Esempio n. 1
0
    def __init__(self, parameter_values=None):
        # First call the gillespy2.Model initializer.
        super().__init__(self)

        # Define parameters for the rates of creation and dissociation.
        k_c = gillespy2.Parameter(name='k_c', expression=0.005)
        k_d = gillespy2.Parameter(name='k_d', expression=0.08)
        self.add_parameter([k_c, k_d])

        # Define variables for the molecular species representing M and D.
        m = gillespy2.Species(name='monomer', initial_value=30)
        d = gillespy2.Species(name='dimer', initial_value=0)
        self.add_species([m, d])

        # Define the reactions representing the process.  In GillesPy2,
        # the list of reactants and products for a Reaction object are each a
        # Python dictionary in which the dictionary keys are Species objects
        # and the values are stoichiometries of the species in the reaction.
        r_creation = gillespy2.Reaction(name="r_creation",
                                        rate=k_c,
                                        reactants={m: 2},
                                        products={d: 1})
        r_dissociation = gillespy2.Reaction(name="r_dissociation",
                                            rate=k_d,
                                            reactants={d: 1},
                                            products={m: 2})
        self.add_reaction([r_creation, r_dissociation])

        # Set the timespan for the simulation.
        self.timespan(numpy.linspace(0, 100, 101))
Esempio n. 2
0
    def __init__(self, parameter_values=None):
        # Initialize the model.
        gillespy2.Model.__init__(self, name="toggle_switch")
        # Parameters
        alpha1 = gillespy2.Parameter(name='alpha1', expression=1)
        alpha2 = gillespy2.Parameter(name='alpha2', expression=1)
        beta = gillespy2.Parameter(name='beta', expression="2.0")
        gamma = gillespy2.Parameter(name='gamma', expression="2.0")
        mu = gillespy2.Parameter(name='mu', expression=1.0)
        self.add_parameter([alpha1, alpha2, beta, gamma, mu])

        # Species
        U = gillespy2.Species(name='U', initial_value=10)
        V = gillespy2.Species(name='V', initial_value=10)
        self.add_species([U, V])

        # Reactions
        cu = gillespy2.Reaction(name="r1",
                                reactants={},
                                products={U: 1},
                                propensity_function="alpha1/(1+pow(V,beta))")
        cv = gillespy2.Reaction(name="r2",
                                reactants={},
                                products={V: 1},
                                propensity_function="alpha2/(1+pow(U,gamma))")
        du = gillespy2.Reaction(name="r3",
                                reactants={U: 1},
                                products={},
                                rate=mu)
        dv = gillespy2.Reaction(name="r4",
                                reactants={V: 1},
                                products={},
                                rate=mu)
        self.add_reaction([cu, cv, du, dv])
        self.timespan(np.linspace(0, 50, 101))
Esempio n. 3
0
        def __init__(self, t, s0, i0, r0, beta, gamma):
            # First call the gillespy2.Model initializer.
            gillespy2.Model.__init__(self, name='StochasticSIR')

            # Define parameters for the rates of creation and dissociation.
            k_i = gillespy2.Parameter(name='k_i', expression=beta / N)
            k_r = gillespy2.Parameter(name='k_r', expression=gamma)
            self.add_parameter([k_i, k_r])

            # Define variables for the molecular species representing M and D.
            s = gillespy2.Species(name='S', initial_value=s0)
            i = gillespy2.Species(name='I', initial_value=i0)
            r = gillespy2.Species(name='R', initial_value=r0)
            self.add_species([s, i, r])

            # The list of reactants and products for a Reaction object are each a
            # Python dictionary in which the dictionary keys are Species objects
            # and the values are stoichiometries of the species in the reaction.
            r_i = gillespy2.Reaction(name="infection",
                                     rate=k_i,
                                     reactants={
                                         s: 1,
                                         i: 1
                                     },
                                     products={i: 2})
            r_r = gillespy2.Reaction(name="recovery",
                                     rate=k_r,
                                     reactants={i: 1},
                                     products={r: 1})
            self.add_reaction([r_i, r_r])

            # Set the timespan for the simulation.
            self.timespan(t)
Esempio n. 4
0
    def __init__(self, parameter_values=None, volume=1.0):

