def main(scene_idx=0):

    #scene_idx = 0

    mapper_scene2z = get_mapper()
    mapper_scene2points = get_mapper_scene2points()
    Train_Scenes, Test_Scenes = get_train_test_scenes()
    scene_name = Test_Scenes[scene_idx]
    num_startPoints = len(mapper_scene2points[scene_name])
    num_steps = 35

    ## create test folder
    test_folder = '/home/reza/Datasets/GibsonEnv/my_code/visual_servoing/test_IBVS'
    '''
	approach_folder = '{}/learnedCorrespondence_interMatrix_noDepth_OmegaY'.format(test_folder)
	create_folder(approach_folder)

	scene_folder = '{}/{}'.format(approach_folder, scene_name)
	create_folder(scene_folder)
	'''
    f = open('{}/{}_{}.txt'.format(test_folder, perception_rep, depth_method),
             'a')
    f.write('scene_name = {}\n'.format(scene_name))
    list_count_correct = []
    list_count_runs = []
    list_count_steps = []

    ## rrt functions
    ## first figure out how to sample points from rrt graph
    rrt_directory = '/home/reza/Datasets/GibsonEnv/gibson/assets/dataset/{}_for_rrt'.format(
        scene_name)
    path_finder = rrt.PathFinder(rrt_directory)
    path_finder.load()
    num_nodes = len(path_finder.nodes_x)
    free = cv2.imread(
        '/home/reza/Datasets/GibsonEnv/gibson/assets/dataset/{}_for_rrt/free.png'
        .format(scene_name), 0)

    ## GibsonEnv setup
    ## For Gibson Env
    import gym, logging
    from mpi4py import MPI
    from gibson.envs.husky_env import HuskyNavigateEnv
    from baselines import logger
    import skimage.io
    from transforms3d.euler import euler2quat
    config_file = os.path.join(
        '/home/reza/Datasets/GibsonEnv/my_code/CVPR_workshop', 'env_yamls',
        '{}_navigate.yaml'.format(scene_name))
    env = HuskyNavigateEnv(config=config_file, gpu_count=1)
    obs = env.reset(
    )  ## this line is important otherwise there will be an error like 'AttributeError: 'HuskyNavigateEnv' object has no attribute 'potential''

    def get_obs(current_pose):
        pos, orn = func_pose2posAndorn(current_pose,
                                       mapper_scene2z[scene_name])
        env.robot.reset_new_pose(pos, orn)
        obs, _, _, _ = env.step(4)
        obs_rgb = obs['rgb_filled']
        obs_depth = obs['depth']
        return obs_rgb.copy(), obs_depth.copy()

    base_folder = '/home/reza/Datasets/GibsonEnv/my_code/visual_servoing/sample_image_pairs_{}'.format(
        'test')

    ## go through each point folder
    for point_idx in range(0, num_startPoints):
        #for point_idx in range(0, 1):
        print('point_idx = {}'.format(point_idx))

        #point_folder = '{}/point_{}'.format(scene_folder, point_idx)
        #create_folder(point_folder)

        ## read in start img and start pose
        point_image_folder = '{}/{}/point_{}'.format(base_folder, scene_name,
                                                     point_idx)
        point_pose_npy_file = np.load('{}/{}/point_{}_poses.npy'.format(
            base_folder, scene_name, point_idx))

        start_img = cv2.imread('{}/{}.png'.format(
            point_image_folder,
            point_pose_npy_file[0]['img_name']))[:, :, ::-1]
        start_pose = point_pose_npy_file[0]['pose']

        ## index 0 is the left image, so right_img_idx starts from index 1
        count_correct = 0
        list_correct_img_names = []
        list_whole_stat = []
        list_steps = []

        for right_img_idx in range(1, len(point_pose_npy_file)):
            #for right_img_idx in range(1, 10):
            flag_correct = False
            print('right_img_idx = {}'.format(right_img_idx))

            count_steps = 0

            current_pose = start_pose

            right_img_name = point_pose_npy_file[right_img_idx]['img_name']
            goal_pose = point_pose_npy_file[right_img_idx]['pose']
            goal_img, goal_depth = get_obs(goal_pose)

            list_result_poses = [current_pose]
            num_matches = 0
            flag_broken = False
            while count_steps < num_steps:
                current_img, current_depth = get_obs(current_pose)
                try:
                    kp1, kp2 = kpNet.detect_learned_correspondences(
                        current_img, goal_img)
                    if count_steps == 0:
                        start_depth = current_depth.copy()
                except:
                    print('run into error')
                    break
                num_matches = kp1.shape[1]

                omegay, flag_stop = compute_angular_velocity_through_correspondences(
                    kp1, kp2, 100)
                previous_pose = current_pose
                current_pose = update_current_pose(current_pose, 0.0, 0.1,
                                                   omegay)

