Esempio n. 1
0
def plotXPropTempDensity(fileh5, time=0, Z=4, Y=6):

    markers = ['v-c', '^-y', '<-r', '>-m', '*-b', 'd-g', 'p-b', '1-r', '2-m']
    pl = []
    pl_name = []
    D = gkcData.getDomain(fileh5)
    # we iterate of all species
    for s in range(len(fileh.root.Phasespace.Data[:, 0, 0, 0, 0, 0, 0])):
        species_name = fileh.root.Species.cols.Name[s]
        species_name = "species"
        x = D['X']
        pl.append(plot(x, Density(time, s)[Z, Y, :], markers[2 * s]))
        pl_name.append("Density (" + species_name + ")")
        xlabel("Position [x]")
        ylabel("Density")

        # set scaling for density
        d = Density(time)[Z, Y, :]
        if ((max(d) - min(d)) < 0.2): ylim(min(d) - 0.1, max(d) + 0.1)

        twinx()
        pl.append(plot(x, Temperature(time, s)[Z, Y, :], markers[2 * s + 1]))
        pl_name.append("Temperature (" + species_name + ")")
        ylabel("Temperature")
        title("Density/Temperature profile at Time Step = " + str(time))

    leg = pylab.legend(pl, pl_name, loc='lower center')
    leg.draw_frame(0)
Esempio n. 2
0
def plotTurbulenceTime(fileh5, dir='Y', pos=(-2,-1), doFit='False', posT=(1,-1)):
    """
        Plots time evolution of mode power.


        Optional keyword arguments:

        Keyword           Description
        ===============   ==============================================
         *dir*             Direction 'X' (for radial) or 'Y' for poloidal
         *modes*           List of modes (default plot modes). 
                           e.g. modes = [1,4,5]         - to plot all modes
                                modes = range(Nky)[::2] - to plot every second mode
         *field*           'phi' electric potential
                           'A' parallel magnetic vector potential
                           'B' parallel magnetic field
         *dir*             Direction 'X' (for radial) or 'Y' for poloidal
         *doCFL*           clear previous figure
         *label*           'ky' or 'm'
         *offset*          Offset due to zeroset to 2 .
    """
    D = gkcData.getDomain(fileh5)
    data = fileh5.root.Analysis.PowerSpectrum.Y[1:,:]
    T = gkcData.getTime(fileh5.root.Analysis.PowerSpectrum.Time)[:,1]
    timeEvolution = []
    for step in range(len(data[0,:])):
       timeEvolution.append(data[:,step]/sum(data[:,step]))

    contourf(np.log10(D['ky']), T,timeEvolution, 250, locator=ticker.LogLocator(), cmap=cm.jet)
    colorbar()
Esempio n. 3
0
def plotXPropTempDensity(fileh5, time=0, Z=4, Y=6):

  markers = ['v-c', '^-y', '<-r', '>-m', '*-b', 'd-g', 'p-b', '1-r', '2-m']
  pl = []
  pl_name = []
  D = gkcData.getDomain(fileh5)
  # we iterate of all species
  for s in range(len(fileh.root.Phasespace.Data[:,0,0,0,0,0,0])):
    species_name = fileh.root.Species.cols.Name[s]
    species_name = "species"
    x = D['X']
    pl.append(plot(x, Density(time, s)[Z,Y,:], markers[2*s]))
    pl_name.append("Density (" + species_name + ")")
    xlabel("Position [x]")
    ylabel("Density")
  
    # set scaling for density
    d = Density(time)[Z,Y,:]
    if((max(d) - min(d)) < 0.2): ylim(min(d)-0.1, max(d)+0.1)
  
    twinx()
    pl.append(plot(x, Temperature(time, s)[Z,Y,:],markers[2*s+1]))
    pl_name.append("Temperature (" + species_name + ")")
    ylabel("Temperature")
    title("Density/Temperature profile at Time Step = " + str(time))

    

  leg = pylab.legend(pl, pl_name, loc='lower center')
  leg.draw_frame(0)
Esempio n. 4
0
def plotEigenfunctions(fileh5, mode=1, n_max=5, **kwargs):
    """
        Plot the n largerst eigenfunctions

        Optional keyword arguments:

        Keyword           Description
        ===============   ==============================================
         *dir*             Direction 'X' (for radial) or 'Y' for poloidal
         *offset*          Offset due to zeroset to 2 .

    """
    import gkcStyle
    import gkcAnalysis

    D = gkcData.getDomain(fileh5)

    try:
        eigv = fileh5.root.Eigenvalue.EigenValues.cols.Eigenvalue[:]
    except:
        print "Problems openning eigenvalues. Not included ?"
        return

    # Sort eigenvalues (note automatically sorts real values first)
    eigv = fileh5.root.Eigenvalue.EigenValues.cols.Eigenvalue[:]
    # absteigend sort
    idx_sort = np.argsort(eigv)[::-1]

    pylab.subplot(121)
    plotEigenvalues(fileh5, **kwargs)

    # Plot points
    for n in range(n_max):
        w = eigv[idx_sort[n]]
        pylab.plot(np.real(w),
                   np.imag(w),
                   'o',
                   markersize=7.5,
                   color=gkcStyle.markers_C[n])

    pylab.subplot(122)

    labels = []
    for n in range(n_max):
        w = eigv[idx_sort[n]]
        gkcAnalysis.plotModeStructure(fileh5=fileh5,
                                      fied='phi',
                                      mode=mode,
                                      frame=idx_sort[n],
                                      part='a',
                                      m=n)
        labels.append("%.3f+%.3f i" % (np.real(w), np.imag(w)))

    pylab.legend(labels).draw_frame(0)
Esempio n. 5
0
def plotModeStructure(fileh5, mode, part = "r",  **kwargs):
    """
        Plots time evolution of mode power.


        Optional keyword arguments:

        Keyword           Description
        ===============   ==============================================
         *dir*             Direction 'X' (for radial) or 'Y' for poloidal
         *modes*           List of modes (default plot modes). 
                           e.g. modes = [1,4,5]         - to plot all modes
                                modes = range(Nky)[::2] - to plot every second mode
         *field*           'phi' electric potential
                           'A' parallel magnetic vector potential
                           'B' parallel magnetic field
         *dir*             Direction 'X' (for radial) or 'Y' for poloidal
         *doCFL*           clear previous figure
         *label*           'ky' or 'm'
         *offset*          Offset due to zeroset to 2 .

    """
    D = gkcData.getDomain(fileh5)
    
    
    doCFL    = kwargs.pop('doCFL', True)
    field    = kwargs.pop('field', 'phi')  
    Z        = kwargs.pop('Z', 0)  
    frame    = kwargs.pop('frame', -1)  
    label    = kwargs.pop('label', "")  
    m        = kwargs.pop('m', 0)  

    
    if   field == 'phi' : data_X = fileh5.root.Visualization.Phi[Z,mode,:,frame]
    elif field == 'A'   : n_field = 1
    elif field == 'B'   : n_field = 2
    else : raise TypeError("Wrong argument for field : " + str(field))

    # Normaliza
    if   part == "a" : data_X = abs(data_X) / np.sum(abs(data_X))
    elif part == "r" : data_X = np.real(data_X) / np.sum(abs(np.real(data_X)))
    elif part == "i" : data_X = np.imag(data_X) / np.sum(abs(np.imag(data_X)))
    else : raise TypeError("Wrong argument for part : " + str(part))

    pylab.plot(D['X'], data_X, gkcStyle.markers_C[m], label=label)

    if    field == "phi" : pylab.ylabel("Mode Power $|\\phi|^2$")
    elif  field == "A"   : pylab.ylabel("Mode Power $|A_\\parallel|^2$")
    elif  field == "B"   : pylab.ylabel("Mode Power $|B_\\parallel|^2$")
    else : raise TypeError("Wrong argument for field : " + str(field))

    pylab.xlim((min(D['X']), max(D['X'])))
    pylab.xlabel("X")
Esempio n. 6
0
def plotEigenfunctions(fileh5, mode=1, n_max=5, **kwargs):
    """
        Plot the n largerst eigenfunctions

        Optional keyword arguments:

        Keyword           Description
        ===============   ==============================================
         *dir*             Direction 'X' (for radial) or 'Y' for poloidal
         *offset*          Offset due to zeroset to 2 .

    """
    import gkcStyle
    import gkcAnalysis


    D = gkcData.getDomain(fileh5)

    try:
        eigv = fileh5.root.Eigenvalue.EigenValues.cols.Eigenvalue[:] 
    except:
       print "Problems openning eigenvalues. Not included ?"
       return


    # Sort eigenvalues (note automatically sorts real values first)
    eigv     = fileh5.root.Eigenvalue.EigenValues.cols.Eigenvalue[:]
    # absteigend sort
    idx_sort = np.argsort(eigv)[::-1]
            
    pylab.subplot(121)
    plotEigenvalues(fileh5, **kwargs)

    # Plot points
    for n in range(n_max):
            w = eigv[idx_sort[n]]
            pylab.plot(np.real(w), np.imag(w), 'o', markersize=7.5, color=gkcStyle.markers_C[n])

    pylab.subplot(122)

    labels = []
    for n in range(n_max):
            w = eigv[idx_sort[n]]
            gkcAnalysis.plotModeStructure(fileh5=fileh5, fied='phi', mode=mode, frame=idx_sort[n], part='a', m=n)
            labels.append("%.3f+%.3f i" % (np.real(w), np.imag(w)))

    pylab.legend(labels).draw_frame(0)
Esempio n. 7
0
def plotContour(fileh5, var="2DPhi", **kwargs):
    """
        Plots Scalar Data (2D) in XY  coordinates


        Optional keyword arguments:

        Keyword           Description
        ===============   ==============================================
         *dir*             Direction 'X' (for radial) or 'Y' for poloidal
         *modes*           List of modes (default plot modes). 
                           e.g. modes = [1,4,5]         - to plot all modes
                                modes = range(Nky)[::2] - to plot every second mode
         *field*           'phi' electric potential
                           'A' parallel magnetic vector potential
                           'B' parallel magnetic field
         *dir*             Direction 'X' (for radial) or 'Y' for poloidal
         *doCFL*           clear previous figure
         *label*           'ky' or 'm'
         *offset*          Offset due to zeroset to 2 .