        # Initialize the model.
        gillespy2.Model.__init__(self, name="simple1", volume=volume)

        # Parameters
        k1 = gillespy2.Parameter(name='k1', expression=0.03)
        self.add_parameter(k1)

        # Species
        r1 = gillespy2.Species(name='r1', initial_value=100)
        self.add_species(r1)
        r2 = gillespy2.Species(name='r2', initial_value=100)
        self.add_species(r2)

        # Reactions
        rxn1 = gillespy2.Reaction(name='r1d',
                                  reactants={r1: 2},
                                  products={},
                                  rate=k1)

        self.add_reaction(rxn1)

        rxn2 = gillespy2.Reaction(name='r2d',
                                  reactants={r2: 2},
                                  products={},
                                  propensity_function='k1/2 * r2*(r2-1)/vol')

        self.add_reaction(rxn2)
Esempio n. 5
0
    def __init__(self, parameter_values=None, init_v=1):
        #initialize Model
        gillespy2.Model.__init__(self, name="Simple_Hybrid_Model")

        #Species
        A = gillespy2.Species(name='A', initial_value=init_v)
        V = gillespy2.Species(name='V', initial_value=init_v)

        self.add_species([A, V])

        #parameters
        rate1 = gillespy2.Parameter(name='rate1', expression=20.0)
        rate2 = gillespy2.Parameter(name='rate2', expression=10.0)
        #             rate_rule1 = gillespy2.RateRule(V, "cos(t)")
        self.add_parameter([rate1, rate2])
        #             self.add_rate_rule(rate_rule1)

        #reactions
        r1 = gillespy2.Reaction(name="r1",
                                reactants={},
                                products={A: 1},
                                propensity_function="rate1 * V")

        r2 = gillespy2.Reaction(name="r2",
                                reactants={A: 1},
                                products={},
                                rate=rate2)

        self.add_reaction([r1, r2])
        self.timespan(numpy.linspace(0, 100, 101))
Esempio n. 6
0
    def test_compile_w_spaces(self):
        import gillespy2
        self.solvers = [
            gillespy2.ODECSolver, gillespy2.SSACSolver,
            gillespy2.TauLeapingCSolver, gillespy2.TauHybridCSolver
        ]

        # create a model
        model = gillespy2.Model(name="Michaelis_Menten")

        # parameters
        rate1 = gillespy2.Parameter(name='rate1', expression=0.0017)
        rate2 = gillespy2.Parameter(name='rate2', expression=0.5)
        rate3 = gillespy2.Parameter(name='rate3', expression=0.1)
        model.add_parameter([rate1, rate2, rate3])

        # Species
        A = gillespy2.Species(name='A', initial_value=301)
        B = gillespy2.Species(name='B', initial_value=120)
        C = gillespy2.Species(name='C', initial_value=0)
        D = gillespy2.Species(name='D', initial_value=0)
        model.add_species([A, B, C, D])

        # reactions
        r1 = gillespy2.Reaction(name="r1",
                                reactants={
                                    A: 1,
                                    B: 1
                                },
                                products={C: 1},
                                rate=rate1)

        r2 = gillespy2.Reaction(name="r2",
                                reactants={C: 1},
                                products={
                                    A: 1,
                                    B: 1
                                },
                                rate=rate2)

        r3 = gillespy2.Reaction(name="r3",
                                reactants={C: 1},
                                products={
                                    B: 1,
                                    D: 1
                                },
                                rate=rate3)
        model.add_reaction([r1, r2, r3])
        model.timespan(gillespy2.TimeSpan.linspace(t=100, num_points=101))

        # run the model
        for solver in self.solvers:
            with self.subTest(solver=solver.name):
                if platform.system() == "Windows":
                    with self.assertRaises(gillespy2.SimulationError):
                        model.run(solver=solver)
                else:
                    result = model.run(solver=solver)
                    self.assertTrue(gillespy2.__file__ == os.path.join(
                        self.prefix_base_dir, 'A SPACE/gillespy2/__init__.py'))
        def create_boundary_condition_test_model(parameter_values=None):
            model = gillespy2.Model(name="BoundaryConditionTestModel")
            s1 = gillespy2.Species(name="S1", boundary_condition=True, initial_value=0.001, mode='continuous')
            s2 = gillespy2.Species(name="S2", boundary_condition=False, initial_value=0.002, mode='continuous')
            s3 = gillespy2.Species(name="S3", boundary_condition=False, initial_value=0.001, mode='continuous')
            s4 = gillespy2.Species(name="S4", boundary_condition=True, initial_value=0.002, mode='continuous')
            model.add_species([s1, s2, s3, s4])

