def train(num_timesteps, seed):
    rank = MPI.COMM_WORLD.Get_rank()
    sess = U.single_threaded_session()
    sess.__enter__()
    if rank == 0:
        logger.configure()
    else:
        logger.configure(format_strs=[])
    workerseed = seed + 10000 * MPI.COMM_WORLD.Get_rank()
    set_global_seeds(workerseed)

    config_file = os.path.join(os.path.dirname(os.path.realpath(__file__)), '..', 'configs',
                               'ant_navigate.yaml')
    print(config_file)

    env = AntNavigateEnv(config = config_file)
    
    def policy_fn(name, ob_space, ac_space):
        #return mlp_policy.MlpPolicy(name=name, ob_space=sensor_space, ac_space=ac_space, hid_size=64, num_hid_layers=2)
        return cnn_policy.CnnPolicy(name=name, ob_space=ob_space, ac_space=ac_space, save_per_acts=10000, session=sess, kind='small')


    env.seed(workerseed)
    gym.logger.setLevel(logging.WARN)

    pposgd_simple.learn(env, policy_fn,
        max_timesteps=int(num_timesteps * 1.1 * 5),
        timesteps_per_actorbatch=6000,
        clip_param=0.2, entcoeff=0.00,
        optim_epochs=4, optim_stepsize=1e-4, optim_batchsize=64,
        gamma=0.99, lam=0.95,
        schedule='linear',
        save_per_acts=500
    )
    env.close()
Esempio n. 2
0
def train(num_timesteps, seed):
    rank = MPI.COMM_WORLD.Get_rank()
    #sess = U.single_threaded_session()
    sess = utils.make_gpu_session(args.num_gpu)
    sess.__enter__()
    if args.meta != "":
        saver = tf.train.import_meta_graph(args.meta)
        saver.restore(sess, tf.train.latest_checkpoint('./'))

    if rank == 0:
        logger.configure()
    else:
        logger.configure(format_strs=[])
    workerseed = seed + 10000 * MPI.COMM_WORLD.Get_rank()
    set_global_seeds(workerseed)

    use_filler = not args.disable_filler

    config_file = os.path.join(os.path.dirname(os.path.realpath(__file__)),
                               '..', 'configs', 'husky_navigate.yaml')
    print(config_file)

    raw_env = HuskyNavigateEnv(is_discrete=True,
                               gpu_count=args.gpu_count,
                               config=config_file)

    #    def policy_fn(name, ob_space, sensor_space, ac_space):
    def policy_fn(name, ob_space, ac_space):
        if args.mode == "SENSOR":
            return mlp_policy.MlpPolicy(name=name,
                                        ob_space=ob_space,
                                        ac_space=ac_space,
                                        hid_size=64,
                                        num_hid_layers=2)
        else:
            #return fuse_policy.FusePolicy(name=name, ob_space=ob_space, sensor_space=sensor_space, ac_space=ac_space, save_per_acts=10000, session=sess)
            #else:
            return cnn_policy.CnnPolicy(name=name,
                                        ob_space=ob_space,
                                        ac_space=ac_space,
                                        save_per_acts=10000,
                                        session=sess,
                                        kind='small')

    env = Monitor(raw_env,
                  logger.get_dir() and osp.join(logger.get_dir(), str(rank)))
    env.seed(workerseed)
    gym.logger.setLevel(logging.WARN)

    pposgd_simple.learn(env,
                        policy_fn,
                        max_timesteps=int(num_timesteps * 1.1),
                        timesteps_per_actorbatch=3000,
                        clip_param=0.2,
                        entcoeff=0.01,
                        optim_epochs=4,
                        optim_stepsize=3e-3,
                        optim_batchsize=64,
                        gamma=0.996,
                        lam=0.95,
                        schedule='linear',
                        save_name="husky_navigate_ppo_{}".format(args.mode),
                        save_per_acts=50,
                        sensor=args.mode == "SENSOR",
                        reload_name=args.reload_name)
    '''
def train(seed):
    rank = MPI.COMM_WORLD.Get_rank()
    sess = utils.make_gpu_session(args.num_gpu)
    sess.__enter__()

    if args.meta != "":
        saver = tf.train.import_meta_graph(args.meta)
        saver.restore(sess, tf.train.latest_checkpoint('./'))

    if rank == 0:
        logger.configure()
    else:
        logger.configure(format_strs=[])
    workerseed = seed + 10000 * MPI.COMM_WORLD.Get_rank()
    set_global_seeds(workerseed)
    use_filler = not args.disable_filler