    """
    D = gkcData.getDomain(fileh5)
    
    #norm     = kwargs.pop('Normalize', True)
    Z        = kwargs.pop('Z', 0)
    modes    = kwargs.pop('modes' , range(D['Nky']))
    doCFL    = kwargs.pop('doCFL' , True)
    #interpolation = kwargs.pop('interpolation' , 'bilinear')
    printTitle    = kwargs.pop('printTitle' , True)
    #orientation   = kwargs.pop('orientation' , 'horizontal')
    frame         = kwargs.pop('frame' , -1)
    
    
    D, T, data = gkcData.getData(var, fileh5, Z, frame, species=0)
  
    X, Y, data = gkcData.getRealFromXky(fileh5, data, modes)
   
    gkcStyle.plotContourWithColorbar(X,Y, data, **kwargs)
   
   
    pylab.xlabel(kwargs.pop('xlabel' , 'X'))
    pylab.ylabel(kwargs.pop('ylabel' , 'Y'))

    if printTitle == True : pylab.title("TimeStep : %i   Time : %.3f " % (T[0], T[1]))
Esempio n. 8
0
def plotContour(fileh5, var="2DPhi", **kwargs):
    """
        Plots Scalar Data (2D) in XY  coordinates


        Optional keyword arguments:

        Keyword           Description
        ===============   ==============================================
         *dir*             Direction 'X' (for radial) or 'Y' for poloidal
         *modes*           List of modes (default plot modes). 
                           e.g. modes = [1,4,5]         - to plot all modes
                                modes = range(Nky)[::2] - to plot every second mode
         *field*           'phi' electric potential
                           'A' parallel magnetic vector potential
                           'B' parallel magnetic field
         *dir*             Direction 'X' (for radial) or 'Y' for poloidal
         *doCFL*           clear previous figure
         *label*           'ky' or 'm'
         *offset*          Offset due to zeroset to 2 .

    """
    D = gkcData.getDomain(fileh5)

    #norm     = kwargs.pop('Normalize', True)
    Z = kwargs.pop('Z', 0)
    modes = kwargs.pop('modes', range(D['Nky']))
    doCFL = kwargs.pop('doCFL', True)
    #interpolation = kwargs.pop('interpolation' , 'bilinear')
    printTitle = kwargs.pop('printTitle', True)
    #orientation   = kwargs.pop('orientation' , 'horizontal')
    frame = kwargs.pop('frame', -1)

    D, T, data = gkcData.getData(var, fileh5, Z, frame, species=0)

    X, Y, data = gkcData.getRealFromXky(fileh5, data, modes)

    gkcStyle.plotContourWithColorbar(X, Y, data, **kwargs)

    pylab.xlabel(kwargs.pop('xlabel', 'X'))
    pylab.ylabel(kwargs.pop('ylabel', 'Y'))

    if printTitle == True:
        pylab.title("TimeStep : %i   Time : %.3f " % (T[0], T[1]))
Esempio n. 9
0
def plotEigenvalues(fileh5, **kwargs):
    """
        Plot the eigenvalues of the phase space function


        Optional keyword arguments:

        Keyword           Description
        ===============   ==============================================
         *dir*             Direction 'X' (for radial) or 'Y' for poloidal
         *offset*          Offset due to zeroset to 2 .

    """
    import gkcStyle

    D = gkcData.getDomain(fileh5)

    try:
        eigv = fileh5.root.Eigenvalue.EigenValues.cols.Eigenvalue[:]
    except:
        print "Problems openning eigenvalues. Not included ?"
        return

    eigv_r = np.real(eigv)
    eigv_i = np.imag(eigv)

    pylab.plot(eigv_r, eigv_i, '.')

    gkcStyle.plotZeroLine(1.1 * min(eigv_r),
                          1.1 * max(eigv_r),
                          direction='horizontal',
                          color="#666666",
                          lw=0.8)
    gkcStyle.plotZeroLine(1.1 * min(eigv_i),
                          1.1 * max(eigv_i),
                          direction='vertical',
                          color="#666666",
                          lw=0.8)

    pylab.xlim((1.1 * min(eigv_r), 1.1 * max(eigv_r)))
    pylab.ylim((1.1 * min(eigv_i), 1.1 * max(eigv_i)))

    pylab.xlabel("$\\omega_r$")
    pylab.ylabel("$\\omega_i$")
Esempio n. 10
0
def plotEigenvalues(fileh5, **kwargs):
    """
        Plot the eigenvalues of the phase space function


        Optional keyword arguments:

        Keyword           Description
        ===============   ==============================================
         *dir*             Direction 'X' (for radial) or 'Y' for poloidal
         *offset*          Offset due to zeroset to 2 .

    """
    import gkcStyle


    D = gkcData.getDomain(fileh5)

    try:
        eigv = fileh5.root.Eigenvalue.EigenValues.cols.Eigenvalue[:] 
    except:
       print "Problems openning eigenvalues. Not included ?"
       return


    eigv_r = np.real(eigv)
    eigv_i = np.imag(eigv)

    pylab.plot(eigv_r, eigv_i, '.')


    gkcStyle.plotZeroLine(1.1*min(eigv_r), 1.1*max(eigv_r), direction='horizontal', color="#666666", lw=0.8)
    gkcStyle.plotZeroLine(1.1*min(eigv_i), 1.1*max(eigv_i), direction='vertical'  , color="#666666", lw=0.8)

    pylab.xlim((1.1*min(eigv_r), 1.1*max(eigv_r)))
    pylab.ylim((1.1*min(eigv_i), 1.1*max(eigv_i)))


    pylab.xlabel("$\\omega_r$")
    pylab.ylabel("$\\omega_i$")
Esempio n. 11
0
def plotTurbulenceTime(fileh5,
                       dir='Y',
                       pos=(-2, -1),
                       doFit='False',
                       posT=(1, -1)):
    """
        Plots time evolution of mode power.


        Optional keyword arguments:

        Keyword           Description
        ===============   ==============================================
         *dir*             Direction 'X' (for radial) or 'Y' for poloidal
         *modes*           List of modes (default plot modes). 
                           e.g. modes = [1,4,5]         - to plot all modes
                                modes = range(Nky)[::2] - to plot every second mode
         *field*           'phi' electric potential
                           'A' parallel magnetic vector potential
                           'B' parallel magnetic field
         *dir*             Direction 'X' (for radial) or 'Y' for poloidal
         *doCFL*           clear previous figure
         *label*           'ky' or 'm'
         *offset*          Offset due to zeroset to 2 .
    """
    D = gkcData.getDomain(fileh5)
    data = fileh5.root.Analysis.PowerSpectrum.Y[1:, :]
    T = gkcData.getTime(fileh5.root.Analysis.PowerSpectrum.Time)[:, 1]
    timeEvolution = []
    for step in range(len(data[0, :])):
        timeEvolution.append(data[:, step] / sum(data[:, step]))

    contourf(np.log10(D['ky']),
             T,
             timeEvolution,
             250,
             locator=ticker.LogLocator(),
             cmap=cm.jet)
    colorbar()
Esempio n. 12
0
def plotScalarDataTimeEvolution(fileh5, var="KinPhi", **kwargs):
    """
        Plots time evolution of mode power.


        Optional keyword arguments:

        Keyword           Description
        ===============   ==============================================
         *dir*             Direction 'X' (for radial) or 'Y' for poloidal
         *modes*           List of modes (default plot modes). 
                           e.g. modes = [1,4,5]         - to plot all modes
                                modes = range(Nky)[::2] - to plot every second mode
         *field*           'phi' electric potential
                           'A' parallel magnetic vector potential
                           'B' parallel magnetic field
         *dir*             Direction 'X' (for radial) or 'Y' for poloidal
         *doCFL*           clear previous figure
         *label*           'ky' or 'm'
         *offset*          Offset due to zeroset to 2 .

    """
    D = gkcData.getDomain(fileh5)

    log = kwargs.pop('log', True)

    leg_loc = kwargs.pop('leg_loc', 'best')
    leg_ncol = kwargs.pop('leg_ncol', 1)

    if (log == 1):
        plotf = pylab.semilogy
        af = abs
    else:
        plotf = pylab.plot
        af = lambda x: x

    T = fileh5.root.Analysis.scalarValues.cols.Time[5:]
    n_sp = len(fileh5.root.Species.cols.Name[1:])

    # Plot Field Energy"
    if var == "phi":
        plotf(T,
              af(fileh5.root.Analysis.scalarValues.cols.phiEnergy[3:]),
              label="Field Energy")
        pylab.ylabel("Field Energy")

    if var == "kinEnergy":
        for s in range(n_sp):
            plotf(T,
                  af(fileh5.root.Analysis.scalarValues.cols.KineticEnergy[3:]
                     [:, s]),
                  label="Kinetic Energy (" + fileh5.root.Species.cols.Name[s] +
                  ")")

        #plotf(T, af(fileh5.root.Analysis.scalarValues.cols.phiEnergy[3:]+1.*(np.sum(fileh5.root.Analysis.scalarValues.cols.KineticEnergy[3:], axis=1))) , label="Total Energy")
        pylab.ylabel("Energy")

    if var == "KinPhi":
        pylab.plot(T,
                   fileh5.root.Analysis.scalarValues.cols.phiEnergy[5:],
                   label="Field Energy")
        E_kin_total = fileh5.root.Analysis.scalarValues.cols.phiEnergy[5:]
        for s in range(n_sp):
            E_kin = fileh5.root.Analysis.scalarValues.cols.KineticEnergy[
                5:][:,
                    s] - fileh5.root.Analysis.scalarValues.cols.KineticEnergy[
                        5][s]
            E_kin = -abs(E_kin)
            E_kin_total = E_kin_total + E_kin
            pylab.plot(T,
                       E_kin,
                       label="Kinetic Energy (" +
                       fileh5.root.Species.cols.Name[s] + ")")
        gkcStyle.plotZeroLine(min(T), max(T))
        pylab.plot(T, -abs(E_kin_total) / 100., label="Total Energy")
        pylab.yscale('symlog', linthreshy=1.e-7)
        # Plot Toal nergy
        pylab.ylabel("Energy")

    if var == "heatFlux":

        for s in sp:
            for s in range(n_sp):
                plot(T,
                     fileh5.root.Analysis.scalarValues.cols.HeatFlux[3:][:, s],
                     label=fileh5.root.Species.cols.Name[s])
        pylab.ylabel("Heat Flux")

    if var == "Charge":
        charge = np.zeros(
            len(fileh5.root.Analysis.scalarValues.cols.ParticleNumber[3:][:,
                                                                          1]))
        for s in range(n_sp):
            dn = (
                fileh5.root.Analysis.scalarValues.cols.ParticleNumber[3:][:, s]
                - fileh5.root.Analysis.scalarValues.cols.ParticleNumber[3][s])
            n = fileh5.root.Analysis.scalarValues.cols.ParticleNumber[3:][:, s]
            q = fileh5.root.Species.cols.Charge[s]
            charge = charge + q * n

            pylab.plot(fileh5.root.Analysis.scalarValues.cols.Time[3:],
                       q * n,
                       label=fileh5.root.Species.cols.Name[s])
            pylab.plot(fileh5.root.Analysis.scalarValues.cols.Time[3:],
                       q * dn,
                       label=fileh5.root.Species.cols.Name[s])
        if D['Ns'] > 1:
            plotf(fileh5.root.Analysis.scalarValues.cols.Time[3:],
                  charge,
                  label="Charge")

        gkcStyle.plotZeroLine(min(T), max(T))
        pylab.yscale('symlog', linthreshy=1.e-7)
        pylab.ylabel("Charge")

    if var == "particleFlux":
        for s in range(n_sp):
            plotf(T,
                  fileh5.root.Analysis.scalarValues.cols.ParticleFlux[3:][:,
                                                                          s],
                  label=fileh5.root.Species.cols.Name[s])
        pylab.ylabel("Particle Flux")

    pylab.xlim((min(T), max(T)))
    leg = pylab.legend(loc=leg_loc, ncol=leg_ncol).draw_frame(0)
    pylab.xlabel("Time")
Esempio n. 13
0
def plotTurbulenceSpectra(fileh5, dir='Y', start=1, end=-1, posT=(1,-1), field=0, **kwargs):
    """
        Plots time evolution of mode power.