                ## check if there is collision during the action
                left_pixel = path_finder.point_to_pixel(
                    (previous_pose[0], previous_pose[1]))
                right_pixel = path_finder.point_to_pixel(
                    (current_pose[0], current_pose[1]))
                # rrt.line_check returns True when there is no obstacle
                if not rrt.line_check(left_pixel, right_pixel, free):
                    flag_broken = True
                    print('run into an obstacle ...')
                    break
                ## check if we should stop or not
                if flag_stop:
                    print('flag_stop = {}'.format(flag_stop))
                    print('break')
                    break

                count_steps += 1
                list_result_poses.append(current_pose)
                ## sample current_img again to save in list_obs
                current_img, current_depth = get_obs(current_pose)
            #assert 1==2
            ## decide if this run is successful or not
            flag_correct, dist, theta_change = similar_location_under_certainThreshold(
                goal_pose, list_result_poses[count_steps])
            print('dist = {}, theta = {}'.format(dist, theta_change))
            #print('start_pose = {}, final_pose = {}, goal_pose = {}'.format(start_pose, list_result_poses[-1], goal_pose))
            if flag_correct:
                count_correct += 1
                list_correct_img_names.append(right_img_name[10:])

            if flag_correct:
                str_succ = 'Success'
                print('str_succ = {}'.format(str_succ))
            else:
                str_succ = 'Failure'
                print('str_succ = {}'.format(str_succ))

            list_steps.append(len(list_result_poses))

            ## ===================================================================================================================
            '''
			## plot the pose graph
			img_name = 'goTo_{}.jpg'.format(right_img_name[10:])
			print('img_name = {}'.format(img_name))

			## plot the poses
			free2 = cv2.imread('/home/reza/Datasets/GibsonEnv/gibson/assets/dataset/{}_for_rrt/free.png'.format(scene_name), 1)
			rows, cols, _ = free2.shape
			plt.imshow(free2)

			for m in range(len(list_result_poses)):
				pose = list_result_poses[m]
				x, y = path_finder.point_to_pixel((pose[0], pose[1]))
				theta = pose[2]
				plt.arrow(x, y, cos(theta), sin(theta), color='y', \
					overhang=1, head_width=0.1, head_length=0.15, width=0.001)
			## draw goal pose
			x, y = path_finder.point_to_pixel((goal_pose[0], goal_pose[1]))
			theta = goal_pose[2]
			plt.arrow(x, y, cos(theta), sin(theta), color='r', \
					overhang=1, head_width=0.1, head_length=0.15, width=0.001)

			plt.axis([0, cols, 0, rows])
			plt.xticks([])
			plt.yticks([])
			plt.title('{}, start point_{}, goal viewpoint {}, {}\n dist = {:.4f} meter, theta = {:.4f} degree\n'.format(scene_name, point_idx, right_img_name[10:], str_succ, dist, theta_change))
			plt.savefig('{}/{}'.format(point_folder, img_name), bbox_inches='tight', dpi=(400))
			plt.close()

			## ======================================================================================================================
			## save stats
			current_test_dict = {}
			current_test_dict['img_name'] = right_img_name
			current_test_dict['success_flag'] = flag_correct
			current_test_dict['dist'] = dist
			current_test_dict['theta'] = theta_change
			current_test_dict['steps'] = count_steps
			current_test_dict['collision'] = flag_broken

			list_whole_stat.append(current_test_dict)


		np.save('{}/runs_statistics.npy'.format(point_folder), list_whole_stat)

		success_rate = 1.0 * count_correct / (len(point_pose_npy_file)-1)
		print('count_correct/num_right_images = {}/{} = {}'.format(count_correct, len(point_pose_npy_file)-1, success_rate))

		## write correctly run target image names to file
		f = open('{}/successful_runs.txt'.format(point_folder), 'w')
		f.write('count_correct/num_right_images = {}/{} = {}\n'.format(count_correct, len(point_pose_npy_file)-1, success_rate))
		for i in range(len(list_correct_img_names)):
			f.write('{}\n'.format(list_correct_img_names[i]))
		f.close()
		print('writing correct run image names to txt ...')
		'''

        avg_steps = 1.0 * sum(list_steps) / len(list_steps)
        f.write('point {} : {}/{}, {}\n'.format(point_idx, count_correct,
                                                len(point_pose_npy_file) - 1,
                                                avg_steps))
        list_count_correct.append(count_correct)
        list_count_runs.append(len(point_pose_npy_file) - 1)
        list_count_steps.append(avg_steps)
        f.flush()

    avg_count_steps = 1.0 * sum(list_count_steps) / len(list_count_steps)
    f.write('In total : {}/{}, {}\n'.format(sum(list_count_correct),
                                            sum(list_count_runs),
                                            avg_count_steps))
    f.write(
        '-------------------------------------------------------------------------------------\n'
    )
Esempio n. 2
0
    '/home/reza/Datasets/GibsonEnv/gibson/assets/dataset/{}_for_rrt/free.png'.
    format(scene_name), 0)

##------------------------------------------------------------------------------------------------------------
## setup environment
import gym, logging
from mpi4py import MPI
from gibson.envs.husky_env import HuskyNavigateEnv
from baselines import logger
import skimage.io
from transforms3d.euler import euler2quat
config_file = os.path.join(
    '/home/reza/Datasets/GibsonEnv/my_code/CVPR_workshop', 'env_yamls',
    '{}_navigate.yaml'.format(scene_name))
env = HuskyNavigateEnv(config=config_file, gpu_count=1)
obs = env.reset(
)  ## this line is important otherwise there will be an error like 'AttributeError: 'HuskyNavigateEnv' object has no attribute 'potential''
mapper_scene2z = get_mapper()


def get_obs(current_pose):
    pos, orn = func_pose2posAndorn(current_pose, mapper_scene2z[scene_name])
    env.robot.reset_new_pose(pos, orn)
    obs, _, _, _ = env.step(4)
    obs_rgb = obs['rgb_filled']
    obs_depth = obs['depth']
    #obs_normal = obs['normal']
    return obs_rgb, obs_depth  #, obs_normal


