Esempio n. 1
0
def CalcRevealDims(_phpp_window_obj, RevealShaderObjs_input, SideIntersectionSurface, Side_OriginPt, Side_Direction):
    #Test shading objects for their edge points
    Side_IntersectionCurve = []
    Side_IntersectionPoints = []
    for i in range(len(RevealShaderObjs_input)): #This is the list of shading objects to filter
        if ghc.BrepXBrep(RevealShaderObjs_input[i], SideIntersectionSurface).curves != None:
            Side_IntersectionCurve.append(ghc.BrepXBrep(RevealShaderObjs_input[i], SideIntersectionSurface).curves)
    for i in range(len(Side_IntersectionCurve)):
        for k in range(len(ghc.ControlPoints(Side_IntersectionCurve[i]).points)):
            Side_IntersectionPoints.append(ghc.ControlPoints(Side_IntersectionCurve[i]).points[k])
    
    #Find the top/closets point for each of the objects that could possibly shade
    Side_KeyPoints = []
    Side_Rays = []
    Side_Angles = []
    for i in range(len(Side_IntersectionPoints)):
        if Side_OriginPt != Side_IntersectionPoints[i]:
            Ray = ghc.Vector2Pt(Side_OriginPt, Side_IntersectionPoints[i], False).vector
            Angle = math.degrees(ghc.Angle(_phpp_window_obj.surface_normal, Ray).angle)
            if  Angle < 89.9:
                Side_Rays.append(Ray)
                Side_Angles.append(float(Angle))
                Side_KeyPoints.append(Side_IntersectionPoints[i])
    Side_KeyPoint = Side_KeyPoints[Side_Angles.index(min(Side_Angles))]
    Side_KeyRay = Side_Rays[Side_Angles.index(min(Side_Angles))]
    
    #use the Key point found to calculte the Distances for the PHPP Shading Calculator
    Side_Hypot = ghc.Length(ghc.Line(Side_OriginPt, Side_KeyPoint))
    Deg = (ghc.Angle(Side_Direction, Side_KeyRay).angle) #note this is in Radians
    Side_o_reveal =  math.sin(Deg) * Side_Hypot
    Side_d_reveal = math.sqrt(Side_Hypot**2 - Side_o_reveal**2)
    Side_CheckLine = ghc.Line(Side_OriginPt, Side_KeyPoint)
    
    return [Side_o_reveal, Side_d_reveal, Side_CheckLine]
Esempio n. 2
0
def get_footprint(_surfaces):
    # Finds the 'footprint' of the building for 'Primary Energy Renewable' reference
    # 1) Re-build the Opaque Surfaces
    # 2) Join all the surface Breps into a single brep
    # 3) Find the 'box' for the single joined brep
    # 4) Find the lowest Z points on the box, offset another 10 units 'down'
    # 5) Make a new Plane at this new location
    # 6) Projects the brep edges onto the new Plane
    # 7) Split a surface using the edges, combine back into a single surface

    Footprint = namedtuple('Footprint',
                           ['Footprint_surface', 'Footprint_area'])

    #----- Build brep
    surfaces = (from_face3d(surface.Srfc) for surface in _surfaces)
    bldg_mass = ghc.BrepJoin(surfaces).breps
    bldg_mass = ghc.BoundaryVolume(bldg_mass)
    if not bldg_mass:
        return Footprint(None, None)

    #------- Find Corners, Find 'bottom' (lowest Z)
    bldg_mass_corners = [v for v in ghc.BoxCorners(bldg_mass)]
    bldg_mass_corners.sort(reverse=False, key=lambda point3D: point3D.Z)
    rect_pts = bldg_mass_corners[0:3]

    #------- Projection Plane
    projection_plane1 = ghc.Plane3Pt(rect_pts[0], rect_pts[1], rect_pts[2])
    projection_plane2 = ghc.Move(projection_plane1, ghc.UnitZ(-10)).geometry
    matrix = rs.XformPlanarProjection(projection_plane2)

    #------- Project Edges onto Projection Plane
    projected_edges = []
    for edge in ghc.DeconstructBrep(bldg_mass).edges:
        projected_edges.append(ghc.Transform(edge, matrix))

