Esempio n. 1
0
    def load_hdu(self,
                 hdu,
                 fobj=None,
                 naxispath=None,
                 inherit_primary_header=None):

        if self.io is None:
            # need image loader for the fromHDU() call below
            raise ImageError("No IO loader defined")

        self.clear_metadata()

        # collect HDU header
        ahdr = self.get_header()
        self.io.fromHDU(hdu, ahdr)

        # Set PRIMARY header
        if inherit_primary_header is None:
            inherit_primary_header = self.inherit_primary_header
        else:  # This ensures get_header() is consistent
            self.inherit_primary_header = inherit_primary_header

        save_primary_header = (self.save_primary_header
                               or inherit_primary_header)
        if save_primary_header and (fobj is not None):
            if self._primary_hdr is None:
                self._primary_hdr = AstroHeader()

            self.io.fromHDU(fobj[0], self._primary_hdr)

        self.setup_data(hdu.data, naxispath=naxispath)

        # Try to make a wcs object on the header
        if hasattr(self, 'wcs') and self.wcs is not None:
            self.wcs.load_header(hdu.header, fobj=fobj)
Esempio n. 2
0
    def imresize(self, data, new_wd, new_ht, method='bilinear'):
        """Scale an image in numpy array _data_ to the specified width and
        height.  A smooth scaling is preferred.
        """
        old_ht, old_wd = data.shape[:2]
        start_time = time.time()

        if have_pilutil:
            means = 'PIL'
            zoom_x = float(new_wd) / float(old_wd)
            zoom_y = float(new_ht) / float(old_ht)
            if (old_wd >= new_wd) or (old_ht >= new_ht):
                # data size is bigger, skip pixels
                zoom = max(zoom_x, zoom_y)
            else:
                zoom = min(zoom_x, zoom_y)

            newdata = imresize(data, zoom, interp=method)

        else:
            from ginga.BaseImage import ImageError
            raise ImageError("No way to scale image smoothly")

        end_time = time.time()
        self.logger.debug("scaling (%s) time %.4f sec" % (
            means, end_time - start_time))

        return newdata
Esempio n. 3
0
    def save_file_as(self, filepath, data_np, header):
        # TODO: save keyword metadata!
        if not have_pil:
            raise ImageError("Install 'pillow' to be able " "to save images")

        img = PILimage.fromarray(data_np)
        img.save(filepath)
Esempio n. 4
0
    def save_file_as(self, filepath, data_np, header):
        if not have_pil:
            from ginga.BaseImage import ImageError
            raise ImageError("Install PIL to be able to save images")

        # TODO: save keyword metadata!
        imsave(filepath, data_np)
Esempio n. 5
0
    def _imload(self, filepath, kwds):
        if not have_opencv:
            raise ImageError("Install 'opencv' to be able " "to load images")

        # First choice is OpenCv, because it supports high-bit depth
        # multiband images
        data_np = cv2.imread(filepath,
                             cv2.IMREAD_ANYDEPTH + cv2.IMREAD_ANYCOLOR)
        # funky indexing because opencv returns BGR images,
        # whereas PIL and others return RGB
        if len(data_np.shape) >= 3 and data_np.shape[2] >= 3:
            data_np = data_np[..., ::-1]

        # OpenCv doesn't "do" image metadata, so we punt to piexif
        # library (if installed)
        self.piexif_getexif(filepath, kwds)

        # OpenCv added a feature to do auto-orientation when loading
        # (see https://github.com/opencv/opencv/issues/4344)
        # So reset these values to prevent auto-orientation from
        # happening later
        kwds['Orientation'] = 1
        kwds['Image Orientation'] = 1

