checking.assert_is_integer(num_heights_in_window)
        error_checking.assert_is_geq(num_heights_in_window, 1)
        error_checking.assert_is_integer(num_heights_per_stride)
        error_checking.assert_is_geq(num_heights_per_stride, 1)
        error_checking.assert_is_leq(num_heights_per_stride,
                                     num_heights_in_window)
Esempio n. 21
0
def _check_decision_tree_hyperparams(
        num_trees, loss_function_string, num_features_total,
        num_features_per_split, max_depth, min_examples_per_split,
        min_examples_per_leaf, learning_rate=None, subsampling_fraction=None):
    """Checks decision-tree hyperparameters (input parameters) for errors.

    :param num_trees: Number of trees in ensemble.
    :param loss_function_string: Loss function.  This method ensures only that
        the loss function is a string.  The specific learning method will
        determine whether or not the string is valid.
    :param num_features_total: Number of features in training data.
    :param num_features_per_split: Number of features to investigate at each
        split point (branch node).
    :param max_depth: Max depth of any tree in ensemble.
    :param min_examples_per_split: Minimum number of examples (storm objects) at
        a split point (branch node).
    :param min_examples_per_leaf: Minimum number of examples (storm objects) at
        a leaf node.
    :param learning_rate: [for gradient-boosting only] Learning rate (used to
        decrease the contribution of each successive tree).
    :param subsampling_fraction: [for gradient-boosting only] Fraction of
        examples to use in training each tree.
    """

    error_checking.assert_is_integer(num_trees)
    error_checking.assert_is_geq(num_trees, 2)
    error_checking.assert_is_string(loss_function_string)
    error_checking.assert_is_integer(num_features_per_split)
    error_checking.assert_is_greater(num_features_per_split, 0)
    error_checking.assert_is_leq(num_features_per_split, num_features_total)

    if max_depth is not None:
        error_checking.assert_is_integer(max_depth)
        error_checking.assert_is_greater(max_depth, 0)

    error_checking.assert_is_integer(min_examples_per_split)
    error_checking.assert_is_greater(min_examples_per_split, 1)
    error_checking.assert_is_integer(min_examples_per_leaf)
    error_checking.assert_is_greater(min_examples_per_leaf, 0)

    if learning_rate is not None:
        error_checking.assert_is_greater(learning_rate, 0.)
        error_checking.assert_is_less_than(learning_rate, 1.)

    if subsampling_fraction is not None:
        error_checking.assert_is_greater(subsampling_fraction, 0.)
        error_checking.assert_is_leq(subsampling_fraction, 1.)
Esempio n. 22
0
def optimize_input_for_class(model_object,
                             target_class,
                             init_function_or_matrices,
                             num_iterations=DEFAULT_NUM_ITERATIONS,
                             learning_rate=DEFAULT_LEARNING_RATE):
    """Creates synthetic input example to maximize probability of target class.

    :param model_object: Trained instance of `keras.models.Model` or
        `keras.models.Sequential`.
    :param target_class: Input data will be optimized for this class.  Must be
        an integer in 0...(K - 1), where K = number of classes.
    :param init_function_or_matrices: See doc for `_do_gradient_descent`.
    :param num_iterations: Same.
    :param learning_rate: Same.
    :return: list_of_optimized_matrices: Same.
    """

    model_interpretation.check_component_metadata(
        component_type_string=model_interpretation.CLASS_COMPONENT_TYPE_STRING,
        target_class=target_class)

    _check_input_args(num_iterations=num_iterations,
                      learning_rate=learning_rate)

    num_output_neurons = (
        model_object.layers[-1].output.get_shape().as_list()[-1])

    if num_output_neurons == 1:
        error_checking.assert_is_leq(target_class, 1)

        if target_class == 1:
            loss_tensor = K.mean(
                (model_object.layers[-1].output[..., 0] - 1)**2)
        else:
            loss_tensor = K.mean(model_object.layers[-1].output[..., 0]**2)
    else:
        error_checking.assert_is_less_than(target_class, num_output_neurons)

        loss_tensor = K.mean(
            (model_object.layers[-1].output[..., target_class] - 1)**2)

    return _do_gradient_descent(
        model_object=model_object,
        loss_tensor=loss_tensor,
        init_function_or_matrices=init_function_or_matrices,
        num_iterations=num_iterations,
        learning_rate=learning_rate)
Esempio n. 23
0
def _check_unet_input_args(num_predictors,
                           weight_loss_function,
                           convolve_over_time,
                           assumed_class_frequencies=None,
                           num_classes=None,
                           num_predictor_time_steps=None):
    """Checks input arguments for U-net.