    #------- Split the projection surface using the curves
    l1 = ghc.Line(rect_pts[0], rect_pts[1])
    l2 = ghc.Line(rect_pts[0], rect_pts[2])
    max_length = max(ghc.Length(l1), ghc.Length(l2))

    projection_surface = ghc.Polygon(projection_plane2, max_length * 100, 4,
                                     0).polygon
    projected_surfaces = ghc.SurfaceSplit(projection_surface, projected_edges)

    #------- Remove the biggest surface from the set(the background srfc)
    projected_surfaces.sort(key=lambda x: x.GetArea())
    projected_surfaces.pop(-1)

    #------- Join the new srfcs back together into a single one
    unioned_NURB = ghc.RegionUnion(projected_surfaces)
    unioned_surface = ghc.BoundarySurfaces(unioned_NURB)

    return Footprint(unioned_surface, unioned_surface.GetArea())
Esempio n. 3
0
    def RunScript(self, AS, CL):
        # Initialize outputs
        S = []
        TS = CL
        W = []
        CS = []
        
        # Set defaults if no values are provided
        D = 1000

        # Iterate over each test segment
        for seg in CL:
            
            # Extend line to threshold width
            midpt, TT, t = ghc.EvaluateLength(seg, 0.5, True)
            SS, E = ghc.EndPoints(seg)
            V, L = ghc.Vector2Pt(midpt, SS, False)
            vect = ghc.Amplitude(V, D/2)
            G1, X = ghc.Move(midpt, vect)
            G2, X = ghc.Move(midpt, -vect)
            test_line = ghc.Line(G1, G2)
            
            # Rotate test line 90 degrees
            test_line, X = ghc.Rotate(test_line, math.pi/2, midpt)
            
            # Check for intersection
            srf_intersection = checkIntersection(test_line, AS, midpt, D)
            
            # Store results
            CS.append(srf_intersection)
            W.append(ghc.Length(srf_intersection))

        # Return outputs
        return TS, W, CS
Esempio n. 4
0
def createGCLines(pointsOfView, vertex):

    lines = [gc.Line(a, b) for a in pointsOfView for b in vertex]
    return lines
Esempio n. 5
0
b_pos_x = []  # y方向に架かるブリッジが配置されるコアの配置位置を格納
b_pos_y = []  # x方向に架かるブリッジが配置されるコアの配置位置を格納
bridge_x = []  # 生成されたブリッジ(y方向)を格納
bridge_y = []  # 生成されたブリッジ(x方向)を格納

# Step 1にて生成されたコアの配置パターンからブリッジ生成に関する情報の取得
for i in range(0, len(pos)):
    for ii in range(0, len(pos)):
        # Step1で生成されたコア配置間の距離が2スパン以内の組合せに対して実行
        if i != ii and gh.Distance(pos[i], pos[ii]) <= span * 2:
            # y座標が等しいコアの組合せに対して実行(x方向に架かるブリッジの生成情報の取得)
            if pos[i][1] == pos[ii][1]:
                # wにてコア間の距離を取得,cにてコアとコアの中心位置を取得
                w = gh.Distance(pos[i], pos[ii])
                c = gh.DivideCurve(gh.Line(pos[i], pos[ii]), 2).points[1]
                pair = [c, w]
                if pair not in b_pos_x:
                    b_pos_x.append(pair)
# x座標が等しいコアの組合せに対して実行(y方向に架かるのブリッジ生成情報の取得)
            if pos[i][0] == pos[ii][0]:
                #wにてコア間の距離を取得, cにてコアとコアの中心位置を取得
                w = gh.Distance(pos[i], pos[ii])
                c = gh.DivideCurve(gh.Line(pos[i], pos[ii]), 2).points[1]
                pair = [c, w]
                if pair not in b_pos_y:
                    b_pos_y.append(pair)