        Optional keyword arguments:

        Keyword           Description
        ===============   ==============================================
         *dir*             Direction 'X' (for radial) or 'Y' for poloidal
         *modes*           List of modes (default plot modes). 
                           e.g. modes = [1,4,5]         - to plot all modes
                                modes = range(Nky)[::2] - to plot every second mode
         *field*           'phi' electric potential
                           'A' parallel magnetic vector potential
                           'B' parallel magnetic field
         *dir*             Direction 'X' (for radial) or 'Y' for poloidal
         *doCFL*           clear previous figure
         *label*           'ky' or 'm'
         *offset*          Offset due to zeroset to 2 .

    """
    import scipy.optimize

    D = gkcData.getDomain(fileh5)
    
    doCFL    = kwargs.pop('doCFL', True)
    doFit    = kwargs.pop('doFit', False)
    doZF     = kwargs.pop('doZF' , True)
    m        = kwargs.pop('m' , 0)

    if(dir == 'X'):
      data = sum(fileh5.root.Analysis.PowerSpectrum.X[field,0:,start:end], axis=1)/abs(end-start)
      loglog(D['kx'], data/sum(data), '.-')
      xlabel("$k_x$")
    
    elif(dir == 'Y'):
      data = np.mean(fileh5.root.Analysis.PowerSpectrum.Y[field, 0:,start:end], axis=1)
      mypl = pylab.loglog(D['ky'][1:-1], data[1:-1], gkcStyle.markers_D[m] +  '-', color=gkcStyle.markers_C[m])
      
      # Plot Zonal flow seperately
      pylab.loglog(0.9*D['ky'][1], data[0], gkcStyle.markers_D[m], markersize=8., color=gkcStyle.markers_C[m])

      pylab.xlim((0.75 * D['ky'][1], 1.25*D['ky'][-2]))
      pylab.xlabel("$k_y$")
     
      # Draw vertical line
      if doZF == 0:
        min_x = min(data)
        max_x = max(data)
        pylab.loglog(np.linspace(0.9*D['ky'][1], 0.9*D['ky'][1], 201), np.logspace(np.log10(0.8*min_x), np.log10(1.2*max_x), 201), "-", linewidth=1.5, color="#666666")
        #pylab.text(D['ky'][1], 1.05*np.sqrt(max_x), "Zonal Flow", weight='bold', color="#666666", rotation='vertical')
        #pylab.text(0.95*D['ky'][1], 5*min_x, "Zonal Flow", weight='bold', color="#666666", rotation='vertical')

    elif(dir == 'Z'):
      data = sum(fileh5.root.Analysis.PowerSpectrum.Z[field, 0:,start:end], axis=1)/abs(start-end)
      pylab.loglog(D['kp'], data[1:], '.-')
      pylab.loglog(D['kp'][0], data[0], 'o')
      xlabel("$k_z$")
      
    #pylab.ylabel("$|\\phi_k(k_y)|^2$")
    """ 
    if doFit == True :
        pos_a = posT[0]
        pos_b = posT[1]
        fitfunc = lambda p, x: p[0]*x + p[1] # Target function
        errfunc = lambda p, x, y: fitfunc(p, x) - y # Distance to the target function
        p0 = [1.0, 1.0, 1.0] # Initial guess for the parameters
        
        #p1, success = scipy.optimize.leastsq(errfunc, p0[:], args=(np.log10(D['ky'][pos_a:pos_b]), np.log10(data[pos_a:pos_b])))
        p1, success = scipy.optimize.leastsq(errfunc, p0[:], args=(D['ky'][pos_a:pos_b], data[pos_a:pos_b]))

        # C'mon baby wanna see you again
        print p1
        pylab.loglog(D['ky'][pos_a:pos_b], p1[1]*(D['ky'][pos_a:pos_b]/D['ky'][pos_a])**p1[0],'k-', linewidth=6.)
        #text(D['ky'][5], data[5], "$\\propto k_y^{%2.f}$" % p1[0], ha="center", family=font, size=14)
        pos_m = (pos_a + pos_b)/2 + 1
        pylab.text(D['ky'][pos_m], data[pos_m/3], "$\\propto k_y^{%.1f}$" % p1[0], ha="center", size=14)
        #pylab.text(np.log(D['ky'][5]), 1., "$\\propto k_y^{%.1f}$" % p1[0], ha="center", size=14)
        #pylab.text(np.log(D['ky'][5]), np.log(data[5]), "$\\propto k_y^{%2.1f}$" % p1[0], ha="center", size=14)
    """
    return mypl
Esempio n. 14
0
def plotScalarDataTimeEvolution(fileh5, var = "KinPhi", **kwargs):
    """
        Plots time evolution of mode power.


        Optional keyword arguments:

        Keyword           Description
        ===============   ==============================================
         *dir*             Direction 'X' (for radial) or 'Y' for poloidal
         *modes*           List of modes (default plot modes). 
                           e.g. modes = [1,4,5]         - to plot all modes
                                modes = range(Nky)[::2] - to plot every second mode
         *field*           'phi' electric potential
                           'A' parallel magnetic vector potential
                           'B' parallel magnetic field
         *dir*             Direction 'X' (for radial) or 'Y' for poloidal
         *doCFL*           clear previous figure
         *label*           'ky' or 'm'
         *offset*          Offset due to zeroset to 2 .

    """
    D = gkcData.getDomain(fileh5)
    
    log      = kwargs.pop('log', True)
    
    leg_loc  = kwargs.pop('leg_loc' , 'best')
    leg_ncol = kwargs.pop('leg_ncol', 1)

    if(log == 1) : 
      plotf = pylab.semilogy
      af    = abs
    else         : 
      plotf = pylab.plot
      af    = lambda x : x
        
    T = fileh5.root.Analysis.scalarValues.cols.Time[5:]
    n_sp = len(fileh5.root.Species.cols.Name[1:]) 



    # Plot Field Energy"
    if var == "phi":
        plotf(T, af(fileh5.root.Analysis.scalarValues.cols.phiEnergy[3:]), label="Field Energy")
        pylab.ylabel("Field Energy")

    if var == "kinEnergy":
        for s in range(n_sp):
            plotf(T, af(fileh5.root.Analysis.scalarValues.cols.KineticEnergy[3:][:,s]) , label="Kinetic Energy (" + fileh5.root.Species.cols.Name[s]+ ")" )

        #plotf(T, af(fileh5.root.Analysis.scalarValues.cols.phiEnergy[3:]+1.*(np.sum(fileh5.root.Analysis.scalarValues.cols.KineticEnergy[3:], axis=1))) , label="Total Energy")
        pylab.ylabel("Energy")
    
    if var == "KinPhi":
        pylab.plot(T, fileh5.root.Analysis.scalarValues.cols.phiEnergy[5:], label="Field Energy")
        E_kin_total = fileh5.root.Analysis.scalarValues.cols.phiEnergy[5:]
        for s in range(n_sp):
          E_kin = fileh5.root.Analysis.scalarValues.cols.KineticEnergy[5:][:,s]-fileh5.root.Analysis.scalarValues.cols.KineticEnergy[5][s]
          E_kin = -abs(E_kin)
          E_kin_total = E_kin_total + E_kin
          pylab.plot(T, E_kin , label="Kinetic Energy (" + fileh5.root.Species.cols.Name[s]+ ")" )
        gkcStyle.plotZeroLine(min(T), max(T))
        pylab.plot(T, -abs(E_kin_total)/100. , label="Total Energy")
        pylab.yscale('symlog', linthreshy=1.e-7)
        # Plot Toal nergy
        pylab.ylabel("Energy")

    if var == "heatFlux":
  
       for s in sp:
        for s in range(n_sp):
          plot(T, fileh5.root.Analysis.scalarValues.cols.HeatFlux[3:][:,s], label=fileh5.root.Species.cols.Name[s]) 
       pylab.ylabel("Heat Flux")
 
    if var == "Charge":
       charge = np.zeros(len(fileh5.root.Analysis.scalarValues.cols.ParticleNumber[3:][:,1]))
       for s in range(n_sp):
          dn = (fileh5.root.Analysis.scalarValues.cols.ParticleNumber[3:][:,s] - fileh5.root.Analysis.scalarValues.cols.ParticleNumber[3][s])
          n  = fileh5.root.Analysis.scalarValues.cols.ParticleNumber[3:][:,s] 
          q = fileh5.root.Species.cols.Charge[s]
          charge = charge + q * n

          pylab.plot(fileh5.root.Analysis.scalarValues.cols.Time[3:], q*n , label=fileh5.root.Species.cols.Name[s])
          pylab.plot(fileh5.root.Analysis.scalarValues.cols.Time[3:], q*dn , label=fileh5.root.Species.cols.Name[s])
       if D['Ns'] > 1:
          plotf(fileh5.root.Analysis.scalarValues.cols.Time[3:], charge , label="Charge")
       
       gkcStyle.plotZeroLine(min(T), max(T))
       pylab.yscale('symlog', linthreshy=1.e-7)
       pylab.ylabel("Charge")
  
    if var == "particleFlux":
      for s in range(n_sp):
        plotf(T, fileh5.root.Analysis.scalarValues.cols.ParticleFlux[3:][:,s], label=fileh5.root.Species.cols.Name[s]) 
      pylab.ylabel("Particle Flux")
 
    pylab.xlim((min(T), max(T)))
    leg = pylab.legend(loc=leg_loc, ncol=leg_ncol).draw_frame(0)
    pylab.xlabel("Time")
Esempio n. 15
0
def plotAveragedFluxes(fileh5, var='H', **kwargs):
    """
        Plots time evolution of mode power.


        Optional keyword arguments:

        Keyword           Description
        ===============   ==============================================
         *dir*             Direction 'X' (for radial) or 'Y' for poloidal
         *modes*           List of modes (default plot modes). 
                           e.g. modes = [1,4,5]         - to plot all modes
                                modes = range(Nky)[::2] - to plot every second mode
         *field*           'phi' electric potential
                           'A' parallel magnetic vector potential
                           'B' parallel magnetic field
         *dir*             Direction 'X' (for radial) or 'Y' for poloidal
         *doCFL*           clear previous figure
         *label*           'ky' or 'm'
         *offset*          Offset due to zeroset to 2 .