def close_to_goal(pose1, pose2, thresh=0.15):
    L2_dist = math.sqrt((pose1[0] - pose2[0])**2 + (pose1[1] - pose2[1])**2)
Esempio n. 3
0
import argparse
import os
import numpy as np
import matplotlib.pyplot as plt

config_file = os.path.join(os.path.dirname(os.path.realpath(__file__)), '..',
                           'configs', 'test_control.yaml')
print(config_file)

if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--config', type=str, default=config_file)
    args = parser.parse_args()

    env = HuskyNavigateEnv(config=args.config)
    env.reset()

    base_action_omage = np.array([-0.001, 0.001, -0.001, 0.001])
    base_action_v = np.array([0.001, 0.001, 0.001, 0.001])

    control_signal = -0.5
    control_signal_omega = 0.5
    v = 0
    omega = 0
    kp = 100
    ki = 0.1
    kd = 25
    ie = 0
    de = 0
    olde = 0
    ie_omega = 0
def main(scene_idx=0, sigma=0.0, keep_prob=1.0):

	#scene_idx = 0
	#keep_prob = 0.95
	#sigma = 5.0
	#print('keep_prob = {}'.format(keep_prob))
	#print('sigma = {}'.format(sigma))

	## necessary constants
	mapper_scene2points = get_mapper_scene2points()
	num_episodes = 200000
	batch_size = 64
	lambda_action = 0.25
	action_table = buildActionMapper(flag_fewer_actions=True)
	seq_len = 50

	Train_Scenes, Test_Scenes = get_train_test_scenes()

	if mode == 'Test':
		scene_name = Test_Scenes[scene_idx]
	elif mode == 'Train':
		scene_name = Train_Scenes[scene_idx]

	## create test folder
	test_folder = '/home/reza/Datasets/GibsonEnv/my_code/vs_controller/test_LBVS'
	f = open('{}/{}.txt'.format(test_folder, method_description), 'a')
	f.write('sigma = {}, keep_prob = {}\n'.format(sigma, keep_prob))
	f.write('scene_name = {}\n'.format(scene_name))
	list_count_correct = []
	list_count_runs = []

	num_startPoints = len(mapper_scene2points[scene_name])
	model_weights_save_path = '{}/{}'.format('/home/reza/Datasets/GibsonEnv/my_code/vs_controller/trained_dqn', approach)
	action_space = action_table.shape[0]

	##=============================================================================================================
	## rrt functions
	## first figure out how to sample points from rrt graph
	rrt_directory = '/home/reza/Datasets/GibsonEnv/gibson/assets/dataset/{}_for_rrt'.format(scene_name)
	path_finder = rrt.PathFinder(rrt_directory)
	path_finder.load()
	num_nodes = len(path_finder.nodes_x)
	free = cv2.imread('/home/reza/Datasets/GibsonEnv/gibson/assets/dataset/{}_for_rrt/free.png'.format(scene_name), 0)

	##------------------------------------------------------------------------------------------------------------
	## setup environment
	import gym, logging
	from mpi4py import MPI
	from gibson.envs.husky_env import HuskyNavigateEnv
	from baselines import logger
	import skimage.io
	from transforms3d.euler import euler2quat
	config_file = os.path.join('/home/reza/Datasets/GibsonEnv/my_code/CVPR_workshop', 'env_yamls', '{}_navigate.yaml'.format(scene_name))
	env = HuskyNavigateEnv(config=config_file, gpu_count = 1)
	obs = env.reset() ## this line is important otherwise there will be an error like 'AttributeError: 'HuskyNavigateEnv' object has no attribute 'potential''
	mapper_scene2z = get_mapper()

	def get_obs(current_pose):
		pos, orn = func_pose2posAndorn(current_pose, mapper_scene2z[scene_name])
		env.robot.reset_new_pose(pos, orn)
		obs, _, _, _ = env.step(4)
		obs_rgb = obs['rgb_filled']
		obs_depth = obs['depth']
		#obs_normal = obs['normal']
		return obs_rgb, obs_depth#, obs_normal

	def close_to_goal(pose1, pose2, thresh=0.20):
		L2_dist = math.sqrt((pose1[0] - pose2[0])**2 + (pose1[1] - pose2[1])**2)
		thresh_L2_dist = thresh
		theta_change = abs(pose1[2] - pose2[2])/math.pi * 180
		return (L2_dist <= thresh_L2_dist) #and (theta_change <= 30)

	##============================================================================================================
	if mode == 'Test':
		base_folder = '/home/reza/Datasets/GibsonEnv/my_code/visual_servoing/sample_image_pairs_{}'.format('test')
	elif mode == 'Train':
		base_folder = '/home/reza/Datasets/GibsonEnv/my_code/visual_servoing/sample_image_pairs_{}'.format('train')