            k1 = gillespy2.Parameter(name="k1", expression="0.75")
            k2 = gillespy2.Parameter(name="k2", expression="0.25")
            model.add_parameter([k1, k2])

            reaction1 = gillespy2.Reaction(name="reaction1", propensity_function="vol*k1*S1*S2",
                                           reactants={s1: 1, s2: 1},
                                           products={s3: 1})
            reaction2 = gillespy2.Reaction(name="reaction2", propensity_function="vol*k2*S3",
                                           reactants={s3: 1},
                                           products={s1: 1, s2: 1})
            reaction3 = gillespy2.Reaction(name="reaction3", propensity_function="vol*k2*S3",
                                           reactants={s1: 1, s2: 2, s3: 1},
                                           products={s4: 1})
            model.add_reaction([reaction1, reaction2, reaction3])

            model.timespan(numpy.linspace(0, 20, 51))
            return model
Esempio n. 8
0
    def __init__(self, parameter_values=None):

        # Initialize the model.
        gillespy2.Model.__init__(self, name="simple1")

        # Parameters
        k1 = gillespy2.Parameter(name='k1', expression=parameter_values[0])
        k2 = gillespy2.Parameter(name='k2', expression=parameter_values[1])
        k3 = gillespy2.Parameter(name='k3', expression=parameter_values[2])
        self.add_parameter([k1, k2, k3])

        # Species
        S1 = gillespy2.Species(name='S1', initial_value=100)
        S2 = gillespy2.Species(name='S2', initial_value=0)
        self.add_species([S1, S2])

        # Reactions
        rxn1 = gillespy2.Reaction(name='S1 production',
                                  reactants={},
                                  products={S1: 1},
                                  rate=k1)

        rxn2 = gillespy2.Reaction(name='dimer formation',
                                  reactants={S1: 2},
                                  products={S2: 1},
                                  rate=k2)

        rxn3 = gillespy2.Reaction(name='dimer degradation',
                                  reactants={S2: 1},
                                  products={},
                                  rate=k3)

        self.add_reaction([rxn1, rxn2, rxn3])
        self.timespan(np.linspace(0, 100, 101))
 def test_add_rate_rule_dict(self):
     species2 = gillespy2.Species('test_species2',initial_value=2, mode ='continuous')
     species3 = gillespy2.Species('test_species3',initial_value=3, mode='continuous')
     rule2 = gillespy2.RateRule(species2, 'cos(t)')
     rule3 = gillespy2.RateRule(species3, 'sin(t)')
     rate_rule_dict = {'rule2' :rule2, 'rule3':rule3}
     self.model.add_species([species2,species3])
     with self.assertRaises(ParameterError):
         self.model.add_rate_rule(rate_rule_dict)
Esempio n. 10
0
 def __init__(self, parameter_values=None):
     gillespy2.Model.__init__(self, name='StochTest1')
     A = gillespy2.Species(name='A', initial_value=10)
     B = gillespy2.Species(name='B', initial_value=0)
     self.add_species([A, B])
     k = gillespy2.Parameter(name='k', expression=10)
     self.add_parameter([k])
     r = gillespy2.Reaction(name='r', reactants={A: 2}, products={B:1}, rate=k)
     self.add_reaction([r])
     self.timespan(np.linspace(0, 100, 101))
Esempio n. 11
0
 def create_stoch_test_1(parameter_values=None):
     model = gillespy2.Model(name='StochTest1')
     A = gillespy2.Species(name='A', initial_value=10)
     B = gillespy2.Species(name='B', initial_value=0)
     model.add_species([A, B])
     k = gillespy2.Parameter(name='k', expression=10)
     model.add_parameter([k])
     r = gillespy2.Reaction(name='r',
                            reactants={A: 2},
                            products={B: 1},
                            rate=k)
     model.add_reaction([r])
     model.timespan(np.linspace(0, 100, 101))
     return model
Esempio n. 12
0
 def create_truncated_state_model(parameter_values=None):
     model = gillespy2.Model(name="TruncatedStateModel")
     S1 = gillespy2.Species(name="S1", initial_value=0, mode="discrete")
     rate = gillespy2.Species(name="rate",
                              initial_value=0.9999,
                              mode="continuous")
     model.add_species([S1, rate])
     model.add_rate_rule(
         gillespy2.RateRule(variable="rate",
                            formula="-1/((t+0.9999)**2)"))
     model.add_reaction(
         # Because S1 is a "discrete" species, our reaction will be marked "stochastic."
         gillespy2.Reaction(products={S1: 1},
                            propensity_function="10.0*rate"))
     return model
Esempio n. 13
0
 def create_stoch_test_1(parameter_values=None):
     model = gillespy2.Model(name='StochTest1')
     A = gillespy2.Species(name='A', initial_value=10)
     B = gillespy2.Species(name='B', initial_value=0)
     model.add_species([A, B])
     k = gillespy2.Parameter(name='k', expression=10)
     model.add_parameter([k])
     r = gillespy2.Reaction(name='r',
                            reactants={A: 1},
                            products={B: 1},
                            propensity_function="k*A/vol"
                            )  # testing if 'vol' is a pre-set variable
     model.add_reaction([r])
     model.timespan(np.linspace(0, 100, 101))
     return model
Esempio n. 14
0
def create_protein_decay(parameter_values=None):
    # Instantiate Model
    model = gillespy2.Model(name="Protein Decay")