    """
    import gkcData
    import gkcStyle

    import pylab
    import numpy as np

    D = gkcData.getDomain(fileh5)

    doCFL = kwargs.pop('doCFL', True)
    start = kwargs.pop('start', 1)
    stop = kwargs.pop('stop', -1)
    scale = kwargs.pop('scale', 'ky')
    field = kwargs.pop('field', 'phi')

    if doCFL == True: pylab.clf()

    if field == 'phi': n_field = 0
    elif field == 'A': n_field = 1
    elif field == 'B': n_field = 2
    else: raise TypeError("Wrong argument for field : " + str(field))

    T = gkcData.getTime(fileh5.root.Analysis.PowerSpectrum.Time)[:, 1]

    # Averaged over Z and start stop
    if var == 'P':
        data = np.mean(fileh5.root.Analysis.Flux.Density[n_field, :, :,
                                                         start:stop],
                       axis=2)
        ylabel = "Particle Flux $k_y \\Gamma/\\Gamma_{gB}\,(ky)$"
    elif var == 'H':
        data = np.mean(fileh5.root.Analysis.Flux.Heat[n_field, :, :,
                                                      start:stop],
                       axis=2)
        #ylabel = "Heat Flux $Q/Q_\\textrm{gB}(k_y)$"
        ylabel = "Heat Flux $k_y Q/Q_{gB}\,(k_y)$"
    else:
        raise TypeError("No such variable")

    if scale == 'ky': gor_ky = D['ky'][1:]
    else: gor_ky = 1.

    for s in range(D['Ns']):
        species_name = fileh5.root.Species.cols.Name[s + 1]
        pylab.semilogx(D['ky'][1:],
                       gor_ky * data[1:, s],
                       gkcStyle.markers_D[s] + '-',
                       label=species_name,
                       color=gkcStyle.markers_C[s],
                       markersize=7.)

    pylab.xlabel("$k_y \\rho_i$")
    pylab.ylabel(ylabel)

    pylab.legend(ncol=2).draw_frame(0)
    pylab.xlim((0.8 * D['ky'][1], 1.2 * D['ky'][-1]))
Esempio n. 16
0
def plotTurbulenceSpectra(fileh5,
                          dir='Y',
                          start=1,
                          end=-1,
                          posT=(1, -1),
                          field=0,
                          **kwargs):
    """
        Plots time evolution of mode power.


        Optional keyword arguments:

        Keyword           Description
        ===============   ==============================================
         *dir*             Direction 'X' (for radial) or 'Y' for poloidal
         *modes*           List of modes (default plot modes). 
                           e.g. modes = [1,4,5]         - to plot all modes
                                modes = range(Nky)[::2] - to plot every second mode
         *field*           'phi' electric potential
                           'A' parallel magnetic vector potential
                           'B' parallel magnetic field
         *dir*             Direction 'X' (for radial) or 'Y' for poloidal
         *doCFL*           clear previous figure
         *label*           'ky' or 'm'
         *offset*          Offset due to zeroset to 2 .

    """
    import scipy.optimize

    D = gkcData.getDomain(fileh5)

    doCFL = kwargs.pop('doCFL', True)
    doFit = kwargs.pop('doFit', False)
    doZF = kwargs.pop('doZF', True)
    m = kwargs.pop('m', 0)

    if (dir == 'X'):
        data = sum(fileh5.root.Analysis.PowerSpectrum.X[field, 0:, start:end],
                   axis=1) / abs(end - start)
        loglog(D['kx'], data / sum(data), '.-')
        xlabel("$k_x$")

    elif (dir == 'Y'):
        data = np.mean(fileh5.root.Analysis.PowerSpectrum.Y[field, 0:,
                                                            start:end],
                       axis=1)
        mypl = pylab.loglog(D['ky'][1:-1],
                            data[1:-1],
                            gkcStyle.markers_D[m] + '-',
                            color=gkcStyle.markers_C[m])

        # Plot Zonal flow seperately
        pylab.loglog(0.9 * D['ky'][1],
                     data[0],
                     gkcStyle.markers_D[m],
                     markersize=8.,
                     color=gkcStyle.markers_C[m])

        pylab.xlim((0.75 * D['ky'][1], 1.25 * D['ky'][-2]))
        pylab.xlabel("$k_y$")

        # Draw vertical line
        if doZF == 0:
            min_x = min(data)
            max_x = max(data)
            pylab.loglog(np.linspace(0.9 * D['ky'][1], 0.9 * D['ky'][1], 201),
                         np.logspace(np.log10(0.8 * min_x),
                                     np.log10(1.2 * max_x), 201),
                         "-",
                         linewidth=1.5,
                         color="#666666")
            #pylab.text(D['ky'][1], 1.05*np.sqrt(max_x), "Zonal Flow", weight='bold', color="#666666", rotation='vertical')
            #pylab.text(0.95*D['ky'][1], 5*min_x, "Zonal Flow", weight='bold', color="#666666", rotation='vertical')

    elif (dir == 'Z'):
        data = sum(fileh5.root.Analysis.PowerSpectrum.Z[field, 0:, start:end],
                   axis=1) / abs(start - end)
        pylab.loglog(D['kp'], data[1:], '.-')
        pylab.loglog(D['kp'][0], data[0], 'o')
        xlabel("$k_z$")

    #pylab.ylabel("$|\\phi_k(k_y)|^2$")
    """ 
    if doFit == True :
        pos_a = posT[0]
        pos_b = posT[1]
        fitfunc = lambda p, x: p[0]*x + p[1] # Target function
        errfunc = lambda p, x, y: fitfunc(p, x) - y # Distance to the target function
        p0 = [1.0, 1.0, 1.0] # Initial guess for the parameters
        
        #p1, success = scipy.optimize.leastsq(errfunc, p0[:], args=(np.log10(D['ky'][pos_a:pos_b]), np.log10(data[pos_a:pos_b])))
        p1, success = scipy.optimize.leastsq(errfunc, p0[:], args=(D['ky'][pos_a:pos_b], data[pos_a:pos_b]))

        # C'mon baby wanna see you again
        print p1
        pylab.loglog(D['ky'][pos_a:pos_b], p1[1]*(D['ky'][pos_a:pos_b]/D['ky'][pos_a])**p1[0],'k-', linewidth=6.)
        #text(D['ky'][5], data[5], "$\\propto k_y^{%2.f}$" % p1[0], ha="center", family=font, size=14)
        pos_m = (pos_a + pos_b)/2 + 1
        pylab.text(D['ky'][pos_m], data[pos_m/3], "$\\propto k_y^{%.1f}$" % p1[0], ha="center", size=14)
        #pylab.text(np.log(D['ky'][5]), 1., "$\\propto k_y^{%.1f}$" % p1[0], ha="center", size=14)
        #pylab.text(np.log(D['ky'][5]), np.log(data[5]), "$\\propto k_y^{%2.1f}$" % p1[0], ha="center", size=14)
    """
    return mypl
Esempio n. 17
0
def plotTimeEvolutionModePower(fileh5, **kwargs):
    """
        Plots time evolution of mode power.


        Optional keyword arguments:

        Keyword           Description
        ===============   ==============================================
         *dir*             Direction 'X' (for radial) or 'Y' for poloidal
         *modes*           List of modes (default plot modes). 
                           e.g. modes = [1,4,5]         - to plot all modes
                                modes = range(Nky)[::2] - to plot every second mode
         *field*           'phi' electric potential
                           'A' parallel magnetic vector potential
                           'B' parallel magnetic field
         *dir*             Direction 'X' (for radial) or 'Y' for poloidal
         *doCFL*           clear previous figure
         *label*           'ky' or 'm'
         *offset*          Offset due to zeroset to 2 .

    """
    D = gkcData.getDomain(fileh5)

    doCFL = kwargs.pop('doCFL', True)
    doLog = kwargs.pop('doLog', True)
    dir = kwargs.pop('dir', 'Y')
    modes = kwargs.pop('modes', range(D['Nky']))
    field = kwargs.pop('field', 'phi')
    n_offset = kwargs.pop('offset', 3)
    label = kwargs.pop('label', 'k')
    leg_loc = kwargs.pop('loc', 'best')
    ncol = kwargs.pop('ncol', 3)
    showLegend = kwargs.pop('showLegend', True)

    if doCFL == True: pylab.clf()

    T = gkcData.getTime(fileh5.root.Analysis.PowerSpectrum.Time)[:, 1]

    if field == 'phi': n_field = 0
    elif field == 'A': n_field = 1
    elif field == 'B': n_field = 2
    else: raise TypeError("Wrong argument for field : " + str(field))

    legend_list = []
    if (dir == 'X'):

        for n in modes:
            pl = pylab.semilogy(
                T[n_offset:],
                fileh5.root.Analysis.PowerSpectrum.X[n_field, n, n_offset:].T)
            if (label == 'm'): legend_list.append("n = %i" % n)
            elif (label == 'k'): legend_list.append("kx = %.1f" % (D['kx'][n]))
            else: print "Name Error"

    elif (dir == 'Y'):

        legend_list = []

        for m in modes:
            if (doLog):
                pylab.semilogy(
                    T[n_offset:],
                    fileh5.root.Analysis.PowerSpectrum.Y[n_field, m,
                                                         n_offset:].T,
                    label='$k_y^{(%i)} = %.2f$' % (m, D['ky'][m]))
            else:
                pylab.plot(T[n_offset:],
                           fileh5.root.Analysis.PowerSpectrum.Y[n_field, m,
                                                                n_offset:].T,
                           label='$k_y^{(%i)} = %.2f$' % (m, D['ky'][m]))

    else:
        raise TypeError("Wrong argument for dir : " + str(dir))

    #if showLegend == True:
    leg = pylab.legend(loc=leg_loc, ncol=ncol, mode="expand").draw_frame(0)

    pylab.xlabel("Time")
    pylab.xlim((0., max(T)))

    if field == "phi": pylab.ylabel("Mode Power $|\\phi|^2$")
    elif field == "A": pylab.ylabel("Mode Power $|A_\\parallel|^2$")
    elif field == "B": pylab.ylabel("Mode Power $|B_\\parallel|^2$")
    else: raise TypeError("Wrong argument for field : " + str(field))
Esempio n. 18
0
def plotTimeEvolutionModePhase(fileh5, **kwargs):
    """
        Plots time evolution of mode power.


        Optional keyword arguments:

        Keyword           Description
        ===============   ==============================================
         *dir*             Direction 'X' (for radial) or 'Y' for poloidal
         *modes*           List of modes (default plot modes). 
                           e.g. modes = [1,4,5]         - to plot all modes
                                modes = range(Nky)[::2] - to plot every second mode
         *field*           'phi' electric potential
                           'A' parallel magnetic vector potential
                           'B' parallel magnetic field
         *dir*             Direction 'X' (for radial) or 'Y' for poloidal
         *doCFL*           clear previous figure
         *label*           'ky' or 'm'
         *offset*          Offset due to zeroset to 2 .