	import torch
	import torch.nn as nn
	import torch.nn.functional as F

	device = torch.device('cuda:0')     ## Default CUDA device
	num_epochs = 200000 ## same as # of trajs sampled
	num_actions = action_table.shape[0]
	if input_type == 'both':
		perception = Perception_overlap(4).to(device)
	elif input_type == 'siamese':
		perception = Perception_siamese(4).to(device)
	elif input_type == 'optical_flow':
		perception = Perception_overlap(2).to(device)
	elif input_type == 'optical_flow_depth':
		perception = Perception_siamese_fusion_new(3).to(device)
	else:
		perception = Perception_overlap(2).to(device)
	if input_type == 'siamese':
		model = DQN_OVERLAP_Controller(perception, num_actions, input_size=512).to(device)
	else:
		model = DQN_OVERLAP_Controller(perception, num_actions, input_size=256).to(device)
	model.load_state_dict(torch.load('{}/dqn_epoch_{}_Uvalda.pt'.format(model_weights_save_path, num_epochs)))

	list_succ = []
	list_collision = []
	## go through each point folder
	if mode == 'Test':
		a, b = 0, 1
	elif mode == 'Train':
		a, b = 7, 8
		#a, b = 0, 1
	#for point_idx in range(0, num_startPoints):
	for point_idx in range(a, b):
		print('point_idx = {}'.format(point_idx))

		## read in start img and start pose
		point_image_folder = '{}/{}/point_{}'.format(base_folder, scene_name, point_idx)
		point_pose_npy_file = np.load('{}/{}/point_{}_poses.npy'.format(base_folder, scene_name, point_idx))

		#start_img = cv2.imread('{}/{}.png'.format(point_image_folder, point_pose_npy_file[0]['img_name']))[:, :, ::-1]
		start_pose = point_pose_npy_file[0]['pose']
		start_img, start_depth = get_obs(start_pose)
		start_depth = start_depth.copy()

		count_correct = 0
		count_succ = 0
		count_collision = 0
		count_short_runs = 0
		count_short_runs_collision = 0
		count_short_runs_succ = 0
		## index 0 is the left image, so right_img_idx starts from index 1
		for right_img_idx in range(1, len(point_pose_npy_file)):
		#for right_img_idx in range(1, 4):
			print('right_img_idx = {}'.format(right_img_idx))

			current_pose = start_pose
			
			right_img_name = point_pose_npy_file[right_img_idx]['img_name']
			
			goal_pose = point_pose_npy_file[right_img_idx]['pose']
			#goal_img = cv2.imread('{}/{}.png'.format(point_image_folder, right_img_name), 1)[:,:,::-1]
			goal_img, goal_depth = get_obs(goal_pose)
			goal_depth = goal_depth.copy()

			current_depth = start_depth.copy()

			episode_reward = 0

			flag_succ = False

			for i_step in range(seq_len):
				if input_type == 'both' or input_type == 'siamese':
					overlapArea_currentView = genOverlapAreaOnCurrentView(current_depth, goal_depth, current_pose, goal_pose)[:,:,:2]
					overlapArea_goalView = genOverlapAreaOnGoalView(current_depth, goal_depth, current_pose, goal_pose)[:,:,:2]
					overlapArea = np.concatenate((overlapArea_currentView, overlapArea_goalView), axis=2)
				elif input_type == 'optical_flow':
					overlapArea = genGtDenseCorrespondenseFlowMap(current_depth, goal_depth, current_pose, goal_pose)[:,:,:2]
					## add gaussian noise
					overlapArea = addGaussianNoise(overlapArea, sigma=sigma)
					#overlapArea = removeCorrespondenceRandomly(overlapArea, keep_prob=keep_prob)
					overlapArea = removeCorrespondenceRandomly_withSmoothing(overlapArea, keep_prob=keep_prob)

				tensor_left = torch.tensor(overlapArea, dtype=torch.float32).to(device).unsqueeze(0).permute(0, 3, 1, 2)
				Qvalue_table = model(tensor_left)
				pred = Qvalue_table.max(1)[1].view(1, 1).detach().cpu().numpy().item() ## batch_size x 3
				#print('Qvalue_table: {}'.format(Qvalue_table))
				#print('pred = {}'.format(pred))
				
				## update current_pose
				vz, omegay = action_table[pred]
				#print('vz = {:.2f}, omegay = {:.2f}'.format(vz, omegay))
				vx = 0.0
				vx = vx * lambda_action
				vz = vz * lambda_action
				omegay = omegay * pi * lambda_action
				#print('actual velocity = {:.2f}, {:.2f}, {:.2f}'.format(vx, vz, omegay))
				previous_pose = current_pose
				current_pose = update_current_pose(current_pose, vx, vz, omegay)

				flag_broken = False
				left_pixel = path_finder.point_to_pixel((previous_pose[0], previous_pose[1]))
				right_pixel = path_finder.point_to_pixel((current_pose[0], current_pose[1]))
				## rrt.line_check returns True when there is no obstacle
				if not rrt.line_check(left_pixel, right_pixel, free):
					print('run into something')
					flag_broken = True
					break

				if close_to_goal(current_pose, goal_pose):
					print('success run')
					flag_succ = True
					break