    K = number of classes

    :param num_predictors: See documentation for
        `get_unet_with_2d_convolution`.
    :param weight_loss_function: Same.
    :param convolve_over_time: Same.
    :param assumed_class_frequencies: [used only if weight_loss_function = True]
        Same.
    :param num_classes: [used only if weight_loss_function = False]
        Same.
    :param num_predictor_time_steps: [used only if convolve_over_time = True]
        Same.
    :return: class_weights: length-K numpy array of class weights for loss
        function.
    """

    error_checking.assert_is_integer(num_predictors)
    error_checking.assert_is_geq(num_predictors, 1)
    error_checking.assert_is_boolean(weight_loss_function)
    error_checking.assert_is_boolean(convolve_over_time)

    if weight_loss_function:
        class_weight_dict = ml_utils.get_class_weight_dict(
            assumed_class_frequencies)
        class_weights = numpy.array(class_weight_dict.values())
        num_classes = len(class_weights)

    error_checking.assert_is_integer(num_classes)
    error_checking.assert_is_geq(num_classes, 2)
    error_checking.assert_is_leq(num_classes, 3)

    if not weight_loss_function:
        class_weights = numpy.array(num_classes, 1. / num_classes)

    if convolve_over_time:
        error_checking.assert_is_integer(num_predictor_time_steps)
        error_checking.assert_is_geq(num_predictor_time_steps, 6)

    return class_weights
def check_input_args(input_matrix, max_percentile_level):
    """Error-checks input arguments.

    :param input_matrix: See doc for `run_pmm_many_variables`.
    :param max_percentile_level: Same.
    :return: metadata_dict: Dictionary with the following keys.
    metadata_dict['max_percentile_level']: See input doc.
    """

    error_checking.assert_is_numpy_array_without_nan(input_matrix)
    num_spatial_dimensions = len(input_matrix.shape) - 2
    error_checking.assert_is_geq(num_spatial_dimensions, 1)

    error_checking.assert_is_geq(max_percentile_level, 90.)
    error_checking.assert_is_leq(max_percentile_level, 100.)

    return {MAX_PERCENTILE_KEY: max_percentile_level}
Esempio n. 25
0
def colour_from_numpy_to_tuple(input_colour):
    """Converts colour from numpy array to tuple (if necessary).

    :param input_colour: Colour (possibly length-3 or length-4 numpy array).
    :return: output_colour: Colour (possibly length-3 or length-4 tuple).
    """

    if not isinstance(input_colour, numpy.ndarray):
        return input_colour

    error_checking.assert_is_numpy_array(input_colour, num_dimensions=1)

    num_entries = len(input_colour)
    error_checking.assert_is_geq(num_entries, 3)
    error_checking.assert_is_leq(num_entries, 4)

    return tuple(input_colour.tolist())
Esempio n. 26
0
def check_input_args(input_matrix, max_percentile_level, threshold_var_index,
                     threshold_value, threshold_type_string):
    """Error-checks input arguments.

    :param input_matrix: See doc for `run_pmm_many_variables`.
    :param max_percentile_level: Same.
    :param threshold_var_index: Same.
    :param threshold_value: Same.
    :param threshold_type_string: Same.
    :return: metadata_dict: Dictionary with the following keys.
    metadata_dict['max_percentile_level']: See input doc.
    metadata_dict['threshold_var_index']: See input doc.
    metadata_dict['threshold_value']: See input doc.
    metadata_dict['threshold_type_string']: See input doc.
    """

    error_checking.assert_is_numpy_array_without_nan(input_matrix)
    num_spatial_dimensions = len(input_matrix.shape) - 2
    error_checking.assert_is_geq(num_spatial_dimensions, 1)

    error_checking.assert_is_greater(max_percentile_level, 50.)
    error_checking.assert_is_leq(max_percentile_level, 100.)

    use_threshold = not (threshold_var_index is None
                         and threshold_value is None
                         and threshold_type_string is None)

    if use_threshold:
        _check_threshold_type(threshold_type_string)
        error_checking.assert_is_not_nan(threshold_value)

        error_checking.assert_is_integer(threshold_var_index)
        error_checking.assert_is_geq(threshold_var_index, 0)

        num_variables = input_matrix.shape[-1]
        error_checking.assert_is_less_than(threshold_var_index, num_variables)
    else:
        threshold_var_index = -1

    return {
        MAX_PERCENTILE_KEY: max_percentile_level,
        THRESHOLD_VAR_KEY: threshold_var_index,
        THRESHOLD_VALUE_KEY: threshold_value,
        THRESHOLD_TYPE_KEY: threshold_type_string
    }
Esempio n. 27
0
def _run(gradcam_file_name, colour_map_name, max_colour_percentile,
         output_dir_name):
    """Plots Grad-CAM output (class-activation maps) for all target variables.