    # Define Variables (GillesPy2.Species)
    protein = gillespy2.Species(name='protein', initial_value=50)

    # Add Variables to Model
    model.add_species(protein)

    # Define Parameters
    decayrate = gillespy2.Parameter(name='decayrate', expression=0.05)

    # Add Parameters to Model
    model.add_parameter(decayrate)

    # Define Reactions
    reaction = gillespy2.Reaction(
        name="decay", rate='decayrate', reactants={'protein': 1}, products={}
    )

    # Add Reactions to Model
    model.add_reaction(reaction)

    # Define Timespan
    tspan = gillespy2.TimeSpan.linspace(t=100, num_points=101)

    # Set Model Timespan
    model.timespan(tspan)
    return model
Esempio n. 15
0
def __get_events(sbml_model, gillespy_model):
    for i in range(sbml_model.getNumEvents()):
        event = sbml_model.getEvent(i)
        gillespy_assignments = []
        
        trigger = event.getTrigger()
        delay = event.getDelay()
        if delay is not None:
            delay = libsbml.formulaToL3String(delay.getMath())
        expression=libsbml.formulaToL3String(trigger.getMath())
        expression = expression.replace('&&', ' and ').replace('||', ' or ')
        initial_value = trigger.getInitialValue()
        persistent = trigger.getPersistent()
        use_values_from_trigger_time = event.getUseValuesFromTriggerTime()
        gillespy_trigger = gillespy2.EventTrigger(expression=expression, 
            initial_value=initial_value, persistent=persistent)
        assignments = event.getListOfEventAssignments()
        for a in assignments:
            # Convert Non-Constant Parameter to Species
            if a.getVariable() in gillespy_model.listOfParameters:
                gillespy_species = gillespy2.Species(name=a.getVariable(),
                                                        initial_value=gillespy_model.listOfParameters[a.getVariable()].expression,
                                                        mode='continuous', allow_negative_populations=True)
                gillespy_model.delete_parameter(a.getVariable())
                gillespy_model.add_species([gillespy_species])

            gillespy_assignment = gillespy2.EventAssignment(a.getVariable(),
                __get_math(a.getMath()))
            gillespy_assignments.append(gillespy_assignment)
        gillespy_event = gillespy2.Event(
            name=event.getId(), trigger=gillespy_trigger,
            assignments=gillespy_assignments, delay=delay,
            use_values_from_trigger_time=use_values_from_trigger_time)
        gillespy_model.add_event(gillespy_event)
Esempio n. 16
0
def cbsa2gillespy(cbsa_model):
    import gillespy2 as glp
    
    gilles = glp.Model(name="Model")

    k = [glp.Parameter(name='k'+str(i), expression=cbsa_model.exp_k[i]) for i in range(1,cbsa_model.exp_n_reactions)]
    gilles.add_parameter(k)
    mols = [glp.Species(name='M'+str(i), initial_value=int(cbsa_model.exp_x0[i])) for i in range(1,cbsa_model.exp_n_molecules)]
    gilles.add_species(mols)
    