				## compute new_state
				current_img, current_depth = get_obs(current_pose)
				current_depth = current_depth.copy()

			if flag_succ:
				count_succ += 1
				count_correct += 1
				list_succ.append(point_pose_npy_file[right_img_idx]['img_name'])
				if findShortRangeImageName(right_img_name):
					count_short_runs_succ += 1
			if flag_broken:
				count_collision += 1
				list_collision.append(point_pose_npy_file[right_img_idx]['img_name'])
				if findShortRangeImageName(right_img_name):
					count_short_runs_collision += 1
			if findShortRangeImageName(right_img_name):
				count_short_runs += 1


			print('count_succ = {}'.format(count_succ))
			print('count_collision = {}'.format(count_collision))
			print('count_short_runs_succ = {}'.format(count_short_runs_succ))
			print('count_short_runs_collision = {}'.format(count_short_runs_collision))

		print('sigma = {}, keep_prob = {}, num_succ = {}, num_run = {}, count_short_runs_succ = {}, count_short_runs = {}'.format(sigma, keep_prob, count_succ, len(point_pose_npy_file)-1, count_short_runs_succ, count_short_runs))

		f.write('point {} : {}/{}\n'.format(point_idx, count_correct, len(point_pose_npy_file)-1))
		f.flush()
		list_count_correct.append(count_correct)
		list_count_runs.append(len(point_pose_npy_file)-1)

	f.write('In total : {}/{}\n'.format(sum(list_count_correct), sum(list_count_runs)))
	f.write('-------------------------------------------------------------------------------------\n')	
Esempio n. 5
0
def main(scene_idx=0, actual_episodes=1):

#scene_idx = 0
#actual_episodes=2

	Train_Scenes, Test_Scenes = get_train_test_scenes()
	scene_name = Train_Scenes[scene_idx]
	num_startPoints = len(mapper_scene2points[scene_name])
	model_weights_save_path = '{}'.format('/home/reza/Datasets/GibsonEnv/my_code/vs_controller/trained_dqn')
	action_space = action_table.shape[0]

	##=============================================================================================================
	## rrt functions
	## first figure out how to sample points from rrt graph
	rrt_directory = '/home/reza/Datasets/GibsonEnv/gibson/assets/dataset/{}_for_rrt'.format(scene_name)
	path_finder = rrt.PathFinder(rrt_directory)
	path_finder.load()
	num_nodes = len(path_finder.nodes_x)
	free = cv2.imread('/home/reza/Datasets/GibsonEnv/gibson/assets/dataset/{}_for_rrt/free.png'.format(scene_name), 0)

	##------------------------------------------------------------------------------------------------------------
	## setup environment
	import gym, logging
	from mpi4py import MPI
	from gibson.envs.husky_env import HuskyNavigateEnv
	from baselines import logger
	import skimage.io
	from transforms3d.euler import euler2quat
	config_file = os.path.join('/home/reza/Datasets/GibsonEnv/my_code/CVPR_workshop', 'env_yamls', '{}_navigate.yaml'.format(scene_name))
	env = HuskyNavigateEnv(config=config_file, gpu_count = 1)
	obs = env.reset() ## this line is important otherwise there will be an error like 'AttributeError: 'HuskyNavigateEnv' object has no attribute 'potential''
	mapper_scene2z = get_mapper()

	def get_obs(current_pose):
		pos, orn = func_pose2posAndorn(current_pose, mapper_scene2z[scene_name])
		env.robot.reset_new_pose(pos, orn)
		obs, _, _, _ = env.step(4)
		obs_rgb = obs['rgb_filled']
		obs_depth = obs['depth']
		#obs_normal = obs['normal']
		return obs_rgb, obs_depth#, obs_normal

	def close_to_goal(pose1, pose2, thresh=0.15):
		L2_dist = math.sqrt((pose1[0] - pose2[0])**2 + (pose1[1] - pose2[1])**2)
		thresh_L2_dist = thresh
		theta_change = abs(pose1[2] - pose2[2])/math.pi * 180
		return (L2_dist < thresh_L2_dist) and (theta_change <= 30)

	def compute_distance_old(left_pose, right_pose, lamb=0.5):
		x1, y1 = left_pose[0], left_pose[1]
		a1, b1 = cos(left_pose[2]), sin(left_pose[2])
		x2, y2 = right_pose[0], right_pose[1]
		a2, b2 = cos(right_pose[2]), sin(right_pose[2])
		x_y_dist = math.sqrt((x1-x2)**2 + (y1-y2)**2)
		theta_dist = math.sqrt((a1-a2)**2 + (b1-b2)**2)
		return  x_y_dist + lamb * theta_dist

	def compute_distance(left_pose, right_pose, lamb_alpha=0.5, lamb_beta=0.2):
		x1, y1 = left_pose[0], left_pose[1]
		x2, y2 = right_pose[0], right_pose[1]
		pho_dist = math.sqrt((x1-x2)**2 + (y1-y2)**2)
		
		left_pose_heading = left_pose[2]
		right_pose_heading = right_pose[2]
		location_angle = atan2(y2-y1, x2-x1)
		#print('left_pose_heading = {}, right_pose_heading = {}, location_angle = {}'.format(left_pose_heading, right_pose_heading, location_angle))
		if pho_dist >= 0.05:
			## alpha angle in goToPose is the difference between location angle and left_pose_heading
			a1, b1 = cos(location_angle), sin(location_angle)
			a2, b2 = cos(left_pose_heading), sin(left_pose_heading)
			alpha_dist = math.sqrt((a1-a2)**2 + (b1-b2)**2)
			## beta angle in goToPose is the difference between right_pose_heading and location angle
			a1, b1 = cos(right_pose_heading), sin(right_pose_heading)
			a2, b2 = cos(location_angle), sin(location_angle)
			beta_dist = math.sqrt((a1-a2)**2 + (b1-b2)**2)
		else:
			## when pho_dist is close to zero, alpha_dist is not important
			alpha_dist = 0.0
			## beta angle becomes the anlge between left and right poses
			a1, b1 = cos(right_pose_heading), sin(right_pose_heading)
			a2, b2 = cos(left_pose_heading), sin(left_pose_heading)
			beta_dist = math.sqrt((a1-a2)**2 + (b1-b2)**2)
		#print('pho_dist = {:.2f}, alpha_dist = {:.2f}, beta_dist = {:.2f}'.format(pho_dist, alpha_dist, beta_dist))
		return  pho_dist + lamb_alpha * alpha_dist + lamb_beta * beta_dist

	def decide_reward_and_done(previous_pose, current_pose, goal_pose, start_pose):
		## check if the new step is on free space or not
		reward = 0.0
		done = 0
		