# x方向に架かるブリッジの生成
for i in range(0, len(b_pos_x)):
    #b_zにて低いブリッジの断面方向配置位置を生成, yz_posにて低いブリッジを生成するための基点生成
                        ) and plane == "3d":  #(drx[nj]*dry[nj]!=0 or dry[nj]*drz[nj]!=0 or drx[nj]*drz[nj]!=0) :
                            if drx[nj] * dry[nj] * drz[nj] != 0:
                                isuv[n] = 0
                        if (case == 1) and plane == "xy":
                            if drx[nj] * dry[nj] != 0:
                                isuv[n] = 0
                        if (case == 1) and plane == "yz":
                            if dry[nj] * drz[nj] != 0:
                                isuv[n] = 0
                        if (case == 1) and plane == "xz":
                            if drx[nj] * drz[nj] != 0:
                                isuv[n] = 0

nel = 0
l = 0
for l in range(n):
    l += 1
    i1[l] = indv1[l]
    i2[l] = indv2[l]
    if isuv[l] == 1:
        nel += 1
        indv1[nel] = i1[l]
        indv2[nel] = i2[l]
        k0 = int(indv1[nel])
        k1 = int(indv2[nel])
        linemake = gh.Line(pointdata[k0], pointdata[k1])
        linedata.Add(linemake)

a = indv1
b = indv2
Esempio n. 7
0
def find_overhang_shading(_phpp_window_obj, _shadingGeom, _extents=99):
    # Figure out the glass surface (inset a bit) and then
    # find the origin point for all the subsequent shading calcs (top, middle)
    glzgCenter = ghc.Area(_phpp_window_obj.glazing_surface).centroid
    glazingEdges = _phpp_window_obj._get_edges_in_order( _phpp_window_obj.glazing_surface )
    glazingTopEdge = from_linesegment3d(glazingEdges.Top)
    ShadingOrigin = ghc.CurveMiddle(glazingTopEdge)
    
    # In order to also work for windows which are not vertical, find the 
    # 'direction' from the glazing origin and the top/middle ege point
    UpVector = ghc.Vector2Pt(glzgCenter, ShadingOrigin, True).vector
    
    #-----------------------------------------------------------------------
    # First, need to filter the scene to find the objects that are 'above'
    # the window. Create a 'test plane' that is _extents (99m) tall and 0.5m past the wall surface, test if
    # any objects intersect that plane. If so, add them to the set of things
    # test in the next step
    depth = float(_phpp_window_obj.install_depth) + 0.5
    edge1 = ghc.LineSDL(ShadingOrigin, UpVector, _extents)
    edge2 = ghc.LineSDL(ShadingOrigin, _phpp_window_obj.surface_normal, depth)
    intersectionTestPlane = ghc.SumSurface(edge1, edge2)
    
    OverhangShadingObjs = (x for x in _shadingGeom 
                    if ghc.BrepXBrep(intersectionTestPlane, x).curves != None)
    
    #-----------------------------------------------------------------------
    # Using the filtered set of shading objects, find the 'edges' of shading 
    # geom and then decide where the maximums shading point is
    # Create a new 'test' plane coming off the origin (99m in both directions this time).
    # Test to find any intersection shading objs and all their crvs/points with this plane
    HorizontalLine = ghc.LineSDL(ShadingOrigin, _phpp_window_obj.surface_normal, _extents)
    VerticalLine = ghc.LineSDL(ShadingOrigin, UpVector, _extents)
    
    IntersectionSurface = ghc.SumSurface(HorizontalLine, VerticalLine)
    IntersectionCurves = (ghc.BrepXBrep(obj, IntersectionSurface).curves 
                            for obj in OverhangShadingObjs
                            if ghc.BrepXBrep(obj, IntersectionSurface).curves != None)
    IntersectionPointsList = (ghc.ControlPoints(crv).points for crv in IntersectionCurves)
    IntersectionPoints = (pt for list_of_pts in IntersectionPointsList for pt in list_of_pts)
    
    #-----------------------------------------------------------------------
    # If there are any intersection Points found, choose the right one to use to calc shading....
    # Find the top/closets point for each of the objects that could possibly shade
    smallest_angle_found = 2 * math.pi
    key_point = None
    
    for pt in IntersectionPoints:
        if pt == None:        
            continue
        
        # Protect against Zero-Length error
        ray = ghc.Vector2Pt(ShadingOrigin, pt, False).vector
        if ray.Length < 0.001:
            continue
        
        this_ray_angle = ghc.Angle(_phpp_window_obj.surface_normal , ray).angle
        if this_ray_angle < 0.001:
            continue
        
        if this_ray_angle <= smallest_angle_found:
            smallest_angle_found = this_ray_angle
            key_point = pt
    