    reactions = []
    
    for i in range(1,cbsa_model.exp_n_reactions):
        reactants = list(np.where(cbsa_model.expS[:,i] < 0)[0])
        reactants_sto = list(cbsa_model.expS[:,i][reactants]*-1)
        modifiers = list(np.where(cbsa_model.expR[:,i] > 0)[0])
        modifiers_sto = list(cbsa_model.expR[:,i][modifiers])
        products = list(np.where(cbsa_model.expS[:,i] > 0)[0])
        products_sto = list(cbsa_model.expS[:,i][products])
        
        reactants += modifiers
        reactants_sto += modifiers_sto
        products += modifiers
        products_sto += modifiers_sto
        
        reactions.append(glp.Reaction(name="R"+str(i),
                                      rate=k[i-1],
                                      reactants={mols[reactants[j]-1]:reactants_sto[j] for j in range(len(reactants))},
                                      products={mols[products[j]-1]:products_sto[j] for j in range(len(products))}
                                     )
                        )
    
    gilles.add_reaction(reactions)
    
    return gilles
Esempio n. 17
0
    def __init__(self, parameter_values=None):
        # First call the gillespy2.Model initializer.
        super().__init__(self)

        # Define a parameter that represents the rate of decay.
        decayrate = gillespy2.Parameter(name='decayrate', expression=0.05)
        self.add_parameter([decayrate])

        # Define a molecular species representing the protein; "initial_value"
        # sets the number of molecules initial present of simulation.
        protein = gillespy2.Species(name='protein', initial_value=50)
        self.add_species([protein])

        # Define the reaction representing the decay process.  In GillesPy2,
        # the list of reactants and products for a Reaction object are each a
        # Python dictionary in which the dictionary keys are Species objects
        # and the values are stoichiometries of the species in the reaction.
        # (In this example, we have only one reactant, and no products.) The
        # "rate" for the Reaction object is a Parameter representing the
        # propensity of this reaction firing.)
        reaction = gillespy2.Reaction(name="decay",
                                      rate=decayrate,
                                      reactants={protein: 1},
                                      products={})
        self.add_reaction([reaction])

        # Set the timespan for the simulation.
        self.timespan(numpy.linspace(0, 100, 101))
Esempio n. 18
0
 def create_event_test_model(parameter_values=None):
     model = gillespy2.Model(name='Event Test Model')
     model.add_species([gillespy2.Species(name='S', initial_value=0)])
     model.add_parameter(
         gillespy2.Parameter(name='event_tracker', expression=99))
     model.add_parameter(
         gillespy2.Parameter(name='event_tracker2', expression=0))
     model.add_reaction(
         gillespy2.Reaction(
             name='r1',
             products={'S': 1},
             rate=model.listOfParameters['event_tracker2']))
     eventTrig1 = gillespy2.EventTrigger(expression='t>=2')
     event1 = gillespy2.Event(name='event1', trigger=eventTrig1)
     event1.add_assignment(
         gillespy2.EventAssignment(variable='event_tracker',
                                   expression='t'))
     eventTrig2 = gillespy2.EventTrigger(
         expression='t >= event_tracker + 2')
     event2 = gillespy2.Event(name='event2', trigger=eventTrig2)
     event2.add_assignment(
         gillespy2.EventAssignment(variable='event_tracker2',
                                   expression='t'))
     model.add_event([event1, event2])
     return model
Esempio n. 19
0
 def test_add_rate_rule_dict(self):
     model = create_decay()
     species2 = gillespy2.Species('test_species2',
                                  initial_value=2,
                                  mode='continuous')
     species3 = gillespy2.Species('test_species3',
                                  initial_value=3,
                                  mode='continuous')
     rule2 = gillespy2.RateRule('rule2', species2, 'cos(t)')
     rule3 = gillespy2.RateRule(name='rule3',
                                variable=species3,
                                formula='sin(t)')
     rate_rule_dict = {'rule2': rule2, 'rule3': rule3}
     model.add_species([species2, species3])
     with self.assertRaises(ModelError):
         model.add_rate_rule(rate_rule_dict)
Esempio n. 20
0
 def test_null_timeout(self):
     model = create_decay()
     species = gillespy2.Species('test_species', initial_value=1)
     model.add_species([species])
     solver = TauHybridSolver(model=model)
     results = solver.run()
     self.assertTrue(len(results) > 0)
Esempio n. 21
0
    def test_model_add__multiple_components__in_order(self):
        import gillespy2