        # convert to working color profile, if can
        if self.clr_mgr.can_profile():
            data_np = self.clr_mgr.profile_to_working_numpy(data_np, kwds)

        return data_np
Esempio n. 6
0
    def imresize(self, data, new_wd, new_ht, method='bilinear'):
        """Scale an image in numpy array _data_ to the specified width and
        height.  A smooth scaling is preferred.
        """
        # TODO: take into account the method parameter
        old_ht, old_wd = data.shape[:2]
        start_time = time.time()

        if have_opencv:
            # First choice is OpenCv, because it supports high-bit depth
            # multiband images
            means = 'opencv'
            newdata = cv2.resize(data,
                                 dsize=(new_wd, new_ht),
                                 interpolation=cv2.INTER_CUBIC)

        elif have_pil:
            means = 'PIL'
            img = PILimage.fromarray(data)
            img = img.resize((new_wd, new_ht), PILimage.BICUBIC)
            newdata = np.array(img)

        else:
            raise ImageError("Install 'pillow' or 'opencv' to be able "
                             "to resize RGB images")

        end_time = time.time()
        self.logger.debug("scaling (%s) time %.4f sec" %
                          (means, end_time - start_time))

        return newdata
Esempio n. 7
0
    def _imload(self, filepath, metadata):
        if not have_pil:
            raise ImageError("Install 'pillow' to be able "
                             "to load RGB images")

        image = PILimage.open(filepath)

        kwds = metadata.get('header', None)
        if kwds is None:
            kwds = Header()
            metadata['header'] = kwds

        try:
            self._get_header(image, kwds)
        except Exception as e:
            self.logger.warning("Failed to get image metadata: {!r}".format(e))

        # convert to working color profile, if can
        if self.clr_mgr.can_profile():
            image = self.clr_mgr.profile_to_working_pil(image, kwds)

        # convert from PIL to numpy
        data_np = np.array(image)
        metadata['order'] = image.mode
        return data_np
Esempio n. 8
0
    def save_file_as(self, filepath, data_np, header):
        # TODO: save keyword metadata!
        if not have_opencv:
            raise ImageError("Install 'opencv' to be able " "to save images")

        # First choice is OpenCv, because it supports high-bit depth
        # multiband images
        cv2.imwrite(filepath, data_np)
Esempio n. 9
0
    def load_file(self, filepath, numhdu=None, naxispath=None):
        self.logger.debug("Loading file '%s' ..." % (filepath))
        self.set(path=filepath)
        fits_f = pyfits.open(filepath, 'readonly')

        # this seems to be necessary now for some fits files...
        try:
            fits_f.verify('fix')
        except Exception, e:
            raise ImageError("Error loading fits file '%s': %s" %
                             (fitspath, str(e)))
Esempio n. 10
0
    def load_hdu(self,
                 hdu,
                 fobj=None,
                 naxispath=None,
                 inherit_primary_header=None):

        if self.io is None:
            # need image loader for the fromHDU() call below
            raise ImageError("No IO loader defined")

        self.clear_metadata()

        # collect HDU header
        ahdr = self.get_header()
        self.io.fromHDU(hdu, ahdr)

        # Set PRIMARY header
        if inherit_primary_header is None:
            inherit_primary_header = self.inherit_primary_header

        if inherit_primary_header and (fobj is not None):
            if self._primary_hdr is None:
                self._primary_hdr = AstroHeader()

            self.io.fromHDU(fobj[0], self._primary_hdr)

        data = hdu.data
        if data is None:
            data = numpy.zeros((0, 0))
        elif not isinstance(data, numpy.ndarray):
            data = numpy.zeros((0, 0))
        elif 0 in data.shape:
            data = numpy.zeros((0, 0))
        elif len(data.shape) < 2:
            # Expand 1D arrays into 1xN array
            data = data.reshape((1, data.shape[0]))

        # this is a handle to the full data array
        self._md_data = data
        # this will get reset in set_naxispath() if array is
        # multidimensional
        self._data = data

        if naxispath is None:
            naxispath = []

        # Set naxispath to drill down to 2D data slice
        if len(naxispath) == 0:
            naxispath = ([0] * (len(data.shape) - 2))

        self.set_naxispath(naxispath)