    #-----------------------------------------------------------------------
    # Use the 'key point' found to deliver the Height and Distance for the PHPP Shading Calculator
    if not key_point:
        d_over = None
        o_over = None
        CheckLine = VerticalLine
    else:
        d_over = key_point.Z - ShadingOrigin.Z                              # Vertical distance
        Hypot = ghc.Length(ghc.Line(ShadingOrigin, key_point))              # Hypot
        o_over = math.sqrt(Hypot**2 - d_over**2)                            # Horizontal distance
        CheckLine = ghc.Line(ShadingOrigin, key_point)
    
    return d_over, o_over, CheckLine
Esempio n. 8
0
def find_horizon_shading(_phpp_window_obj, _shadingGeom, _extents=99):
    """
    Arguments:
        _phpp_winddow_obj: The PHPP_Window object to calcualte the values for
        _shadingGeom: (list) A list of possible shading objects to test against
        _extents: (float) A number (m) to limit the shading search to. Default = 99m
    Returns:
        h_hori: Distance (m) out from the glazing surface of any horizontal shading objects found
        d_hori: Distance (m) up from the base of the window to the top of any horizontal shading objects found
    """
    surface_normal = _phpp_window_obj.surface_normal

    #-----------------------------------------------------------------------
    # Find Starting Point
    glazingEdges = _phpp_window_obj._get_edges_in_order( _phpp_window_obj.glazing_surface )
    glazingBottomEdge = glazingEdges.Bottom
    ShadingOrigin = ghc.CurveMiddle( from_linesegment3d(glazingBottomEdge) )
    UpVector = ghc.VectorXYZ(0,0,1).vector
    
    #-----------------------------------------------------------------------
    # Find if there are any shading objects and if so put them in a list
    HorizonShading = []
    
    HorizontalLine = ghc.LineSDL(ShadingOrigin, surface_normal, _extents)
    VerticalLine = ghc.LineSDL(ShadingOrigin, UpVector, _extents)
    for shadingObj in _shadingGeom:
        if ghc.BrepXCurve(shadingObj, HorizontalLine).points != None:
            HorizonShading.append( shadingObj )
    
    #-----------------------------------------------------------------------
    # Find any intersection Curves with the shading objects
    IntersectionSurface = ghc.SumSurface(HorizontalLine, VerticalLine)
    IntersectionCurve = []
    IntersectionPoints = []
    
    for shadingObj in HorizonShading:
        if ghc.BrepXBrep(shadingObj, IntersectionSurface).curves != None:
            IntersectionCurve.append(ghc.BrepXBrep(shadingObj, IntersectionSurface))
    for pnt in IntersectionCurve:
        IntersectionPoints.append(ghc.ControlPoints(pnt).points)
    
    #-----------------------------------------------------------------------
    # Run the "Top-Corner-Finder" if there are any intersecting objects...
    if len(IntersectionPoints) != 0:
        # Find the top/closets point for each of the objects that could possibly shade
        KeyPoints = []
        for pnt in IntersectionPoints:
            Rays = []
            Angles = []
            if pnt:
                for k in range(len(pnt)):
                    Rays.append(ghc.Vector2Pt(ShadingOrigin,pnt[k], False).vector)
                    Angles.append(ghc.Angle(surface_normal , Rays[k]).angle)
                KeyPoints.append(pnt[Angles.index(max(Angles))])
    
        # Find the relevant highest / closest point
        Rays = []
        Angles = []
        for i in range(len(KeyPoints)):
            Rays.append(ghc.Vector2Pt(surface_normal, KeyPoints[i], False).vector)
            Angles.append(ghc.Angle(surface_normal, Rays[i]).angle)
        KeyPoint = KeyPoints[Angles.index(max(Angles))]
    
