Esempio n. 1
0
    def __init__(self, **d):
        """
        The constructor have two variants : you can either provide the mesh in
        Matsubara frequencies yourself, or give the parameters to build it.
        All parameters must be given with keyword arguments.

        GfImFreq(indices, beta, statistic, n_points, data, tail, name)

              * ``indices``:  a list of indices names of the block
              * ``beta``:  Inverse Temperature
              * ``statistic``:  'F' or 'B'
              * ``positive_only``:  True or False
              * ``n_points``:  Number of Matsubara frequencies
              * ``data``:   A numpy array of dimensions (len(indices),len(indices),n_points) representing the value of the Green function on the mesh.
              * ``tail``:  the tail
              * ``name``:  a name of the GF

        GfImFreq(indices, mesh, data, tail, name)

              * ``indices``:  a list of indices names of the block
              * ``mesh``:  a MeshGf object, such that mesh.TypeGF== GF_Type.Imaginary_Frequency
              * ``data``:   A numpy array of dimensions (len(indices),len(indices),:) representing the value of the Green function on the mesh.
              * ``tail``:  the tail
              * ``name``:  a name of the GF

        .. warning::

          The Green function take a **view** of the array data, and a **reference** to the tail.

        """
        mesh = d.pop('mesh', None)
        if mesh is None:
            if 'beta' not in d: raise ValueError, "beta not provided"
            beta = float(d.pop('beta'))
            n_points = d.pop('n_points', 1025)
            stat = d.pop('statistic', 'F')
            positive_only = d.pop('positive_only', True)
            mesh = MeshImFreq(beta, stat, n_points, positive_only)

        self.dtype = numpy.complex_
        indices_pack = get_indices_in_dict(d)
        indicesL, indicesR = indices_pack
        N1, N2 = len(indicesL), len(indicesR)
        data = d.pop('data') if 'data' in d else numpy.zeros(
            (len(mesh), N1, N2), self.dtype)
        tail = d.pop('tail') if 'tail' in d else TailGf(shape=(N1, N2))
        symmetry = d.pop('symmetry', Nothing())
        name = d.pop('name', 'g')
        assert len(
            d
        ) == 0, "Unknown parameters in GFBloc constructions %s" % d.keys()

        GfGeneric.__init__(self, mesh, data, tail, symmetry, indices_pack,
                           name, GfImFreq)
        GfImFreq_cython.__init__(self, mesh, data, tail)
Esempio n. 2
0
    def __init__(self, **d):
        """
        The constructor have two variants : you can either provide the mesh in
        Matsubara frequencies yourself, or give the parameters to build it.
        All parameters must be given with keyword arguments.

        GfImFreq(indices, beta, statistic, n_points, data, tail, name)

              * ``indices``:  a list of indices names of the block
              * ``beta``:  Inverse Temperature
              * ``statistic``:  'F' or 'B'
              * ``positive_only``:  True or False
              * ``n_points``:  Number of Matsubara frequencies
              * ``data``:   A numpy array of dimensions (len(indices),len(indices),n_points) representing the value of the Green function on the mesh.
              * ``tail``:  the tail
              * ``name``:  a name of the GF

        GfImFreq(indices, mesh, data, tail, name)

              * ``indices``:  a list of indices names of the block
              * ``mesh``:  a MeshGf object, such that mesh.TypeGF== GF_Type.Imaginary_Frequency
              * ``data``:   A numpy array of dimensions (len(indices),len(indices),:) representing the value of the Green function on the mesh.
              * ``tail``:  the tail
              * ``name``:  a name of the GF

        .. warning::

          The Green function take a **view** of the array data, and a **reference** to the tail.

        """
        mesh = d.pop('mesh',None)
        if mesh is None :
            if 'beta' not in d : raise ValueError, "beta not provided"
            beta = float(d.pop('beta'))
            n_points = d.pop('n_points',1025)
            stat = d.pop('statistic','F')
            positive_only = d.pop('positive_only',True)
            mesh = MeshImFreq(beta,stat,n_points, positive_only)

        self.dtype = numpy.complex_
        indices_pack = get_indices_in_dict(d)
        indicesL, indicesR = indices_pack
        N1, N2 = len(indicesL),len(indicesR)
        data = d.pop('data') if 'data' in d else numpy.zeros((len(mesh),N1,N2), self.dtype )
        tail = d.pop('tail') if 'tail' in d else TailGf(shape = (N1,N2))
        symmetry = d.pop('symmetry', Nothing())
        name =  d.pop('name','g')
        assert len(d) ==0, "Unknown parameters in GFBloc constructions %s"%d.keys()

        GfGeneric.__init__(self, mesh, data, tail, symmetry, indices_pack, name, GfImFreq)
        GfImFreq_cython.__init__(self, mesh, data, tail)
Esempio n. 3
0
    def __init__(self, **d): 
        """
        The constructor have two variants : you can either provide the mesh in
        Matsubara frequencies yourself, or give the parameters to build it.
        All parameters must be given with keyword arguments.

        GfImFreq(indices, beta, statistic, n_matsubara, data, tail, name)

              * ``indices``:  a list of indices names of the block
              * ``beta``:  Inverse Temperature 
              * ``statistic``:  'F' or 'B'
              * ``n_matsubara``:  Number of Matsubara frequencies
              * ``data``:   A numpy array of dimensions (len(indices),len(indices),n_matsubara) representing the value of the Green function on the mesh. 
              * ``tail``:  the tail 
              * ``name``:  a name of the GF

        If you already have the mesh, you can use a simpler version :

        GfImFreq(indices, mesh, data, tail, name)
            
              * ``indices``:  a list of indices names of the block
              * ``mesh``:  a MeshGf object, such that mesh.TypeGF== GF_Type.Imaginary_Frequency 
              * ``data``:   A numpy array of dimensions (len(indices),len(indices),n_matsubara) representing the value of the Green function on the mesh. 
              * ``tail``:  the tail 
              * ``name``:  a name of the GF

        .. warning::
        The Green function take a **view** of the array data, and a **reference** to the tail.
        """
        mesh = d.pop('mesh',None)
        if mesh is None : 
            if 'beta' not in d : raise ValueError, "beta not provided"
            beta = float(d.pop('beta'))
            n_max = d.pop('n_matsubara',1025)
            stat = d.pop('statistic','F') 
            sh = 1 if stat== 'F' else 0 
            mesh = MeshImFreq(beta,'F',n_max)

        self.dtype = numpy.complex_
        indicesL, indicesR = get_indices_in_dict(d)
        N1, N2 = len(indicesL),len(indicesR)
        data = d.pop('data') if 'data' in d else numpy.zeros((N1,N2,len(mesh)), self.dtype )
        tail= d.pop('tail') if 'tail' in d else TailGf(shape = (N1,N2), size=10, order_min=-1)
        symmetry = d.pop('symmetry', None)
        name =  d.pop('name','g')
        assert len(d) ==0, "Unknown parameters in GFBloc constructions %s"%d.keys() 
        
        GfImFreq_cython.__init__(self, mesh, data, tail, symmetry, (indicesL,indicesR), name)