		## check if current_pose is closer to goal_pose than previous_pose
		'''
		L2_dist_current = math.sqrt((current_pose[0] - goal_pose[0])**2 + (current_pose[1] - goal_pose[1])**2)
		L2_dist_previous = math.sqrt((previous_pose[0] - goal_pose[0])**2 + (previous_pose[1] - goal_pose[1])**2)
		if L2_dist_current < L2_dist_previous:
			reward += 0.25
		print('L2_dist_current = {:.2f}, L2_dist_previous = {:.2f}, reward = {}'.format(L2_dist_current, L2_dist_previous, reward))
		'''

		## following Fereshteh's DiVIs paper
		dist_init = compute_distance(start_pose, goal_pose, lamb_alpha=0.2)
		dist_current = compute_distance(current_pose, goal_pose, lamb_alpha=0.2)
		reward = max(0, 1 - min(dist_init, dist_current)/(dist_init+0.0001))
		#print('dist_init = {:.2f}, dist_current = {:.2f}, reward = {:.2f}'.format(dist_init, dist_current, reward))
		
		## check if current_pose is close to goal
		## goal reward should be larger than all the previously accumulated reward
		flag_close_to_goal = close_to_goal(current_pose, goal_pose)
		if flag_close_to_goal:
			reward = 50.0
			done = 1
		#print('current_pose = {}, goal_pose = {}, flag_close_to_goal = {}, reward = {}'.format(current_pose, goal_pose, flag_close_to_goal, reward))

		#collision_done = 0
		## if there is a collision, reward is -1 and the episode is done
		left_pixel = path_finder.point_to_pixel((previous_pose[0], previous_pose[1]))
		right_pixel = path_finder.point_to_pixel((current_pose[0], current_pose[1]))
		## rrt.line_check returns True when there is no obstacle
		if not rrt.line_check(left_pixel, right_pixel, free):
			print('bumped into obstacle ....')
			reward = 0.0
			#collision_done = 1
			done=1
		print('final reward = {}'.format(reward))
		
		return reward, done, 0 #, collision_done

	##============================================================================================================
	base_folder = '/home/reza/Datasets/GibsonEnv/my_code/visual_servoing/sample_image_pairs_{}'.format('train')

	#agent = DQN_vs_overlap_resnet(trained_model_path=None, num_actions=action_space, input_channels=4)
	agent = DQN_vs_overlap_resnet(trained_model_path=model_weights_save_path, num_actions=action_space, input_channels=4)

	rewards = []
	avg_rewards = []

	for i_epoch in range(actual_episodes):
		## go through each point folder
		for point_idx in range(0, num_startPoints):
		#for point_idx in range(0, 1):
			print('point_idx = {}'.format(point_idx))

			## read in start img and start pose
			point_image_folder = '{}/{}/point_{}'.format(base_folder, scene_name, point_idx)
			point_pose_npy_file = np.load('{}/{}/point_{}_poses.npy'.format(base_folder, scene_name, point_idx))

			#start_img = cv2.imread('{}/{}.png'.format(point_image_folder, point_pose_npy_file[0]['img_name']))[:, :, ::-1]
			start_pose = point_pose_npy_file[0]['pose']
			start_img, start_depth = get_obs(start_pose)
			start_depth = start_depth.copy()

			## index 0 is the left image, so right_img_idx starts from index 1
			for right_img_idx in range(1, len(point_pose_npy_file)):
			#for right_img_idx in range(3, 4):
				#print('right_img_idx = {}'.format(right_img_idx))

				current_pose = start_pose
				
				right_img_name = point_pose_npy_file[right_img_idx]['img_name']
				goal_pose = point_pose_npy_file[right_img_idx]['pose']
				#goal_img = cv2.imread('{}/{}.png'.format(point_image_folder, right_img_name), 1)[:,:,::-1]
				goal_img, goal_depth = get_obs(goal_pose)
				goal_img, goal_depth = goal_img.copy(), goal_depth.copy()

				opticalFlow = genGtDenseCorrespondenseFlowMap(start_depth, goal_depth, start_pose, goal_pose)[:,:,:2]
				memory_opticalFlow = np.concatenate((opticalFlow, opticalFlow), axis=2)
				state = [memory_opticalFlow]

				episode_reward = 0

				for i_step in range(seq_len):
					action = agent.select_action(state)
					print('action = {}'.format(action))
					