        # Use the point it finds to deliver the Height and Distance for the PHPP Shading Calculator
        h_hori = KeyPoint.Z - ShadingOrigin.Z #Vertical distance
        Hypot = ghc.Length(ghc.Line(ShadingOrigin, KeyPoint))
        d_hori = math.sqrt(Hypot**2 - h_hori**2)
        CheckLine = ghc.Line(ShadingOrigin, KeyPoint)
    else:
        h_hori = None
        d_hori = None
        CheckLine = HorizontalLine
    
    return h_hori, d_hori, CheckLine
Esempio n. 9
0
def fractal(depth, x1, y1, z1, x2, y2, z2, length, anglerec, angle, lvariation,
            aran, lran, anglerech, angleh, branches, verticality, gchance,
            depthstart, radtolen, radchng, mngon, polygon, branch_cluster):

    #test if depth>0
    if depth:

        #defining random angle variation and length variation
        arn = random.uniform(-angle / 100 * aran, angle / 100 * aran)
        lrn = random.uniform(-length / 100 * lran, length / 100 * lran)

        if hrandom == True:
            #defining horizontal rotation angles
            ahor = random.sample(range(0, 360), branches)
            #removing numbers within tolerance
            ahr = rs.CullDuplicateNumbers(ahor, angleh)
            #in a 360 fashion
            if ahr[0] + 360 - angleh < ahr[-1]:
                del ahr[0]
        else:
            #generating evenly distributed angles
            ahr = range(0, 360 + 1, 360 // branches)[:-1]

        #previous branch vector
        vecst = rg.Point3d(x1, y1, z1)
        vecend = rg.Point3d(x2, y2, z2)
        movevec = ghc.Vector2Pt(vecst, vecend,
                                True)[0]  #returns vector and it's length

        #perpendicular vector
        rotplane3 = ghc.PlaneNormal(
            vecend, movevec)  #creates plane perpendicular to vector
        plns = ghc.DeconstructPlane(rotplane3)  #origin, x, y, z
        rotplane = ghc.ConstructPlane(
            plns[2], plns[1], plns[3]
        )  #constructing new plane switching x and y planes to make perpendicular

        #generating perpendicular vector
        vecperp = ghc.Rotate(movevec, radians(90), rotplane)[0]

        #generating vector amplitudes
        leny = (length + lrn) * sin(
            radians((anglerec + arn) * (1 - (verticality**depth))))
        lenz = (length + lrn) * cos(radians(anglerec + arn))
        ampy = ghc.Amplitude(vecperp, leny)
        ampz = ghc.Amplitude(movevec, lenz)

        #changing branch length dependant on branch depth
        length = length * lvariation

        #building points
        endpoint1 = ghc.Move(
            vecend, ampz)[0]  #returns moved object and transformation data
        endpoint = ghc.Move(
            endpoint1, ampy)[0]  #returns moved object and transformation data

        #rotating point in a cone fashion
        rotpoint = ghc.Rotate3D(
            endpoint, radians(anglerech), vecend,
            movevec)[0]  #returns rotated geometry and transformation data

        #building line between points
        linegeo = rg.Line(vecend, rotpoint)

        #defining recursion depth
        key = depthstart + 1 - depth

        #building geometry
        pln = ghc.PlaneNormal(rotpoint,
                              linegeo)  #returns a plane perp to a vector
        radius = length * (radchng**(key)) / radtolen

        #reduce details with each branch, but not less than 3
        splits = 3 if mngon - key + 1 <= 3 else mngon - key + 1

        polygonend = ghc.Polygon(pln, radius, splits,
                                 0)[0]  #returns a polygon and its perimeter

        #aligning curves for loft creation
        crvst = ghc.EndPoints(polygon)[0]
        pntcld = ghc.Discontinuity(polygonend,
                                   1)  #returns points and point parameters

        #finind seam point
        closest_point = ghc.ClosestPoint(
            crvst, pntcld[0]
        )  #returns closest point, closest point index, distance between closest points
        seampnt = pntcld[1][closest_point[1]]
        polygonend = ghc.Seam(polygonend, seampnt)

        lcurves = [polygon, polygonend]

        #building geometry
        geo = ghc.ExtrudePoint(
            polygon, rotpoint
        ) if depth == 1 and splits == 3 else rg.Brep.CreateFromLoft(
            lcurves, rg.Point3d.Unset, rg.Point3d.Unset, rg.LoftType.Normal,
            False)[0]  #if last branch than make a pyramid
        #make solid
        geocapped = ghc.CapHoles(geo)