        s1 = gillespy2.Species(name="s1", initial_value=29)
        k1 = gillespy2.Parameter(name="k1", expression=29)
        r1 = gillespy2.Reaction(name="r1", reactants={"s1": 1}, rate="k1")
        rr1 = gillespy2.RateRule(name="rr1", variable="k1", formula="29")
        ar1 = gillespy2.AssignmentRule(name="ar1", variable="s1", formula="29")
        ea = gillespy2.EventAssignment(name="ea",
                                       variable="k1",
                                       expression="29")
        et = gillespy2.EventTrigger(expression="t > 29")
        e1 = gillespy2.Event(name="e1", trigger=et, assignments=[ea])
        divide = gillespy2.FunctionDefinition(name="divide",
                                              function="x / y",
                                              args=["x", "y"])
        tspan = gillespy2.TimeSpan(range(100))

        model = gillespy2.Model(name="Test Model")
        model.add([s1, k1, r1, rr1, ar1, e1, divide, tspan])

        self.assertIn("ar1", model.listOfAssignmentRules)
        self.assertIn("e1", model.listOfEvents)
        self.assertIn("divide", model.listOfFunctionDefinitions)
        self.assertIn("k1", model.listOfParameters)
        self.assertIn("rr1", model.listOfRateRules)
        self.assertIn("r1", model.listOfReactions)
        self.assertIn("s1", model.listOfSpecies)
        self.assertEqual(tspan, model.tspan)
 def test_add_rate_rule(self):
     model = Example()
     species = gillespy2.Species('test_species', initial_value=1)
     rule = gillespy2.RateRule(name='rr1',formula='test_species+1',variable='test_species')
     model.add_species([species])
     model.add_rate_rule([rule])
     results = model.run()
     self.assertEqual(results[0].solver_name, 'TauHybridSolver')
Esempio n. 23
0
 def test_add_rate_rule(self):
     species = gillespy2.Species('test_species',
                                 initial_value=1,
                                 mode='continuous')
     rule = gillespy2.RateRule(species, 'cos(t)')
     self.model.add_species([species])
     self.model.add_rate_rule([rule])
     self.model.run(solver=BasicTauHybridSolver)
Esempio n. 24
0
 def test_add_bad_expression_rate_rule_dict(self):
     model = create_decay()
     species2 = gillespy2.Species('test_species2',
                                  initial_value=2,
                                  mode='continuous')
     rule = gillespy2.RateRule(variable=species2, formula='')
     with self.assertRaises(ModelError):
         model.add_rate_rule(rule)
Esempio n. 25
0
 def test_math_name_overlap(self):
     gamma = gillespy2.Species('gamma',initial_value=2, mode='continuous')
     self.model.add_species([gamma])
     k2 = gillespy2.Parameter(name='k2', expression=1)
     self.model.add_parameter([k2])
     gamma_react = gillespy2.Reaction(name='gamma_react', reactants={'gamma':1}, products={}, rate=k2)
     self.model.add_reaction([gamma_react])
     self.model.run(solver=BasicTauHybridSolver)
        def create_rate_rule_test_model(parameter_values=None):
            model = gillespy2.Model(name="RateRuleTestModel")
            s1 = gillespy2.Species(name="S1", initial_value=0.015, mode='continuous')
            s2 = gillespy2.Species(name="S2", initial_value=0.0, mode='continuous')
            s3 = gillespy2.Species(name="S3", initial_value=1.0, mode='continuous')
            model.add_species([s1, s2, s3])

            k1 = gillespy2.Parameter(name="k1", expression="1.0")
            model.add_parameter([k1])

            rule1 = gillespy2.RateRule(name="rule1", variable="S1", formula="-k1*S1")
            rule2 = gillespy2.RateRule(name="rule2", variable="S2", formula="k1*S1")
            rule3 = gillespy2.RateRule(name="rule3", variable="S3", formula="0.015-(S1+S2)")
            model.add_rate_rule([rule1, rule2, rule3])

            model.timespan(numpy.linspace(0, 20, 51))
            return model
Esempio n. 27
0
    def convert_species(self):
        '''
            Method to convert species from non-gillespy2 Random DNA Chemistry to the gillespy2 Random DNA Chemistry
        '''
        gillespy2_species = []