					## update current_pose
					vz, omegay = action_table[action]
					#print('vz = {:.2f}, omegay = {:.2f}'.format(vz, omegay))
					vx = 0.0
					vx = vx * lambda_action
					vz = vz * lambda_action
					omegay = omegay * pi * lambda_action
					#print('actual velocity = {:.2f}, {:.2f}, {:.2f}'.format(vx, vz, omegay))
					previous_pose = current_pose
					current_pose = update_current_pose(current_pose, vx, vz, omegay)
					## compute new_state
					current_img, current_depth = get_obs(current_pose)
					next_left_img, next_left_depth = current_img.copy(), current_depth.copy()

					new_opticalFlow = genGtDenseCorrespondenseFlowMap(next_left_depth, goal_depth, current_pose, goal_pose)[:,:,:2]
					memory_new_opticalFlow = np.concatenate((state[0][:,:,2:4], new_opticalFlow), axis=2)

					'''
					fig = plt.figure(figsize=(15, 5)) #cols, rows
					r, c = 1, 6
					ax = fig.add_subplot(r, c, 1)
					ax.imshow(memory_new_opticalFlow[:, :, 0])
					ax = fig.add_subplot(r, c, 2)
					ax.imshow(memory_new_opticalFlow[:, :, 1])
					ax = fig.add_subplot(r, c, 3)
					ax.imshow(memory_new_opticalFlow[:, :, 2])
					ax = fig.add_subplot(r, c, 4)
					ax.imshow(memory_new_opticalFlow[:, :, 3])
					plt.show()
					'''

					#print('memory_new_opticalFlow.shape = {}'.format(memory_new_opticalFlow.shape))
					new_state = [memory_new_opticalFlow]

					## visualize the state
					'''
					fig = plt.figure(figsize=(15, 10))
					r, c, = 2, 2
					ax = fig.add_subplot(r, c, 1)
					ax.imshow(next_left_img)
					ax = fig.add_subplot(r, c, 2)
					ax.imshow(goal_img)
					ax = fig.add_subplot(r, c, 3)
					start_mask = np.concatenate((new_overlapArea, np.zeros((256, 256, 1), dtype=np.uint8)), axis=2)
					ax.imshow(start_mask)
					plt.show()
					'''
					## collision done only stops continuing the sequence, but won't affect reward computing
					reward, done, collision_done = decide_reward_and_done(previous_pose, current_pose, goal_pose, start_pose)
					print('done = {}, collision_done = {}'.format(done, collision_done))
					if i_step == seq_len-1:
						print('used up all the steps ...')
						done = 1

					agent.memory.push(state, action, reward, new_state, done)
					
					if len(agent.memory) > batch_size:
						agent.update(batch_size)

					state = new_state
					episode_reward += reward
					print('---------------- end of a action ------------------ ')

					if done or collision_done:
						break

				print('---------------- end of a sequence ------------------ ')

				rewards.append(episode_reward)
				avg_rewards.append(np.mean(rewards[-10:]))
				sys.stdout.write("------------------------------------epoch = {}, point = {}, traj = {}, reward: {}, average_reward: {} #_steps: {}\n".format(i_epoch, point_idx, right_img_idx, np.round(episode_reward, decimals=2), np.round(avg_rewards[-1], decimals=2), i_step))

				if right_img_idx % 10 == 0:
					agent.update_critic()

					## plot the running_loss
					plt.plot(rewards, label='reward')
					plt.plot(avg_rewards, label='avg_reward')
					plt.xlabel('Episode')
					plt.ylabel('Reward')
					plt.grid(True)
					plt.legend(loc='upper right')
					plt.yscale('linear')
					plt.title('change of reward and avg_reward')
					plt.savefig('{}/Reward_episode_{}_{}.jpg'.format(
						model_weights_save_path, num_episodes, scene_name), bbox_inches='tight')
					plt.close()

					torch.save(agent.actor.state_dict(), '{}/dqn_epoch_200000_{}.pt'.format(model_weights_save_path, scene_name))
					torch.save(agent.actor.state_dict(), '{}/dqn_epoch_200000.pt'.format(model_weights_save_path))
Esempio n. 6
0
def main(scene_idx):
    scene_name = Test_Scenes[scene_idx]
    #scene_file_addr = '/home/reza/Datasets/GibsonEnv/my_code/visual_servoing/sample_image_pairs_test/{}'.format(scene_name)
    scene_file_addr = '/home/reza/Datasets/GibsonEnv/my_code/visual_servoing/sample_image_pairs_test_longer_dist/{}'.format(
        scene_name)

    #scene_name = Train_Scenes[scene_idx]
    #scene_file_addr = '/home/reza/Datasets/GibsonEnv/my_code/visual_servoing/sample_image_pairs_train/{}'.format(scene_name)
    create_folder(scene_file_addr)

    ## rrt functions
    ## first figure out how to sample points from rrt graph
    rrt_directory = '/home/reza/Datasets/GibsonEnv/gibson/assets/dataset/{}_for_rrt'.format(
        scene_name)
    path_finder = rrt.PathFinder(rrt_directory)
    path_finder.load()
    num_nodes = len(path_finder.nodes_x)
    free = cv2.imread(
        '/home/reza/Datasets/GibsonEnv/gibson/assets/dataset/{}_for_rrt/free.png'
        .format(scene_name), 0)