    This is effectively the main method.

    :param gradcam_file_name: See documentation at top of file.
    :param colour_map_name: Same.
    :param max_colour_percentile: Same.
    :param output_dir_name: Same.
    """

    colour_map_object = pyplot.get_cmap(colour_map_name)
    error_checking.assert_is_geq(max_colour_percentile, 90.)
    error_checking.assert_is_leq(max_colour_percentile, 100.)
    file_system_utils.mkdir_recursive_if_necessary(
        directory_name=output_dir_name
    )

    print('Reading class-activation maps from: "{0:s}"...'.format(
        gradcam_file_name
    ))
    gradcam_dict = gradcam.read_all_targets_file(gradcam_file_name)

    model_file_name = gradcam_dict[gradcam.MODEL_FILE_KEY]
    model_metafile_name = neural_net.find_metafile(
        model_dir_name=os.path.split(model_file_name)[0]
    )

    print('Reading model metadata from: "{0:s}"...'.format(model_metafile_name))
    model_metadata_dict = neural_net.read_metafile(model_metafile_name)

    num_examples = len(gradcam_dict[gradcam.EXAMPLE_IDS_KEY])
    print(SEPARATOR_STRING)

    for i in range(num_examples):
        _plot_gradcam_one_example(
            gradcam_dict=gradcam_dict, example_index=i,
            model_metadata_dict=model_metadata_dict,
            colour_map_object=colour_map_object,
            max_colour_percentile=max_colour_percentile,
            output_dir_name=output_dir_name
        )
        print(SEPARATOR_STRING)
Esempio n. 28
0
def create_model(
        num_classes, num_trees=DEFAULT_NUM_TREES,
        learning_rate=DEFAULT_LEARNING_RATE, max_depth=DEFAULT_MAX_TREE_DEPTH,
        fraction_of_examples_per_tree=DEFAULT_FRACTION_OF_EXAMPLES_PER_TREE,
        fraction_of_features_per_split=DEFAULT_FRACTION_OF_FEATURES_PER_SPLIT,
        l2_weight=DEFAULT_L2_WEIGHT):
    """Creates GBT model for classification.

    :param num_classes: Number of target classes.  If num_classes = 2, the model
        will do binary probabilistic classification.  If num_classes > 2, the
        model will do multiclass probabilistic classification.
    :param num_trees: Number of trees.
    :param learning_rate: Learning rate.
    :param max_depth: Maximum depth (applied to each tree).
    :param fraction_of_examples_per_tree: Fraction of examples (storm objects)
        to be used in training each tree.
    :param fraction_of_features_per_split: Fraction of features (predictor
        variables) to be used at each split point.
    :param l2_weight: L2-regularization weight.
    :return: model_object: Untrained instance of `xgboost.XGBClassifier`.
    """

    error_checking.assert_is_integer(num_classes)
    error_checking.assert_is_geq(num_classes, 2)
    error_checking.assert_is_integer(num_trees)
    error_checking.assert_is_geq(num_trees, 10)
    error_checking.assert_is_leq(num_trees, 1000)
    error_checking.assert_is_greater(learning_rate, 0.)
    error_checking.assert_is_less_than(learning_rate, 1.)
    error_checking.assert_is_integer(max_depth)
    error_checking.assert_is_geq(max_depth, 1)
    error_checking.assert_is_leq(max_depth, 10)
    error_checking.assert_is_greater(fraction_of_examples_per_tree, 0.)
    error_checking.assert_is_leq(fraction_of_examples_per_tree, 1.)
    error_checking.assert_is_greater(fraction_of_features_per_split, 0.)
    error_checking.assert_is_leq(fraction_of_features_per_split, 1.)
    error_checking.assert_is_geq(l2_weight, 0.)

    if num_classes == 2:
        return xgboost.XGBClassifier(
            max_depth=max_depth, learning_rate=learning_rate,
            n_estimators=num_trees, silent=False, objective='binary:logistic',
            subsample=fraction_of_examples_per_tree,
            colsample_bylevel=fraction_of_features_per_split,
            reg_lambda=l2_weight)

    return xgboost.XGBClassifier(
        max_depth=max_depth, learning_rate=learning_rate,
        n_estimators=num_trees, silent=False, objective='multi:softprob',
        subsample=fraction_of_examples_per_tree,
        colsample_bylevel=fraction_of_features_per_split, reg_lambda=l2_weight,
        num_class=num_classes)
def get_class_activation_for_examples(
        model_object, target_class, list_of_input_matrices):
    """For each input example, returns predicted probability of target class.