    """
    D = gkcData.getDomain(fileh5)
    
    doCFL    = kwargs.pop('doCFL', True)
    leg_loc  = kwargs.pop('loc', 'best')  
    dir      = kwargs.pop('dir', 'Y')
    modes    = kwargs.pop('modes' , range(D['Nky']))
    field    = kwargs.pop('field', 'phi')  
    n_offset = kwargs.pop('offset', 2)  
    label    = kwargs.pop('label', 'ky')  
    leg_loc  = kwargs.pop('loc', 'best')  
    ncol     = kwargs.pop('ncol', 2)  
    
    if doCFL == True : pylab.clf()
    
    T = gkcData.getTime(fileh5.root.Analysis.PhaseShift.Time)[2:,1]
    
    if   field == 'phi' : n_field = 0
    elif field == 'A'   : n_field = 1
    elif field == 'B'   : n_field = 2
    else : raise TypeError("Wrong argument for field : " + str(field))

    if(dir == 'X'):
      pl = plot(T, fileh5.root.Analysis.PhaseShift.X[n_field,:numModes,2:].T)
      legend_list = []
      for i in range(len(fileh5.root.Analysis.PhaseShift.X[n_field, :numModes,0])):
        legend_list.append("kx = %i" % i)
      leg = pylab.legend(legend_list, loc='lower right', ncol=2)
      leg.draw_frame(0)
    
    elif(dir == 'Y'):

      scale = fileh5.root.Grid._v_attrs.Ly/(2. * np.pi)
      
      legend_list = []
      
      for m in modes:

            data  = fileh5.root.Analysis.PhaseShift.Y[n_field, m,n_offset:]
            
            # set jump value to nan so it is not plotted, (can we speed up using ma ?)
            data_m = []
            for n in range(len(data[:-1])):
                if abs(data[n] - data[n+1]) < 1.: data_m.append(data[n])
                else                            : data_m.append(float('nan'))
            data_m.append(data[-1])
            data_m = np.array(data_m)

            pl = pylab.plot(T, data_m)
            if  (label == 'm' ) : legend_list.append("m = %i" % m)
            elif(label == 'ky') : legend_list.append("ky = %.1f" % (m / scale)) 
            else                : print "Name Error"
    
      leg = pylab.legend(legend_list, loc=leg_loc, ncol=ncol, mode="expand").draw_frame(0)
 
    else : raise TypeError("Wrong argument for dir : " + str(dir))
    


    pylab.xlabel("Time")
    pylab.xlim((0.,max(T)))
    
    ax = pylab.gca()
    ax.set_yticks([-np.pi, -np.pi/2.,0.,np.pi/2., np.pi])
    ax.set_yticklabels(['$-\\pi$','$-\\pi/2$','$0$', '$\\pi/2.$', '$\\pi$'])
    pylab.ylim((-3.5,3.5))



    if    field == "phi" : pylab.ylabel("Mode Phase $|\\phi|^2$")
    elif  field == "A"   : pylab.ylabel("Mode Phase $|A_\\parallel|^2$")
    elif  field == "B"   : pylab.ylabel("Mode Phase $|B_\\parallel|^2$")
    else : raise TypeError("Wrong argument for field : " + str(field))
    
    return pl, leg
Esempio n. 19
0
def plotTimeEvolutionModePhase(fileh5, **kwargs):
    """
        Plots time evolution of mode power.


        Optional keyword arguments:

        Keyword           Description
        ===============   ==============================================
         *dir*             Direction 'X' (for radial) or 'Y' for poloidal
         *modes*           List of modes (default plot modes). 
                           e.g. modes = [1,4,5]         - to plot all modes
                                modes = range(Nky)[::2] - to plot every second mode
         *field*           'phi' electric potential
                           'A' parallel magnetic vector potential
                           'B' parallel magnetic field
         *dir*             Direction 'X' (for radial) or 'Y' for poloidal
         *doCFL*           clear previous figure
         *label*           'ky' or 'm'
         *offset*          Offset due to zeroset to 2 .

    """
    D = gkcData.getDomain(fileh5)

    doCFL = kwargs.pop('doCFL', True)
    leg_loc = kwargs.pop('loc', 'best')
    dir = kwargs.pop('dir', 'Y')
    modes = kwargs.pop('modes', range(D['Nky']))
    field = kwargs.pop('field', 'phi')
    n_offset = kwargs.pop('offset', 2)
    label = kwargs.pop('label', 'ky')
    leg_loc = kwargs.pop('loc', 'best')
    ncol = kwargs.pop('ncol', 2)

    if doCFL == True: pylab.clf()

    T = gkcData.getTime(fileh5.root.Analysis.PhaseShift.Time)[2:, 1]

    if field == 'phi': n_field = 0
    elif field == 'A': n_field = 1
    elif field == 'B': n_field = 2
    else: raise TypeError("Wrong argument for field : " + str(field))

    if (dir == 'X'):
        pl = plot(T, fileh5.root.Analysis.PhaseShift.X[n_field, :numModes,
                                                       2:].T)
        legend_list = []
        for i in range(
                len(fileh5.root.Analysis.PhaseShift.X[n_field, :numModes, 0])):
            legend_list.append("kx = %i" % i)
        leg = pylab.legend(legend_list, loc='lower right', ncol=2)
        leg.draw_frame(0)

    elif (dir == 'Y'):

        scale = fileh5.root.Grid._v_attrs.Ly / (2. * np.pi)

        legend_list = []

        for m in modes:

            data = fileh5.root.Analysis.PhaseShift.Y[n_field, m, n_offset:]

            # set jump value to nan so it is not plotted, (can we speed up using ma ?)
            data_m = []
            for n in range(len(data[:-1])):
                if abs(data[n] - data[n + 1]) < 1.: data_m.append(data[n])
                else: data_m.append(float('nan'))
            data_m.append(data[-1])
            data_m = np.array(data_m)

            pl = pylab.plot(T, data_m)
            if (label == 'm'): legend_list.append("m = %i" % m)
            elif (label == 'ky'): legend_list.append("ky = %.1f" % (m / scale))
            else: print "Name Error"

        leg = pylab.legend(legend_list, loc=leg_loc, ncol=ncol,
                           mode="expand").draw_frame(0)

    else:
        raise TypeError("Wrong argument for dir : " + str(dir))

    pylab.xlabel("Time")
    pylab.xlim((0., max(T)))

    ax = pylab.gca()
    ax.set_yticks([-np.pi, -np.pi / 2., 0., np.pi / 2., np.pi])
    ax.set_yticklabels(['$-\\pi$', '$-\\pi/2$', '$0$', '$\\pi/2.$', '$\\pi$'])
    pylab.ylim((-3.5, 3.5))

    if field == "phi": pylab.ylabel("Mode Phase $|\\phi|^2$")
    elif field == "A": pylab.ylabel("Mode Phase $|A_\\parallel|^2$")
    elif field == "B": pylab.ylabel("Mode Phase $|B_\\parallel|^2$")
    else: raise TypeError("Wrong argument for field : " + str(field))

    return pl, leg
Esempio n. 20
0
def plotFrequencyGrowthrates(fileh5, which='b', markline="-", **kwargs):
    """
        Plots time evolution of mode power.


        Optional keyword arguments:

        Keyword           Description
        ===============   ==============================================
         *dir*             Direction 'X' (for radial) or 'Y' for poloidal
         *modes*           List of modes (default plot modes). 
                           e.g. modes = [1,4,5]         - to plot all modes
                                modes = range(Nky)[::2] - to plot every second mode
         *field*           'phi' electric potential
                           'A' parallel magnetic vector potential
                           'B' parallel magnetic field
         *dir*             Direction 'X' (for radial) or 'Y' for poloidal
         *doCFL*           clear previous figure
         *label*           'ky' or 'm'
         *offset*          Offset due to zeroset to 2 .

    """
    D = gkcData.getDomain(fileh5)

    doCLF = kwargs.pop('doCLF', True)
    dir = kwargs.pop('dir', 'Y')
    modes = kwargs.pop('modes', range(D['Nky']))
    field = kwargs.pop('field', 'phi')
    n_offset = kwargs.pop('offset', 2)
    label = kwargs.pop('label', 'ky')
    leg_loc = kwargs.pop('loc', 'best')
    start = kwargs.pop('start', 1)
    stop = kwargs.pop('stop', -1)
    m = kwargs.pop('m', 0)
    useLog = kwargs.pop('useLog', True)

    if useLog == True: pf = pylab.semilogx
    else: pf = pylab.plot

    if doCLF == True: pylab.clf()

    T = gkcData.getTime(fileh5.root.Analysis.PowerSpectrum.Time)[:, 1]

    if field == 'phi': n_field = 0
    elif field == 'A': n_field = 1
    elif field == 'B': n_field = 2
    else: raise TypeError("Wrong argument for field : " + str(field))

    if (dir == 'X'):
        pl = pf(T, fileh5.root.Analysis.PowerSpectrum.X[n_field, :numModes,
                                                        2:].T)
        legend_list = []
        for i in range(
                len(fileh5.root.Analysis.PowerSpectrum.X[n_field, :numModes,
                                                         0])):
            legend_list.append("kx = %i" % i)
        leg = pylab.legend(legend_list, loc='lower right', ncol=2)
        leg.draw_frame(0)

    elif (dir == 'Y'):

        scale = fileh5.root.Grid._v_attrs.Ly / (2. * np.pi)

        legend_list = []
        if which == 'i' or which == 'b':
            power = fileh5.root.Analysis.PowerSpectrum.Y[n_field, :, :]
            growthrates = getGrowthrate(T, power, start, stop)
            pl = pf(D['ky'], growthrates, "s" + markline, label='$\\gamma$')
        if which == 'r' or which == 'b':
            shift = fileh5.root.Analysis.PhaseShift.Y[n_field, :, :]
            frequency = getFrequency(T, shift, start, stop)
            pl = pf(D['ky'], frequency, "v" + markline, label='$\\omega_r$')
        #if which !='r' or which != 'i' or which !='b':
        #      raise TypeError("Wrong argument for which (r/i/b) : " + str(dir))

        #pylab.twinx()
        pylab.xlim((0.8 * min(D['ky']), 1.2 * max(D['ky'])))

    else:
        raise TypeError("Wrong argument for dir : " + str(dir))

    pylab.xlabel("$k_y$")

    leg = pylab.legend(loc=leg_loc, ncol=1, mode="expand").draw_frame(0)

    gkcStyle.plotZeroLine(0.8 * min(D['ky']), 1.2 * max(D['ky']))

    pylab.ylabel("Growthrate $\\gamma(k_y)$ / Frequency $\\omega_r(k_y)$")
Esempio n. 21
0
def plotFrequencySpectra(fileh5, which='b', markline="-", **kwargs):
    """
        Plots time evolution of mode power.