        # Try to make a wcs object on the header
        self.wcs.load_header(hdu.header, fobj=fobj)
Esempio n. 11
0
    def _imload(self, filepath, metadata):
        if not have_opencv:
            raise ImageError("Install 'opencv' to be able "
                             "to load images")

        # First choice is OpenCv, because it supports high-bit depth
        # multiband images
        data_np = cv2.imread(filepath,
                             cv2.IMREAD_ANYDEPTH + cv2.IMREAD_ANYCOLOR)

        return self._process_opencv_array(data_np, metadata, filepath)
Esempio n. 12
0
    def _imresize(self, data, new_wd, new_ht, method='bilinear'):
        # TODO: take into account the method parameter
        if not have_opencv:
            raise ImageError("Install 'opencv' to be able "
                             "to resize RGB images")

        # First choice is OpenCv, because it supports high-bit depth
        # multiband images
        newdata = cv2.resize(data, dsize=(new_wd, new_ht),
                             interpolation=cv2.INTER_CUBIC)

        return newdata
Esempio n. 13
0
    def _imresize(self, data, new_wd, new_ht, method='bilinear'):
        # TODO: take into account the method parameter

        if not have_pil:
            raise ImageError("Install 'pillow' to be able "
                             "to resize RGB images")

        img = PILimage.fromarray(data)
        img = img.resize((new_wd, new_ht), PILimage.BICUBIC)
        newdata = np.array(img)

        return newdata
Esempio n. 14
0
    def save_file_as(self, filepath, data_np, header):
        # TODO: save keyword metadata!
        if not have_pil:
            raise ImageError("Install 'pillow' to be able "
                             "to save images")

        img = PILimage.fromarray(data_np)

        # pillow is not happy saving images to JPG with an alpha channel
        img = img.convert('RGB')

        img.save(filepath)
Esempio n. 15
0
    def save_file_as(self, filepath, data_np, header):
        # TODO: save keyword metadata!
        if have_opencv:
            # First choice is OpenCv, because it supports high-bit depth
            # multiband images
            cv2.imwrite(filepath, data_np)

        elif have_pil:
            img = PILimage.fromarray(data_np)
            img.save(filepath)

        else:
            raise ImageError("Install 'pillow' or 'opencv' to be able "
                             "to save images")
Esempio n. 16
0
    def _imload(self, filepath, kwds):
        """Load an image file, guessing the format, and return a numpy
        array containing an RGB image.  If EXIF keywords can be read
        they are returned in the dict _kwds_.
        """
        start_time = time.time()
        typ, enc = mimetypes.guess_type(filepath)
        if not typ:
            typ = 'image/jpeg'
        typ, subtyp = typ.split('/')
        self.logger.debug("MIME type is %s/%s" % (typ, subtyp))

        if (typ == 'image') and (subtyp in ('x-portable-pixmap',
                                            'x-portable-greymap')):
            # Special opener for PPM files, preserves high bit depth
            means = 'built-in'
            data_np = open_ppm(filepath)

        elif have_pil:
            means = 'PIL'
            image = PILimage.open(filepath)

            try:
                if hasattr(image, '_getexif'):
                    info = image._getexif()
                    if info is not None:
                        for tag, value in info.items():
                            kwd = TAGS.get(tag, tag)
                            kwds[kwd] = value

            except Exception as e:
                self.logger.warning("Failed to get image metadata: %s" % (str(e)))

            # convert to working color profile, if can
            if self.clr_mgr.can_profile():
                image = self.clr_mgr.profile_to_working_pil(image, kwds)

            # convert from PIL to numpy
            data_np = np.array(image)

        else:
            from ginga.BaseImage import ImageError
            raise ImageError("No way to load image format '%s/%s'" % (
                typ, subtyp))

        end_time = time.time()
        self.logger.debug("loading (%s) time %.4f sec" % (
            means, end_time - start_time))
        return data_np
Esempio n. 17
0
    def set_naxispath(self, naxispath):
        """Choose a slice out of multidimensional data.
        """
        revnaxis = list(naxispath)
        revnaxis.reverse()