    :param model_object: Instance of `keras.models.Model`.
    :param target_class: Predictions will be returned for this class.  Must be
        an integer in 0...(K - 1), where K = number of classes.
    :param list_of_input_matrices: length-T list of numpy arrays, comprising
        one or more examples (storm objects).  list_of_input_matrices[i] must
        have the same dimensions as the [i]th input tensor to the model.
    :return: activation_values: length-E numpy array, where activation_values[i]
        is the activation (predicted probability or logit) of the target class
        for the [i]th example.
    """

    check_metadata(
        component_type_string=model_interpretation.CLASS_COMPONENT_TYPE_STRING,
        target_class=target_class)

    if isinstance(model_object.input, list):
        list_of_input_tensors = model_object.input
    else:
        list_of_input_tensors = [model_object.input]

    num_output_neurons = model_object.layers[-1].output.get_shape().as_list()[
        -1]

    if num_output_neurons == 1:
        error_checking.assert_is_leq(target_class, 1)
        if target_class == 1:
            output_tensor = model_object.layers[-1].output[..., 0]
        else:
            output_tensor = 1. - model_object.layers[-1].output[..., 0]
    else:
        error_checking.assert_is_less_than(target_class, num_output_neurons)
        output_tensor = model_object.layers[-1].output[..., target_class]

    activation_function = K.function(
        list_of_input_tensors + [K.learning_phase()],
        [output_tensor])

    return activation_function(list_of_input_matrices + [0])[0]
Esempio n. 30
0
def _check_architecture_args(option_dict):
    """Error-checks input arguments for architecture.

    :param option_dict: See doc for `create_model`.
    :return: option_dict: Same as input, except defaults may have been added.
    """

    orig_option_dict = option_dict.copy()
    option_dict = DEFAULT_ARCHITECTURE_OPTION_DICT.copy()
    option_dict.update(orig_option_dict)

    error_checking.assert_is_integer(option_dict[NUM_HEIGHTS_KEY])
    error_checking.assert_is_greater(option_dict[NUM_HEIGHTS_KEY], 0)

    error_checking.assert_is_integer(option_dict[NUM_FLUX_COMPONENTS_KEY])
    error_checking.assert_is_geq(option_dict[NUM_FLUX_COMPONENTS_KEY], 0)
    error_checking.assert_is_leq(option_dict[NUM_FLUX_COMPONENTS_KEY], 2)

    error_checking.assert_is_integer(option_dict[NUM_INPUTS_KEY])
    error_checking.assert_is_geq(option_dict[NUM_INPUTS_KEY], 10)

    hidden_layer_neuron_nums = option_dict[HIDDEN_LAYER_NEURON_NUMS_KEY]
    error_checking.assert_is_integer_numpy_array(hidden_layer_neuron_nums)
    error_checking.assert_is_numpy_array(hidden_layer_neuron_nums,
                                         num_dimensions=1)
    error_checking.assert_is_geq_numpy_array(hidden_layer_neuron_nums, 1)

    num_hidden_layers = len(hidden_layer_neuron_nums)
    these_dimensions = numpy.array([num_hidden_layers], dtype=int)

    hidden_layer_dropout_rates = option_dict[HIDDEN_LAYER_DROPOUT_RATES_KEY]
    error_checking.assert_is_numpy_array(hidden_layer_dropout_rates,
                                         exact_dimensions=these_dimensions)
    error_checking.assert_is_leq_numpy_array(hidden_layer_dropout_rates,
                                             1.,
                                             allow_nan=True)

    error_checking.assert_is_geq(option_dict[L1_WEIGHT_KEY], 0.)
    error_checking.assert_is_geq(option_dict[L2_WEIGHT_KEY], 0.)
    error_checking.assert_is_boolean(option_dict[USE_BATCH_NORM_KEY])

    return option_dict