        Optional keyword arguments:

        Keyword           Description
        ===============   ==============================================
         *dir*             Direction 'X' (for radial) or 'Y' for poloidal
         *modes*           List of modes (default plot modes). 
                           e.g. modes = [1,4,5]         - to plot all modes
                                modes = range(Nky)[::2] - to plot every second mode
         *field*           'phi' electric potential
                           'A' parallel magnetic vector potential
                           'B' parallel magnetic field
         *dir*             Direction 'X' (for radial) or 'Y' for poloidal
         *doCFL*           clear previous figure
         *label*           'ky' or 'm'
         *offset*          Offset due to zeroset to 2 .

    """
    import gkcData
    import gkcStyle

    import pylab
    import numpy as np
    
    D = gkcData.getDomain(fileh5)

    doCFL    = kwargs.pop('doCFL', True)
    dir      = kwargs.pop('dir', 'Y')
    modes    = kwargs.pop('modes' , range(D['Nky']))
    field    = kwargs.pop('field', 'phi')  
    n_offset = kwargs.pop('offset', 2)  
    label    = kwargs.pop('label', 'ky')  
    leg_loc  = kwargs.pop('loc', 'best')  
    start    = kwargs.pop('start', 1)  
    stop     = kwargs.pop('stop', -1)  
    

    if doCFL == True : pylab.clf()
    
    T = gkcData.getTime(fileh5.root.Analysis.PowerSpectrum.Time)[:,1]
    
    if   field == 'phi' : n_field = 0
    elif field == 'A'   : n_field = 1
    elif field == 'B'   : n_field = 2
    else : raise TypeError("Wrong argument for field : " + str(field))

    if(dir == 'X'):
        raise TypeError("Not implemented for X-direction")
    elif(dir == 'Y'):
        
      shift = fileh5.root.Analysis.PhaseShift.Y   [n_field, :,start:stop]
      print "Using data from T=", T[start], " to T = ", T[stop]
      freq = [] 
      for nky in np.arange(1,len(D['ky'])):
        time_series = np.sin(shift[nky,:])
        FS = np.fft.rfft(time_series)
      
        # Not only if we have constant time step !
        freq.append(abs(FS))
        fftfreq = np.fft.fftfreq(len(abs(np.fft.fftshift(FS))), d = (T[-10]-T[-11])) 
    
      freq = np.array(freq)
      print np.shape(fftfreq), " 2 : ", np.shape(D['ky'][1:]), np.shape(freq)
      pylab.contourf(D['ky'][1:], np.fft.fftshift(fftfreq), freq.T, 100, cmap=pylab.cm.jet) 
      pylab.xlim((D['ky'][1], D['ky'][-1]))
      pylab.ylim((min(fftfreq), max(fftfreq)))
      pylab.colorbar()
    else : raise TypeError("Wrong argument for dir : " + str(dir))
    pylab.gca().set_xscale("log") 
     
    pylab.xlabel("$k_y$")
   
    gkcStyle.plotZeroLine(D['ky'][1], D['ky'][-1], color='r')

    pylab.ylabel("Frequency $\\omega_r(k_y)$")
Esempio n. 22
0
results = []

##################### Call for adiabatic case ######################

# Open Files and extract frequency and growthrates

fileh5 = tables.openFile(sys.argv[1])

isKinetic = (len(fileh5.root.Species.cols[:]) == 3)

rhoLn = fileh5.root.Species.cols.w_n[1]
rhoLT = fileh5.root.Species.cols.w_T[1]

#kp      = fileh5.root.Species.cols.w_T[1]
D = gkcData.getDomain(fileh5)

omega_sim = gkcLinear.getFrequencyGrowthrates(fileh5, start=50, stop=-1)

# get Theory
ky_list = np.logspace(np.log10(D['ky'][1]), np.log10(D['ky'][-1]), 256)

if (isKinetic):
    mode = 'EM'
    m_ie = fileh5.root.Species.cols.Mass[1] / fileh5.root.Species.cols.Mass[2]
else:
    mode = 'ETG'
    m_ie = 1.

param = {  'disp' : 'GyroSlab', 'mode' : mode, 'beta'  : 1.0e-5,  'tau' : 1., 'lambdaD' : 1.e-5, 'rhoLn' : rhoLn, \
          'rhoLT' : rhoLT, 'kx' : np.sqrt(2.) * 1.e-1 , 'kp' : 2. * np.sqrt(2.) * 1.e-3, 'm_ie' : m_ie, 'adiab' : lambda x : 1 }
Esempio n. 23
0

##################### Call for adiabatic case ######################

# Open Files and extract frequency and growthrates

fileh5  = tables.openFile(sys.argv[1])


isKinetic = (len(fileh5.root.Species.cols[:]) == 3)

rhoLn   = fileh5.root.Species.cols.w_n[1]
rhoLT   = fileh5.root.Species.cols.w_T[1]

#kp      = fileh5.root.Species.cols.w_T[1]
D = gkcData.getDomain(fileh5)

omega_sim =  gkcLinear.getFrequencyGrowthrates(fileh5, start=50, stop=-1)

# get Theory
ky_list = np.logspace(np.log10(D['ky'][1]), np.log10(D['ky'][-1]), 256)

if (isKinetic) : 
     mode = 'EM'
     m_ie = fileh5.root.Species.cols.Mass[1]/fileh5.root.Species.cols.Mass[2]
else           :
     mode = 'ETG'
     m_ie = 1.

param = {  'disp' : 'GyroSlab', 'mode' : mode, 'beta'  : 1.0e-5,  'tau' : 1., 'lambdaD' : 1.e-5, 'rhoLn' : rhoLn, \
          'rhoLT' : rhoLT, 'kx' : np.sqrt(2.) * 1.e-1 , 'kp' : 2. * np.sqrt(2.) * 1.e-3, 'm_ie' : m_ie, 'adiab' : lambda x : 1 }
Esempio n. 24
0
def plotModeStructure(fileh5, mode, part = "b", phaseCorrect=True, **kwargs):
    """
        Plots time evolution of mode power.


        Optional keyword arguments:

        Keyword           Description
        ===============   ==============================================
         *dir*             Direction 'X' (for radial) or 'Y' for poloidal
         *modes*           List of modes (default plot modes). 
                           e.g. modes = [1,4,5]         - to plot all modes
                                modes = range(Nky)[::2] - to plot every second mode
         *field*           'phi' electric potential
                           'A' parallel magnetic vector potential
                           'B' parallel magnetic field
         *dir*             Direction 'X' (for radial) or 'Y' for poloidal
         *doCFL*           clear previous figure
         *label*           'ky' or 'm'
         *offset*          Offset due to zeroset to 2 .

    """
    D = gkcData.getDomain(fileh5)
    
    
    doCFL    = kwargs.pop('doCFL', True)
    field    = kwargs.pop('field', 'phi')  
    Z        = kwargs.pop('Z', 0)  
    frame    = kwargs.pop('frame', -1)  
    label    = kwargs.pop('label', "")  
    norm     = kwargs.pop('norm', 'max')  
    m        = kwargs.pop('m', 0)  
    phase    = kwargs.pop('phase', 0.)  
    color    = kwargs.pop('color', '')  


    phase = np.exp(1.j * phase)
    
    if   field == 'phi' : 
      data_X = fileh5.root.Visualization.Phi[Z,mode,:,frame]
      y_label = '$\\phi(x)$'
    elif field == 'A'   : 
      data_X = fileh5.root.Visualization.Ap[Z,mode,:,frame]
      n_field = 2
      y_label = '$A_\parallel(x)$'
    elif field == 'B'   : 
      n_field = 2
      data_X = fileh5.root.Visualization.Bp[Z,mode,:,frame]
      y_label = '$B_\\parallel(x)$'
    else : raise TypeError("Wrong argument for field : " + str(field))
      
    print "Mode Structure at T = ", gkcData.getTime(fileh5.root.Visualization.Time)[frame,:]

    # Normalization
    def Normalize_data(data):
      print norm
      if    norm == 'sum2' : return np.sum(abs(data))
      elif  norm == 'max'  : return abs(data).max()
      else         : raise TypeError("No such normalization")

    if(phaseCorrect == True): 
            # Calculate phase 
            phase_shift = np.arctan2(np.sum(np.imag(np.sum(data_X))), np.real(np.sum(data_X)))
            print "phaseCorrect = True : Correcting for phase ", phase_shift
            data_X = data_X * np.exp(- 1.j * phase_shift)
  

    # Normalization is to real part
    if part == "a" : 
                     if color=='' : color='g'
                     data_X = abs(data_X)     / Normalize_data(data_X)
                     pylab.plot(D['X'], data_X, color=color, label=label)
    if part in [ 'r' , 'b' ]:
                     if color=='' : color='r'
                     data_X = np.real(data_X * phase) / Normalize_data(np.real(data_X))
                     pylab.plot(D['X'], data_X, 'o-', color=color, label=label, markersize=8., markeredgecolor='None')
    if part in [ 'i', 'b' ] : 
                     if color=='' : color=gkcStyle.color_indigo
                     data_X = np.imag(data_X * phase) / Normalize_data(np.real(data_X)) 
                     pylab.plot(D['X'], data_X, 's-', color=color, label=label, markersize=8., markeredgecolor='None')
    #else : raise TypeError("Wrong argument for part : " + str(part))


    if    field == "phi" : pylab.ylabel("Mode Power $|\\phi|^2$")
    elif  field == "A"   : pylab.ylabel("Mode Power $|A_\\parallel|^2$")
    elif  field == "B"   : pylab.ylabel("Mode Power $|B_\\parallel|^2$")
    else : raise TypeError("Wrong argument for field : " + str(field))

    pylab.xlim((min(D['X']), max(D['X'])))
    pylab.xlabel("X")

    
    pylab.ylabel(y_label)
Esempio n. 25
0
def plotModeStructure(fileh5, mode, part="b", phaseCorrect=True, **kwargs):
    """
        Plots time evolution of mode power.


        Optional keyword arguments:

        Keyword           Description
        ===============   ==============================================
         *dir*             Direction 'X' (for radial) or 'Y' for poloidal
         *modes*           List of modes (default plot modes). 
                           e.g. modes = [1,4,5]         - to plot all modes
                                modes = range(Nky)[::2] - to plot every second mode
         *field*           'phi' electric potential
                           'A' parallel magnetic vector potential
                           'B' parallel magnetic field
         *dir*             Direction 'X' (for radial) or 'Y' for poloidal
         *doCFL*           clear previous figure
         *label*           'ky' or 'm'
         *offset*          Offset due to zeroset to 2 .