    config_file = os.path.join(os.path.dirname(os.path.realpath(__file__)),
                               '..', 'configs', 'config_husky.yaml')
    print(config_file)

    raw_env = HuskyNavigateEnv(gpu_idx=args.gpu_idx, config=config_file)
    step = raw_env.config['n_step']
    episode = raw_env.config['n_episode']
    iteration = raw_env.config['n_iter']
    elm_policy = raw_env.config['elm_active']
    num_timesteps = step * episode * iteration
    tpa = step * episode

    if args.mode == "SENSOR":  #Blind Mode

        def policy_fn(name, ob_space, ac_space):
            return mlp_policy.MlpPolicy(name=name,
                                        ob_space=ob_space,
                                        ac_space=ac_space,
                                        hid_size=128,
                                        num_hid_layers=4,
                                        elm_mode=elm_policy)
    elif args.mode == "DEPTH" or args.mode == "RGB":  #Fusing sensor space with image space

        def policy_fn(name, ob_space, sensor_space, ac_space):
            return fuse_policy.FusePolicy(name=name,
                                          ob_space=ob_space,
                                          sensor_space=sensor_space,
                                          ac_space=ac_space,
                                          save_per_acts=10000,
                                          hid_size=128,
                                          num_hid_layers=4,
                                          session=sess,
                                          elm_mode=elm_policy)

    elif args.mode == "RESNET":

        def policy_fn(name, ob_space, sensor_space, ac_space):
            return resnet_policy.ResPolicy(name=name,
                                           ob_space=ob_space,
                                           sensor_space=sensor_space,
                                           ac_space=ac_space,
                                           save_per_acts=10000,
                                           hid_size=128,
                                           num_hid_layers=4,
                                           session=sess,
                                           elm_mode=elm_policy)

    elif args.mode == "ODE":

        def policy_fn(name, ob_space, sensor_space, ac_space):
            return ode_policy.ODEPolicy(name=name,
                                        ob_space=ob_space,
                                        sensor_space=sensor_space,
                                        ac_space=ac_space,
                                        save_per_acts=10000,
                                        hid_size=128,
                                        num_hid_layers=4,
                                        session=sess,
                                        elm_mode=elm_policy)

    else:  #Using only image space

        def policy_fn(name, ob_space, ac_space):
            return cnn_policy.CnnPolicy(name=name,
                                        ob_space=ob_space,
                                        ac_space=ac_space,
                                        session=sess,
                                        kind='small')

    env = Monitor(raw_env,
                  logger.get_dir() and osp.join(logger.get_dir(), str(rank)))
    env.seed(workerseed)
    gym.logger.setLevel(logging.WARN)

    args.reload_name = '/home/berk/PycharmProjects/Gibson_Exercise/gibson/utils/models/PPO_ODE_2020-12-05_500_50_137_150.model'
    print(args.reload_name)

    modes_camera = ["DEPTH", "RGB", "RESNET", "ODE"]
    if args.mode in modes_camera:
        pposgd_fuse.learn(env,
                          policy_fn,
                          max_timesteps=int(num_timesteps * 1.1),
                          timesteps_per_actorbatch=tpa,
                          clip_param=0.2,
                          entcoeff=0.03,
                          vfcoeff=0.01,
                          optim_epochs=4,
                          optim_stepsize=1e-3,
                          optim_batchsize=64,
                          gamma=0.99,
                          lam=0.95,
                          schedule='linear',
                          save_name="PPO_{}_{}_{}_{}_{}".format(
                              args.mode, datetime.date.today(), step, episode,
                              iteration),
                          save_per_acts=15,
                          reload_name=args.reload_name)
    else:
        if args.mode == "SENSOR": sensor = True
        else: sensor = False
        pposgd_simple.learn(env,
                            policy_fn,
                            max_timesteps=int(num_timesteps * 1.1),
                            timesteps_per_actorbatch=tpa,
                            clip_param=0.2,
                            entcoeff=0.03,
                            vfcoeff=0.01,
                            optim_epochs=4,
                            optim_stepsize=1e-3,
                            optim_batchsize=64,
                            gamma=0.996,
                            lam=0.95,
                            schedule='linear',
                            save_name="PPO_{}_{}_{}_{}_{}".format(
                                args.mode, datetime.date.today(), step,
                                episode, iteration),
                            save_per_acts=15,
                            sensor=sensor,
                            reload_name=args.reload_name)
    env.close()