        #building a dict of geo with depth as key, and geo as values
        pgons.update(
            {branch_cluster: [geocapped]}) if branch_cluster not in pgons.keys(
            ) else pgons[branch_cluster].append(geocapped)
        branchesout.append(geocapped)

        #setting coords for next branch
        x1 = x2
        y1 = y2
        z1 = z2

        #getting xyz from rotated point
        x2 = rg.Point3d(rotpoint)[0]
        y2 = rg.Point3d(rotpoint)[1]
        z2 = rg.Point3d(rotpoint)[2]

        #setting base polygon for next branch
        polygon = polygonend

        #filling dict with branch clusters
        cluster.append(cluster[-1] + 1)
        branch_cluster = cluster[-1]

        #calling function with different angle parameter for branch splitting, calling as many branches as spread within tolerance
        if depth != 1:
            for aa in ahr:
                if (
                    (random.randint(40, 99) / 100)**depth
                ) < gchance or depth == depthstart + 1:  #or added to prevent blank trees
                    fractal(depth - 1, x1, y1, z1, x2, y2, z2, length, angle,
                            angle, lvariation, aran, lran, aa, angleh,
                            branches, verticality, gchance, depthstart,
                            radtolen, radchng, mngon, polygon, branch_cluster)
        #leaf logic
        if depth <= leavesdepth and leavesperbranch > 0 and maxleaves > 0:

            #vector for leaf growth spread
            leafpntvec = ghc.Vector2Pt(vecend, rotpoint, True)[0]

            #setting leaf growth position on last barnch, leafpnt list
            lastbranchlength = ghc.Length(linegeo)
            leaves_list = [lastbranchlength]
            [
                leaves_list.append(lengthparam)
                for lengthparam in random.sample(
                    range(0, int(lastbranchlength)), leavesperbranch - 1)
            ] if leavesperbranch > 1 else None

            for leafpnt in leaves_list:
                leafamp = ghc.Amplitude(leafpntvec, leafpnt)
                leafpoint = ghc.Move(vecend, leafamp)[0]

                #plane for leaf generation
                linetocenter = ghc.Line(stpntbase, leafpoint)
                planetocenter = ghc.PlaneNormal(leafpoint, linetocenter)

                #create an imaginary circle with leaflen radius and populate it with points for random leaf generation
                leafgenerationcircle = ghc.CircleCNR(leafpoint, linetocenter,
                                                     leaflen)
                circlesurf = ghc.BoundarySurfaces(leafgenerationcircle)
                leafcnt = random.randint(0, maxleaves)
                if leafcnt > 0:
                    leafendpnts = ghc.PopulateGeometry(circlesurf, leafcnt,
                                                       random.randint(1, 500))

                    def leafgenerator(point):
                        #random z move
                        zmove = rg.Vector3d(0, 0, 1)
                        moveamp = random.uniform(-leaflen / 3, leaflen / 5)
                        ampzmove = ghc.Amplitude(zmove, moveamp)
                        llendpnt = ghc.Move(point, ampzmove)[0]

                        #setting a leaf centerline vector
                        leafvector = ghc.Vector2Pt(leafpoint, llendpnt,
                                                   True)[0]
                        #defining leaf center point as avarage of st and end pnts
                        midpnt = ghc.Average([leafpoint, llendpnt])

                        #generating perpendicular vector
                        vecperpleaf = ghc.Rotate(leafvector, radians(90),
                                                 planetocenter)[0]
                        leafperpamp = ghc.Amplitude(
                            vecperpleaf,
                            random.uniform((leafwidth / 2) / 5 * 4,
                                           (leafwidth / 2) / 5 * 6))

                        #moving mid point to both sides
                        midpnt1 = ghc.Move(midpnt, leafperpamp)[0]
                        midpnt2 = ghc.Move(midpnt, -leafperpamp)[0]

                        #leaf geo
                        leafgeo = rg.NurbsSurface.CreateFromCorners(
                            leafpoint, midpnt1, llendpnt, midpnt2)
                        leaves.append(leafgeo)

                    #iterate over random number of generated points if list, else generate for one point
                    [leafgenerator(pp) for pp in leafendpnts] if isinstance(
                        leafendpnts, list) else leafgenerator(leafendpnts)