        # construct slice view and extract it
        view = revnaxis + [slice(None), slice(None)]
        data = self.get_mddata()[view]

        if len(data.shape) != 2:
            raise ImageError(
                "naxispath does not lead to a 2D slice: {}".format(naxispath))

        self.naxispath = naxispath
        self.revnaxis = revnaxis

        self.set_data(data)
Esempio n. 18
0
    def _imload(self, filepath, kwds):
        if not have_pil:
            raise ImageError("Install 'pillow' to be able "
                             "to load RGB images")

        image = PILimage.open(filepath)

        kwds = {}
        try:
            self._get_header(image, kwds)
        except Exception as e:
            self.logger.warning("Failed to get image metadata: %s" % (str(e)))

        # convert to working color profile, if can
        if self.clr_mgr.can_profile():
            image = self.clr_mgr.profile_to_working_pil(image, kwds)

        # convert from PIL to numpy
        data_np = np.array(image)
        return data_np
Esempio n. 19
0
    def set_naxispath(self, naxispath):
        """Choose a slice out of multidimensional data.
        """
        revnaxis = list(naxispath)
        revnaxis.reverse()

        # construct slice view and extract it
        ndim = min(self.ndim, 2)
        view = tuple(revnaxis + [slice(None)] * ndim)
        data = self.get_mddata()[view]

        if len(data.shape) not in (1, 2):
            raise ImageError(
                "naxispath does not lead to a 1D or 2D slice: {}".format(
                    naxispath))

        self.naxispath = naxispath
        self.revnaxis = revnaxis

        self.set_data(data)
Esempio n. 20
0
    def open_file(self, filespec, **kwargs):

        info = iohelper.get_fileinfo(filespec)
        if not info.ondisk:
            raise ImageError("File does not appear to be on disk: %s" %
                             (info.url))

        self.fileinfo = info
        filepath = info.filepath

        self._path = filepath
        self.rgb_f = PILimage.open(filepath)

        idx = 0
        extver_db = {}
        self.hdu_info = []
        self.hdu_db = {}
        numframes = getattr(self.rgb_f, 'n_frames', 1)
        self.logger.info("number of frames: {}".format(numframes))

        for idx in range(numframes):
            name = "frame{}".format(idx)
            extver = 0
            # prepare a record of pertinent info about the HDU for
            # lookups by numerical index or (NAME, EXTVER)
            d = Bunch.Bunch(index=idx,
                            name=name,
                            extver=extver,
                            dtype='uint8',
                            htype='N/A')
            self.hdu_info.append(d)
            # different ways of accessing this HDU:
            # by numerical index
            self.hdu_db[idx] = d
            # by (hduname, extver)
            key = (name, extver)
            if key not in self.hdu_db:
                self.hdu_db[key] = d

        self.extver_db = extver_db
        return self
Esempio n. 21
0
    def _imresize(self, data, new_wd, new_ht, method='bilinear'):
        """Scale an image in numpy array _data_ to the specified width and
        height.  A smooth scaling is preferred.
        """
        old_ht, old_wd = data.shape[:2]
        start_time = time.time()

        if have_qtimage:
            # QImage method is slightly faster and gives a smoother looking
            # result than PIL
            means = 'QImage'
            qimage = numpy2qimage(data)
            qimage = qimage.scaled(
                new_wd, new_ht, transformMode=QtCore.Qt.SmoothTransformation)
            newdata = qimage2numpy(qimage)

        elif have_pilutil:
            means = 'PIL'
            zoom_x = float(new_wd) / float(old_wd)
            zoom_y = float(new_ht) / float(old_ht)
            if (old_wd >= new_wd) or (old_ht >= new_ht):
                # data size is bigger, skip pixels
                zoom = max(zoom_x, zoom_y)
            else:
                zoom = min(zoom_x, zoom_y)