    """
    D = gkcData.getDomain(fileh5)

    doCFL = kwargs.pop('doCFL', True)
    field = kwargs.pop('field', 'phi')
    Z = kwargs.pop('Z', 0)
    frame = kwargs.pop('frame', -1)
    label = kwargs.pop('label', "")
    norm = kwargs.pop('norm', 'max')
    m = kwargs.pop('m', 0)
    phase = kwargs.pop('phase', 0.)
    color = kwargs.pop('color', '')

    phase = np.exp(1.j * phase)

    if field == 'phi':
        data_X = fileh5.root.Visualization.Phi[Z, mode, :, frame]
        y_label = '$\\phi(x)$'
    elif field == 'A':
        data_X = fileh5.root.Visualization.Ap[Z, mode, :, frame]
        n_field = 2
        y_label = '$A_\parallel(x)$'
    elif field == 'B':
        n_field = 2
        data_X = fileh5.root.Visualization.Bp[Z, mode, :, frame]
        y_label = '$B_\\parallel(x)$'
    else:
        raise TypeError("Wrong argument for field : " + str(field))

    print "Mode Structure at T = ", gkcData.getTime(
        fileh5.root.Visualization.Time)[frame, :]

    # Normalization
    def Normalize_data(data):
        print norm
        if norm == 'sum2': return np.sum(abs(data))
        elif norm == 'max': return abs(data).max()
        else: raise TypeError("No such normalization")

    if (phaseCorrect == True):
        # Calculate phase
        phase_shift = np.arctan2(np.sum(np.imag(np.sum(data_X))),
                                 np.real(np.sum(data_X)))
        print "phaseCorrect = True : Correcting for phase ", phase_shift
        data_X = data_X * np.exp(-1.j * phase_shift)

    # Normalization is to real part
    if part == "a":
        if color == '': color = 'g'
        data_X = abs(data_X) / Normalize_data(data_X)
        pylab.plot(D['X'], data_X, color=color, label=label)
    if part in ['r', 'b']:
        if color == '': color = 'r'
        data_X = np.real(data_X * phase) / Normalize_data(np.real(data_X))
        pylab.plot(D['X'],
                   data_X,
                   'o-',
                   color=color,
                   label=label,
                   markersize=8.,
                   markeredgecolor='None')
    if part in ['i', 'b']:
        if color == '': color = gkcStyle.color_indigo
        data_X = np.imag(data_X * phase) / Normalize_data(np.real(data_X))
        pylab.plot(D['X'],
                   data_X,
                   's-',
                   color=color,
                   label=label,
                   markersize=8.,
                   markeredgecolor='None')
    #else : raise TypeError("Wrong argument for part : " + str(part))

    if field == "phi": pylab.ylabel("Mode Power $|\\phi|^2$")
    elif field == "A": pylab.ylabel("Mode Power $|A_\\parallel|^2$")
    elif field == "B": pylab.ylabel("Mode Power $|B_\\parallel|^2$")
    else: raise TypeError("Wrong argument for field : " + str(field))

    pylab.xlim((min(D['X']), max(D['X'])))
    pylab.xlabel("X")

    pylab.ylabel(y_label)
Esempio n. 26
0
def plotTimeEvolutionModePower(fileh5, **kwargs):
    """
        Plots time evolution of mode power.


        Optional keyword arguments:

        Keyword           Description
        ===============   ==============================================
         *dir*             Direction 'X' (for radial) or 'Y' for poloidal
         *modes*           List of modes (default plot modes). 
                           e.g. modes = [1,4,5]         - to plot all modes
                                modes = range(Nky)[::2] - to plot every second mode
         *field*           'phi' electric potential
                           'A' parallel magnetic vector potential
                           'B' parallel magnetic field
         *dir*             Direction 'X' (for radial) or 'Y' for poloidal
         *doCFL*           clear previous figure
         *label*           'ky' or 'm'
         *offset*          Offset due to zeroset to 2 .

    """
    D = gkcData.getDomain(fileh5)
    
    doCFL    = kwargs.pop('doCFL', True)
    doLog    = kwargs.pop('doLog', True)
    dir      = kwargs.pop('dir', 'Y')
    modes    = kwargs.pop('modes' , range(D['Nky']))
    field    = kwargs.pop('field', 'phi')  
    n_offset = kwargs.pop('offset', 3)  
    label    = kwargs.pop('label', 'k')  
    leg_loc  = kwargs.pop('loc', 'best')  
    ncol     = kwargs.pop('ncol', 3)  
    showLegend = kwargs.pop('showLegend', True)  
    
    if doCFL == True : pylab.clf()
    
    T = gkcData.getTime(fileh5.root.Analysis.PowerSpectrum.Time)[:,1]
    
    if   field == 'phi' : n_field = 0
    elif field == 'A'   : n_field = 1
    elif field == 'B'   : n_field = 2
    else : raise TypeError("Wrong argument for field : " + str(field))

    legend_list = []
    if(dir == 'X'):
      
      for n in modes:
            pl = pylab.semilogy(T[n_offset:], fileh5.root.Analysis.PowerSpectrum.X[n_field, n,n_offset:].T)
            if  (label == 'm' ) : legend_list.append("n = %i" % n)
            elif(label == 'k')  : legend_list.append("kx = %.1f" % (D['kx'][n])) 
            else                : print "Name Error"
    
    elif(dir == 'Y'):

      legend_list = []
      
      for m in modes:
        if(doLog) : pylab.semilogy(T[n_offset:], fileh5.root.Analysis.PowerSpectrum.Y[n_field, m,n_offset:].T, label='$k_y^{(%i)} = %.2f$' % (m, D['ky'][m]))
        else      : pylab.plot(T[n_offset:], fileh5.root.Analysis.PowerSpectrum.Y[n_field, m,n_offset:].T, label='$k_y^{(%i)} = %.2f$' % (m, D['ky'][m]))
 
    else : raise TypeError("Wrong argument for dir : " + str(dir))
     
    #if showLegend == True:
    leg = pylab.legend(loc=leg_loc, ncol=ncol, mode="expand").draw_frame(0)
     
    pylab.xlabel("Time")
    pylab.xlim((0.,max(T)))


    if    field == "phi" : pylab.ylabel("Mode Power $|\\phi|^2$")
    elif  field == "A"   : pylab.ylabel("Mode Power $|A_\\parallel|^2$")
    elif  field == "B"   : pylab.ylabel("Mode Power $|B_\\parallel|^2$")
    else : raise TypeError("Wrong argument for field : " + str(field))
Esempio n. 27
0
def plotInstantGrowthrates(fileh5, **kwargs):
    """
        Plots instant growthrates of mode power

        Optional keyword arguments:

        Keyword           Description
        ===============   ==============================================
         *dir*             Direction 'X' (for radial) or 'Y' for poloidal
         *modes*           List of modes (default plot modes). 
                           e.g. modes = [1,4,5]         - to plot all modes
                                modes = range(Nky)[::2] - to plot every second mode
         *field*           'phi' electric potential
                           'A' parallel magnetic vector potential
                           'B' parallel magnetic field
         *dir*             Direction 'X' (for radial) or 'Y' for poloidal
         *doCFL*           clear previous figure
         *label*           'ky' or 'm'
         *offset*          Offset due to zeroset to 2 .

    """
    import scipy.ndimage 
    import scipy.interpolate
    
    D = gkcData.getDomain(fileh5)
    
    doCFL    = kwargs.pop('doCFL', True)
    dir      = kwargs.pop('dir', 'Y')
    modes    = kwargs.pop('modes' , range(D['Nky']))
    field    = kwargs.pop('field', 'phi')  
    n_offset = kwargs.pop('offset', 2)  
    label    = kwargs.pop('label', 'ky')  
    leg_loc  = kwargs.pop('loc', 'best')  
    off      = kwargs.pop('off', 2)  
    
    sigma      = kwargs.pop('sigma', 10)  
    #filterType = kwargs.pop('filterType', 'hanning')  
    
    if doCFL == True : pylab.clf()

    T = gkcData.getTime(fileh5.root.Analysis.PowerSpectrum.Time)[:,1]

    # TimeStep is irregular thus needs to cast into regular 
    def cast2Equidistant(T, Var):
        f = scipy.interpolate.interp1d(T, Var)
        Tnew = np.linspace(min(T), max(T), 1000)
        return Tnew, f(Tnew)

    if   field == 'phi' : n_field = 0
    elif field == 'A'   : n_field = 1
    elif field == 'B'   : n_field = 2
    else : raise TypeError("Wrong argument for field : " + str(field))
    
    

    if(dir == 'X'):

      plot(T, grad)
      legend_list = []
      for i in range(len(fileh5.root.Analysis.PowerSpectrum.X[n_field,:numModes,0])):
        legend_list.append("kx = %i" % i)
      
      leg = legend(legend_list, loc='best', ncol=3)
      leg.draw_frame(0)
    
    if(dir == 'Y'):
      for m in modes:
        Var =   fileh5.root.Analysis.PowerSpectrum.Y[n_field,m,off:]
        Tn, V = cast2Equidistant(T[off:], np.log(Var))
        # Use NdImage for line-smoothening (convolution with gaussian kernel)
        V   = scipy.ndimage.gaussian_filter(V, sigma=sigma, mode='nearest')
        gamma = np.gradient(V, Tn[1]-Tn[0])
        pylab.plot(Tn, gamma, "-", label='$k_y^{(%i)} = %.2f$' % (m, D['ky'][m]))#, color=gkcStyle.markers_C[m])
      
    leg = pylab.legend(loc='best', ncol=3).draw_frame(0)
    
    
    pylab.xlabel("Time")
    pylab.xlim((0.,max(T)))

    pylab.ylabel("Instant Mode Growth $\gamma$")
Esempio n. 28
0
def plotFrequencyGrowthrates(fileh5, which='b', markline="-", **kwargs):
    """
        Plots time evolution of mode power.


        Optional keyword arguments:

        Keyword           Description
        ===============   ==============================================
         *dir*             Direction 'X' (for radial) or 'Y' for poloidal
         *modes*           List of modes (default plot modes). 
                           e.g. modes = [1,4,5]         - to plot all modes
                                modes = range(Nky)[::2] - to plot every second mode
         *field*           'phi' electric potential
                           'A' parallel magnetic vector potential
                           'B' parallel magnetic field
         *dir*             Direction 'X' (for radial) or 'Y' for poloidal
         *doCFL*           clear previous figure
         *label*           'ky' or 'm'
         *offset*          Offset due to zeroset to 2 .