    ## GibsonEnv setup
    config_file = os.path.join(
        '/home/reza/Datasets/GibsonEnv/my_code/CVPR_workshop', 'env_yamls',
        '{}_navigate.yaml'.format(scene_name))
    env = HuskyNavigateEnv(config=config_file, gpu_count=1)
    obs = env.reset(
    )  ## this line is important otherwise there will be an error like 'AttributeError: 'HuskyNavigateEnv' object has no attribute 'potential''

    def get_obs(current_pose):
        pos, orn = func_pose2posAndorn(current_pose,
                                       mapper_scene2z[scene_name])
        env.robot.reset_new_pose(pos, orn)
        obs, _, _, _ = env.step(4)
        obs_rgb = obs['rgb_filled']
        obs_depth = obs['depth']
        return obs_rgb.copy(), obs_depth.copy()

    left_pose_list = mapper_scene2points[scene_name]
    right_pose_list = []
    #for p_idx, p in enumerate(left_pose_list):
    for p_idx in range(0, 1):
        p = left_pose_list[p_idx]
        list_whole = []
        x0, y0, theta0 = p
        left_pose = [x0, y0, theta0]

        point_file_addr = '{}/point_{}'.format(scene_file_addr, p_idx)
        create_folder(point_file_addr)
        current_pose = left_pose
        left_rgb, left_depth = get_obs(current_pose)
        cv2.imwrite('{}/left_img.png'.format(point_file_addr),
                    left_rgb[:, :, ::-1])
        np.save('{}/left_img_depth.npy'.format(point_file_addr), left_depth)
        ## add left_img to list_whole
        current_dict = {}
        current_dict['img_name'] = 'left_img'
        current_dict['pose'] = left_pose
        list_whole.append(current_dict)

        for i in range(len(theta_list)):
            if i == 0 or i == 6:
                len_dist_list = 2
            elif i == 1 or i == 5:
                len_dist_list = 3
            elif i == 2 or i == 4:
                len_dist_list = 10  #4
            elif i == 3:
                len_dist_list = 10  #6
            print('len_dist_list = {}'.format(len_dist_list))
            for j in range(len_dist_list):

                location_theta = plus_theta_fn(theta0, theta_list[i])
                location_dist = dist_list[j]
                x1 = x0 + location_dist * math.cos(location_theta)
                y1 = y0 + location_dist * math.sin(location_theta)

                left_pixel = path_finder.point_to_pixel(left_pose)
                right_pixel = path_finder.point_to_pixel((x1, y1))

                # check the line
                flag = rrt.line_check(left_pixel, right_pixel, free)
                if not flag:
                    print('j = {}, obstacle'.format(j))
                else:
                    for diff_theta_idx in range(len(diff_theta_list)):
                        diff_theta = diff_theta_list[diff_theta_idx]
                        theta1 = plus_theta_fn(theta0, diff_theta)
                        right_pose = [x1, y1, theta1]

                        current_pose = right_pose
                        right_rgb, right_depth = get_obs(current_pose)

                        ## check if there is common space between left img and right img
                        kp1, kp2 = sample_gt_dense_correspondences(
                            left_depth,
                            right_depth,
                            left_pose,
                            right_pose,
                            gap=32,
                            focal_length=128,
                            resolution=256,
                            start_pixel=31)
                        if kp1.shape[1] > 2:
                            cv2.imwrite(
                                '{}/right_img_dist_{}_theta_{}_heading_{}.png'.
                                format(point_file_addr, mapper_dist[j],
                                       mapper_theta[i],
                                       mapper_theta[diff_theta_idx]),
                                right_rgb[:, :, ::-1])
                            np.save(
                                '{}/right_img_dist_{}_theta_{}_heading_{}_depth.npy'
                                .format(point_file_addr, mapper_dist[j],
                                        mapper_theta[i],
                                        mapper_theta[diff_theta_idx]),
                                right_depth)
                            right_pose_list.append(right_pose)
                            ## add right_img to list_whole
                            current_dict = {}
                            current_dict[
                                'img_name'] = 'right_img_dist_{}_theta_{}_heading_{}'.format(
                                    mapper_dist[j], mapper_theta[i],
                                    mapper_theta[diff_theta_idx])
                            current_dict['pose'] = right_pose
                            list_whole.append(current_dict)
                        else:
                            print('No common space')

        ## save list_whole
        np.save('{}/point_{}_poses.npy'.format(scene_file_addr, p_idx),
                list_whole)

    # plot the pose graph
    pose_file_addr = '{}'.format(scene_file_addr)
    img_name = '{}_sampled_poses.jpg'.format(scene_name)
    print('img_name = {}'.format(img_name))
    ## plot the poses
    free = cv2.imread(
        '/home/reza/Datasets/GibsonEnv/gibson/assets/dataset/{}_for_rrt/free.png'
        .format(scene_name), 1)
    rows, cols, _ = free.shape
    plt.imshow(free)
    for m in range(len(left_pose_list)):
        pose = left_pose_list[m]
        x, y = path_finder.point_to_pixel((pose[0], pose[1]))
        theta = pose[2]
        plt.arrow(x, y, cos(theta), sin(theta), color='r', \
            overhang=1, head_width=0.1, head_length=0.15, width=0.001)
    for m in range(len(right_pose_list)):
        pose = right_pose_list[m]
        x, y = path_finder.point_to_pixel((pose[0], pose[1]))
        theta = pose[2]
        plt.arrow(x, y, cos(theta), sin(theta), color='b', \
            overhang=1, head_width=0.1, head_length=0.15, width=0.001)
    plt.axis([0, cols, 0, rows])
    plt.xticks([])
    plt.yticks([])
    plt.savefig('{}/{}'.format(pose_file_addr, img_name),
                bbox_inches='tight',
                dpi=(400))
    plt.close()