        if self.previous_gillespy2_result == None:
            for u, ucon in self.randomDNAChem.concentration_lookup[
                    'conU'].items():
                gillespy2_u = gillespy2.Species(name=u, initial_value=ucon[0])
                gillespy2_species.append(gillespy2_u)

            for l, lcon in self.randomDNAChem.concentration_lookup[
                    'conL'].items():
                gillespy2_l = gillespy2.Species(name=l, initial_value=lcon[0])
                gillespy2_species.append(gillespy2_l)

            for f, fcon in self.randomDNAChem.concentration_lookup[
                    'conF'].items():
                gillespy2_f = gillespy2.Species(name=f, initial_value=fcon[0])
                gillespy2_species.append(gillespy2_f)

            for p, pcon in self.randomDNAChem.concentration_lookup[
                    'conP'].items():
                gillespy2_p = gillespy2.Species(name=p, initial_value=pcon[0])
                gillespy2_species.append(gillespy2_p)
        else:
            for u, ucon in self.randomDNAChem.concentration_lookup[
                    'conU'].items():
                gillespy2_u = gillespy2.Species(
                    name=u,
                    initial_value=int(self.previous_gillespy2_result[u][-1]))
                gillespy2_species.append(gillespy2_u)

            for l, lcon in self.randomDNAChem.concentration_lookup[
                    'conL'].items():
                gillespy2_l = gillespy2.Species(
                    name=l,
                    initial_value=int(self.previous_gillespy2_result[l][-1]))
                gillespy2_species.append(gillespy2_l)

            for f, fcon in self.randomDNAChem.concentration_lookup[
                    'conF'].items():
                gillespy2_f = gillespy2.Species(
                    name=f,
                    initial_value=int(self.previous_gillespy2_result[f][-1]))
                gillespy2_species.append(gillespy2_f)

            for p, pcon in self.randomDNAChem.concentration_lookup[
                    'conP'].items():
                gillespy2_p = gillespy2.Species(
                    name=p,
                    initial_value=int(self.previous_gillespy2_result[p][-1]))
                gillespy2_species.append(gillespy2_p)

        self.add_species(gillespy2_species)
Esempio n. 28
0
    def __init__(self, endtime, timestep):
        """
        Initialize the model.

        Parameters
        ----------
        endtime : endtime of simulations
        timestep : time-step of simulations
        """
        super().__init__(
            endtime=endtime,
            timestep=timestep,
            model_name="SIR",
        )

        beta = gillespy.Parameter(name='beta', expression=self.params['beta'])
        gamma = gillespy.Parameter(name='gamma',
                                   expression=self.params['gamma'])
        self.add_parameter([beta, gamma])

        # Species
        S = gillespy.Species(name='S', initial_value=100)
        I = gillespy.Species(name='I', initial_value=100)
        R = gillespy.Species(name='R', initial_value=100)
        self.add_species([S, I, R])

        # Reactions
        infection = gillespy.Reaction(
            name='infection',
            reactants={
                S: 1,
                I: 1
            },
            products={I: 2},
            propensity_function='beta*S*I/(S+I+R)',
        )
        recover = gillespy.Reaction(
            name='recover',
            reactants={I: 1},
            products={R: 1},
            rate=gamma,
        )
        self.add_reaction([infection, recover])
        nb_of_steps = int(math.ceil((endtime / timestep))) + 1
        self.timespan(np.linspace(0, endtime, nb_of_steps))
Esempio n. 29
0
 def test_ensure_hybrid_continuous_species(self):
     model = create_decay()
     species1 = gillespy2.Species('test_species1',
                                  initial_value=1,
                                  mode='continuous')
     model.add_species(species1)
     results = model.run()
     valid_solvers = ('TauHybridSolver', 'TauHybridCSolver')
     self.assertIn(results[0].solver_name, valid_solvers)
Esempio n. 30
0
 def test_ensure_continuous_dynamic_timeout_warning(self):
     model = create_decay()
     species1 = gillespy2.Species('test_species1',
                                  initial_value=1,
                                  mode='dynamic')
     model.add_species(species1)
     with self.assertLogs('GillesPy2', level='WARN'):
         solver = TauHybridSolver(model=model)
         results = model.run(solver=solver, timeout=1)