            newdata = pilutil.imresize(data, zoom, interp=method)

        else:
            raise ImageError("No way to scale image smoothly")

        end_time = time.time()
        self.logger.debug("scaling (%s) time %.4f sec" %
                          (means, end_time - start_time))

        return newdata
Esempio n. 22
0
                except Exception, e:
                    self.logger.error(
                        "Error converting from embedded color profile: %s" %
                        (str(e)))
                    self.logger.warn("Leaving image unprofiled.")

            data_np = numpy.array(image)

        elif have_qtimage:
            means = 'QImage'
            qimage = QImage()
            qimage.load(filepath)
            data_np = qimage2numpy(qimage)

        else:
            raise ImageError("No way to load image format '%s/%s'" %
                             (typ, subtyp))

        end_time = time.time()
        self.logger.debug("loading (%s) time %.4f sec" %
                          (means, end_time - start_time))
        return data_np

    def imload(self, filepath, kwds):
        return self._imload(filepath, kwds)

    def _imresize(self, data, new_wd, new_ht, method='bilinear'):
        """Scale an image in numpy array _data_ to the specified width and
        height.  A smooth scaling is preferred.
        """
        old_ht, old_wd = data.shape[:2]
        start_time = time.time()
Esempio n. 23
0
    def _imload(self, filepath, kwds):
        """Load an image file, guessing the format, and return a numpy
        array containing an RGB image.  If EXIF keywords can be read
        they are returned in the dict _kwds_.
        """
        start_time = time.time()
        typ, enc = mimetypes.guess_type(filepath)
        if not typ:
            typ = 'image/jpeg'
        typ, subtyp = typ.split('/')
        self.logger.debug("MIME type is %s/%s" % (typ, subtyp))

        data_loaded = False
        if have_opencv and subtyp not in ['gif']:
            # First choice is OpenCv, because it supports high-bit depth
            # multiband images
            means = 'opencv'
            data_np = cv2.imread(filepath,
                                 cv2.IMREAD_ANYDEPTH + cv2.IMREAD_ANYCOLOR)
            if data_np is not None:
                data_loaded = True
                # funky indexing because opencv returns BGR images,
                # whereas PIL and others return RGB
                if len(data_np.shape) >= 3 and data_np.shape[2] >= 3:
                    data_np = data_np[..., ::-1]

                # OpenCv doesn't "do" image metadata, so we punt to piexif
                # library (if installed)
                self.piexif_getexif(filepath, kwds)

                # OpenCv added a feature to do auto-orientation when loading
                # (see https://github.com/opencv/opencv/issues/4344)
                # So reset these values to prevent auto-orientation from
                # happening later
                kwds['Orientation'] = 1
                kwds['Image Orientation'] = 1

                # convert to working color profile, if can
                if self.clr_mgr.can_profile():
                    data_np = self.clr_mgr.profile_to_working_numpy(
                        data_np, kwds)

        if not data_loaded and have_pil:
            means = 'PIL'
            image = PILimage.open(filepath)

            try:
                if hasattr(image, '_getexif'):
                    info = image._getexif()
                    if info is not None:
                        for tag, value in info.items():
                            kwd = TAGS.get(tag, tag)
                            kwds[kwd] = value

                elif have_exif:
                    self.piexif_getexif(image.info["exif"], kwds)

                else:
                    self.logger.warning(
                        "Please install 'piexif' module to get image metadata")

            except Exception as e:
                self.logger.warning("Failed to get image metadata: %s" %
                                    (str(e)))

            # convert to working color profile, if can
            if self.clr_mgr.can_profile():
                image = self.clr_mgr.profile_to_working_pil(image, kwds)