    """
    D = gkcData.getDomain(fileh5)
    
    doCFL    = kwargs.pop('doCFL', True)
    dir      = kwargs.pop('dir', 'Y')
    modes    = kwargs.pop('modes' , range(D['Nky']))
    field    = kwargs.pop('field', 'phi')  
    n_offset = kwargs.pop('offset', 2)  
    label    = kwargs.pop('label', 'ky')  
    leg_loc  = kwargs.pop('loc', 'best')  
    start    = kwargs.pop('start', 1)  
    stop     = kwargs.pop('stop', -1)  
    

    if doCFL == True : pylab.clf()
    
    T = gkcData.getTime(fileh5.root.Analysis.PowerSpectrum.Time)[:,1]
        
    print "Fitting from T : ", T[start], " - ", T[stop]
    
    if   field == 'phi' : n_field = 0
    elif field == 'A'   : n_field = 1
    elif field == 'B'   : n_field = 2
    else : raise TypeError("Wrong argument for field : " + str(field))

    if(dir == 'X'):
      pl = semilogy(T, fileh5.root.Analysis.PowerSpectrum.X[n_field,:numModes,2:].T)
      legend_list = []
      for i in range(len(fileh5.root.Analysis.PowerSpectrum.X[n_field, :numModes,0])):
        legend_list.append("kx = %i" % i)
      leg = pylab.legend(legend_list, loc='lower right', ncol=2)
      leg.draw_frame(0)
    
    elif(dir == 'Y'):

      scale = fileh5.root.Grid._v_attrs.Ly/(2. * np.pi)
      
      legend_list = []
      if   which=='i' or which=='b':
        power = fileh5.root.Analysis.PowerSpectrum.Y[n_field, :,:]
        growthrates = getGrowthrate(T,power, start,stop, dir='Y')
        pl = pylab.semilogx(D['ky'], growthrates, "s" + markline, label='$\\gamma$')
      if which=='r' or which=='b':
        shift = fileh5.root.Analysis.PhaseShift.Y   [n_field, :,:]
        frequency   = getFrequency(T,shift, start,stop, dir='Y')
        pl = pylab.semilogx(D['ky'], frequency, "v" + markline, label='$\\omega_r$')
      #if which !='r' or which != 'i' or which !='b':
      #      raise TypeError("Wrong argument for which (r/i/b) : " + str(dir))
    
      #pylab.twinx()
      pylab.xlim((0.8*min(D['ky']), 1.2*max(D['ky'])))

    
      
    else : raise TypeError("Wrong argument for dir : " + str(dir))
     
    pylab.xlabel("$k_y$")
   
    leg = pylab.legend(loc=leg_loc, ncol=1, mode="expand").draw_frame(0)

    gkcStyle.plotZeroLine(0.8*min(D['ky']), 1.2*max(D['ky']))

    pylab.ylabel("Growthrate $\\gamma(k_y)$ / Frequency $\\omega_r(k_y)$")
Esempio n. 29
0
def plotFrequencySpectra(fileh5, which='b', markline="-", **kwargs):
    """
        Plots time evolution of mode power.


        Optional keyword arguments:

        Keyword           Description
        ===============   ==============================================
         *dir*             Direction 'X' (for radial) or 'Y' for poloidal
         *modes*           List of modes (default plot modes). 
                           e.g. modes = [1,4,5]         - to plot all modes
                                modes = range(Nky)[::2] - to plot every second mode
         *field*           'phi' electric potential
                           'A' parallel magnetic vector potential
                           'B' parallel magnetic field
         *dir*             Direction 'X' (for radial) or 'Y' for poloidal
         *doCFL*           clear previous figure
         *label*           'ky' or 'm'
         *offset*          Offset due to zeroset to 2 .

    """
    import gkcData
    import gkcStyle

    import pylab
    import numpy as np

    D = gkcData.getDomain(fileh5)

    doCFL = kwargs.pop('doCFL', True)
    dir = kwargs.pop('dir', 'Y')
    modes = kwargs.pop('modes', range(D['Nky']))
    field = kwargs.pop('field', 'phi')
    n_offset = kwargs.pop('offset', 2)
    label = kwargs.pop('label', 'ky')
    leg_loc = kwargs.pop('loc', 'best')
    start = kwargs.pop('start', 1)
    stop = kwargs.pop('stop', -1)

    if doCFL == True: pylab.clf()

    T = gkcData.getTime(fileh5.root.Analysis.PowerSpectrum.Time)[:, 1]

    if field == 'phi': n_field = 0
    elif field == 'A': n_field = 1
    elif field == 'B': n_field = 2
    else: raise TypeError("Wrong argument for field : " + str(field))

    if (dir == 'X'):
        raise TypeError("Not implemented for X-direction")
    elif (dir == 'Y'):

        shift = fileh5.root.Analysis.PhaseShift.Y[n_field, :, start:stop]
        print "Using data from T=", T[start], " to T = ", T[stop]
        freq = []
        for nky in np.arange(1, len(D['ky'])):
            time_series = np.sin(shift[nky, :])
            FS = np.fft.rfft(time_series)

            # Not only if we have constant time step !
            freq.append(abs(FS))
            fftfreq = np.fft.fftfreq(len(abs(np.fft.fftshift(FS))),
                                     d=(T[-10] - T[-11]))

        freq = np.array(freq)
        print np.shape(fftfreq), " 2 : ", np.shape(D['ky'][1:]), np.shape(freq)
        pylab.contourf(D['ky'][1:],
                       np.fft.fftshift(fftfreq),
                       freq.T,
                       100,
                       cmap=pylab.cm.jet)
        pylab.xlim((D['ky'][1], D['ky'][-1]))
        pylab.ylim((min(fftfreq), max(fftfreq)))
        pylab.colorbar()
    else:
        raise TypeError("Wrong argument for dir : " + str(dir))
    pylab.gca().set_xscale("log")

    pylab.xlabel("$k_y$")

    gkcStyle.plotZeroLine(D['ky'][1], D['ky'][-1], color='r')

    pylab.ylabel("Frequency $\\omega_r(k_y)$")
Esempio n. 30
0
def plotAveragedFluxes(fileh5, var='H', **kwargs):
    """
        Plots time evolution of mode power.


        Optional keyword arguments:

        Keyword           Description
        ===============   ==============================================
         *dir*             Direction 'X' (for radial) or 'Y' for poloidal
         *modes*           List of modes (default plot modes). 
                           e.g. modes = [1,4,5]         - to plot all modes
                                modes = range(Nky)[::2] - to plot every second mode
         *field*           'phi' electric potential
                           'A' parallel magnetic vector potential
                           'B' parallel magnetic field
         *dir*             Direction 'X' (for radial) or 'Y' for poloidal
         *doCFL*           clear previous figure
         *label*           'ky' or 'm'
         *offset*          Offset due to zeroset to 2 .

    """
    import gkcData
    import gkcStyle

    import pylab
    import numpy as np
    
    D = gkcData.getDomain(fileh5)

    doCFL    = kwargs.pop('doCFL', True)
    start    = kwargs.pop('start', 1)  
    stop     = kwargs.pop('stop', -1)  
    scale    = kwargs.pop('scale', 'ky')  
    field    = kwargs.pop('field', 'phi')  
    

    if doCFL == True : pylab.clf()
    
    if   field == 'phi' : n_field = 0
    elif field == 'A'   : n_field = 1
    elif field == 'B'   : n_field = 2
    else : raise TypeError("Wrong argument for field : " + str(field))
    
    T = gkcData.getTime(fileh5.root.Analysis.PowerSpectrum.Time)[:,1]

    # Averaged over Z and start stop
    if   var == 'P' : 
      data = np.mean(fileh5.root.Analysis.Flux.Density[n_field,:,:,start:stop], axis=2)
      ylabel = "Particle Flux $k_y \\Gamma/\\Gamma_{gB}\,(ky)$"
    elif var == 'H' : 
      data = np.mean(fileh5.root.Analysis.Flux.Heat   [n_field,:,:,start:stop], axis=2)
      #ylabel = "Heat Flux $Q/Q_\\textrm{gB}(k_y)$"
      ylabel = "Heat Flux $k_y Q/Q_{gB}\,(k_y)$"
    else : raise TypeError("No such variable")
     
    if scale == 'ky' : gor_ky = D['ky'][1:]
    else             : gor_ky = 1.

    for s in range(D['Ns']):
      species_name = fileh5.root.Species.cols.Name[s+1]
      pylab.semilogx(D['ky'][1:], gor_ky * data[1:,s], gkcStyle.markers_D[s]+'-', label=species_name, color=gkcStyle.markers_C[s], markersize=7.)
    
    pylab.xlabel("$k_y \\rho_i$")
    pylab.ylabel(ylabel)
  
    pylab.legend(ncol=2).draw_frame(0)
    pylab.xlim((0.8*D['ky'][1], 1.2*D['ky'][-1]))
Esempio n. 31
0
def plotInstantGrowthrates(fileh5, **kwargs):
    """
        Plots instant growthrates of mode power

        Optional keyword arguments:

        Keyword           Description
        ===============   ==============================================
         *dir*             Direction 'X' (for radial) or 'Y' for poloidal
         *modes*           List of modes (default plot modes). 
                           e.g. modes = [1,4,5]         - to plot all modes
                                modes = range(Nky)[::2] - to plot every second mode
         *field*           'phi' electric potential
                           'A' parallel magnetic vector potential
                           'B' parallel magnetic field
         *dir*             Direction 'X' (for radial) or 'Y' for poloidal
         *doCFL*           clear previous figure
         *label*           'ky' or 'm'
         *offset*          Offset due to zeroset to 2 .

    """
    import scipy.ndimage
    import scipy.interpolate

    D = gkcData.getDomain(fileh5)

    doCFL = kwargs.pop('doCFL', True)
    dir = kwargs.pop('dir', 'Y')
    modes = kwargs.pop('modes', range(D['Nky']))
    field = kwargs.pop('field', 'phi')
    n_offset = kwargs.pop('offset', 2)
    label = kwargs.pop('label', 'ky')
    leg_loc = kwargs.pop('loc', 'best')
    off = kwargs.pop('off', 2)

    sigma = kwargs.pop('sigma', 10)
    #filterType = kwargs.pop('filterType', 'hanning')

    if doCFL == True: pylab.clf()

    T = gkcData.getTime(fileh5.root.Analysis.PowerSpectrum.Time)[:, 1]

    # TimeStep is irregular thus needs to cast into regular
    def cast2Equidistant(T, Var):
        f = scipy.interpolate.interp1d(T, Var)
        Tnew = np.linspace(min(T), max(T), 1000)
        return Tnew, f(Tnew)

    if field == 'phi': n_field = 0
    elif field == 'A': n_field = 1
    elif field == 'B': n_field = 2
    else: raise TypeError("Wrong argument for field : " + str(field))

    if (dir == 'X'):

        plot(T, grad)
        legend_list = []
        for i in range(
                len(fileh5.root.Analysis.PowerSpectrum.X[n_field, :numModes,
                                                         0])):
            legend_list.append("kx = %i" % i)

        leg = legend(legend_list, loc='best', ncol=3)
        leg.draw_frame(0)

    if (dir == 'Y'):
        for m in modes:
            Var = fileh5.root.Analysis.PowerSpectrum.Y[n_field, m, off:]
            Tn, V = cast2Equidistant(T[off:], np.log(Var))
            # Use NdImage for line-smoothening (convolution with gaussian kernel)
            V = scipy.ndimage.gaussian_filter(V, sigma=sigma, mode='nearest')
            gamma = np.gradient(V, Tn[1] - Tn[0])
            pylab.plot(Tn,
                       gamma,
                       "-",
                       label='$k_y^{(%i)} = %.2f$' %
                       (m, D['ky'][m]))  #, color=gkcStyle.markers_C[m])

    leg = pylab.legend(loc='best', ncol=3).draw_frame(0)

    pylab.xlabel("Time")
    pylab.xlim((0., max(T)))

    pylab.ylabel("Instant Mode Growth $\gamma$")