            # convert from PIL to numpy
            data_np = np.array(image)
            if data_np is not None:
                data_loaded = True

        if (not data_loaded and (typ == 'image')
                and (subtyp in ('x-portable-pixmap', 'x-portable-greymap'))):
            # Special opener for PPM files, preserves high bit depth
            means = 'built-in'
            data_np = open_ppm(filepath)
            if data_np is not None:
                data_loaded = True

        if not data_loaded:
            raise ImageError("No way to load image format '%s/%s'" %
                             (typ, subtyp))

        end_time = time.time()
        self.logger.debug("loading (%s) time %.4f sec" %
                          (means, end_time - start_time))
        return data_np
Esempio n. 24
0
    def load_file(self, filespec, **kwargs):

        if self.io is None:
            raise ImageError("No IO loader defined")

        self.io.load_file(filespec, dstobj=self, **kwargs)
Esempio n. 25
0
class AstroImage(BaseImage):
    """
    Abstraction of an astronomical data (image).
    
    NOTE: this module is NOT thread-safe!
    """
    def __init__(self,
                 data_np=None,
                 metadata=None,
                 wcsclass=None,
                 logger=None):
        if not wcsclass:
            wcsclass = wcs.WCS
        self.wcs = wcsclass()

        BaseImage.__init__(self,
                           data_np=data_np,
                           metadata=metadata,
                           logger=logger)

        self.iqcalc = iqcalc.IQCalc(logger=logger)

    def load_hdu(self, hdu, fobj=None, naxispath=None):
        data = hdu.data
        if len(data.shape) < 2:
            # Expand 1D arrays into 1xN array
            data = data.reshape((1, data.shape[0]))
        else:
            if not naxispath:
                naxispath = ([0] * (len(data.shape) - 2))

            for idx in naxispath:
                data = data[idx]

        self.set_data(data)

        # Load in FITS header
        self.update_keywords(hdu.header)
        # Preserve the ordering of the FITS keywords in the FITS file
        keyorder = [key for key, val in hdu.header.items()]
        self.set(keyorder=keyorder)

        # Try to make a wcs object on the header
        self.wcs.load_header(hdu.header, fobj=fobj)

    def load_file(self, filepath, numhdu=None, naxispath=None):
        self.logger.debug("Loading file '%s' ..." % (filepath))
        self.set(path=filepath)
        fits_f = pyfits.open(filepath, 'readonly')

        # this seems to be necessary now for some fits files...
        try:
            fits_f.verify('fix')
        except Exception, e:
            raise ImageError("Error loading fits file '%s': %s" %
                             (fitspath, str(e)))

        if numhdu == None:
            found_valid_hdu = False
            for i in range(len(fits_f)):
                hdu = fits_f[i]
                if hdu.data == None:
                    # compressed FITS file or non-pixel data hdu?
                    continue
                if not isinstance(hdu.data, numpy.ndarray):
                    # We need to open a numpy array
                    continue
                #print "data type is %s" % hdu.data.dtype.kind
                # Looks good, let's try it
                found_valid_hdu = True
                break

            if not found_valid_hdu:
                raise ImageError(
                    "No data HDU found that Ginga can open in '%s'" %
                    (filepath))
        else:
            hdu = fits_f[numhdu]

        self.load_hdu(hdu, fobj=fits_f, naxispath=naxispath)

        # Set the name to the filename (minus extension) if no name
        # currently exists for this image
        name = self.get('name', None)
        if name == None:
            dirpath, filename = os.path.split(filepath)
            name, ext = os.path.splitext(filename)
            self.set(name=name)

        fits_f.close()
Esempio n. 26
0
 def get_data_xy(self, x, y):
     data = self.get_data()
     assert (x >= 0) and (y >= 0), \
            ImageError("Indexes out of range: (x=%d, y=%d)" % (
         x, y))
     return data[y, x]
Esempio n. 27
0
    def save_file_as(self, filepath):
        if not have_pil:
            raise ImageError("Install PIL to be able to save images")

        data = self.get_data()
        imsave(filepath, data)