Esempio n. 1
0
    output_np = np.swapaxes(output_np, 1, 2)  #(batch, frames, featureDim)
    output_np = np.reshape(output_np, (-1, featureDim))
    output_np = np.swapaxes(output_np, 0, 1)  #(featureDim, frames)

    inputData_np_ori = np.swapaxes(inputData_np_ori, 1,
                                   2)  #(batch, frames, featureDim)
    inputData_np_ori = np.reshape(inputData_np_ori, (-1, featureDim))
    inputData_np_ori = np.swapaxes(inputData_np_ori, 0, 1)

    # outputData_np_ori = np.swapaxes(outputData_np_ori,1,2)  #(batch, frames, 73)
    # outputData_np_ori = np.reshape(outputData_np_ori,(-1,featureDim73))
    # outputData_np_ori = np.swapaxes(outputData_np_ori,0,1)

    faceData = [output_np, inputData_np_ori]
    glViewer.SetFaceParmData(faceData, False)
    glViewer.init_gl()

    continue

    #Save Speaking prediction
    pred = output.data.cpu().numpy()
    pred_all = np.concatenate((pred_all, pred[:, -1]), axis=0)

    test_X_vis = np.concatenate((test_X_vis, inputData_np_ori), axis=0)

#Computing Accuracy
pred_binary = pred_all[:] >= 0.5
pred_binary = pred_binary[:, -1]
from sklearn.metrics import accuracy_score
test_Y_cropped = test_Y[:len(pred_binary), -1]
Esempio n. 2
0
    plt.title('Prediction (probability)')
    #plt.ion()
    plt.show()
    #plt.pause(1)

bVisualize = False
if bVisualize:
    #by jhugestar
    sys.path.append('/ssd/codes/glvis_python/')
    #from glViewer import SetFaceParmData,setSpeech,setSpeechGT,setSpeech_binary, setSpeechGT_binary, init_gl #opengl visualization
    import glViewer

    maxFrameNum = 2000
    frameNum = test_X_vis.shape[0]
    startIdx = 0
    test_X_vis = np.swapaxes(
        test_X_vis, 0,
        1)  #(frames, 200) ->(200, frames) where num can be thought as frames

    while startIdx < frameNum:

        endIdx = min(frameNum, startIdx + maxFrameNum)

        glViewer.setSpeechGT_binary([test_Y_cropped[startIdx:endIdx]])
        glViewer.setSpeech_binary([pred_binary[startIdx:endIdx]])

        glViewer.SetFaceParmData([test_X_vis[:, startIdx:endIdx]])
        glViewer.init_gl()

        startIdx += maxFrameNum
Esempio n. 3
0
sampleNum = 1
for _ in range(100):
    sample_2 = torch.randn(sampleNum, 100)  #0.5

    #    print(sample_2[:10])

    faceData = []
    for model in model_list:

        for iter in [1.0, 3.0]:

            sample_2_iter = Variable(sample_2 * iter).cuda()

            output = model.decode(sample_2_iter)

            #De-standardaize
            output_np = output.data.cpu().numpy()  #(batch, featureDim, frames)
            output_np = output_np * Xstd + Xmean

            output_np = np.swapaxes(output_np, 1,
                                    2)  #(batch, frames, featureDim)
            output_np = np.reshape(output_np, (-1, featureDim))
            output_np = np.swapaxes(output_np, 0, 1)  #(featureDim, frames)

            #faceData = [output_np]
            faceData.append(output_np)

    glViewer.SetFaceParmData(faceData)
    glViewer.init_gl()
Esempio n. 4
0
        output_np = output_np * Xstd + Xmean

        output_np = np.swapaxes(output_np, 1, 2)  #(batch, frames, featureDim)
        output_np = np.reshape(output_np, (-1, featureDim))
        output_np = np.swapaxes(output_np, 0, 1)  #(featureDim, frames)

        faceData.append(output_np)

    inputData_np_ori = np.swapaxes(inputData_np_ori, 1,
                                   2)  #(batch, frames, featureDim)
    inputData_np_ori = np.reshape(inputData_np_ori, (-1, featureDim))
    inputData_np_ori = np.swapaxes(inputData_np_ori, 0, 1)

    faceData.append(inputData_np_ori)  #recon, flipped, original
    #faceData = [output_np, inputData_np_ori]
    glViewer.SetFaceParmData(faceData, bComputeNormal=False)
    glViewer.init_gl()

    continue

    #Save Speaking prediction
    pred = output.data.cpu().numpy()
    pred_all = np.concatenate((pred_all, pred[:, -1]), axis=0)

    test_X_vis = np.concatenate((test_X_vis, inputData_np_ori), axis=0)

#Computing Accuracy
pred_binary = pred_all[:] >= 0.5
pred_binary = pred_binary[:, -1]
from sklearn.metrics import accuracy_score
test_Y_cropped = test_Y[:len(pred_binary), -1]
Esempio n. 5
0
    # bodyData_pred = body_mean.copy()[0,:66,:]   #Mirroring (buyer)   (73)
    # bodyData_pred = np.repeat(bodyData_pred,bodyData[0].shape[1],axis=1)*HOLDEN_DATA_SCALING
    # """

    # bodyData_gt = bodyData[1][:-7,:]*HOLDEN_DATA_SCALING       #GT
    # bodyData_gt = bodyData_gt[:,:bodyData_pred.shape[1]]
    # skelErr = ( bodyData_pred -  bodyData_gt)**2           #66, frames
    # skelErr = np.reshape(skelErr, (3,22,-1))        #3,22, frames
    # skelErr = np.sqrt(np.sum(skelErr, axis=0))      #22,frames
    # skelErr = np.mean(skelErr,axis=0)   #frames
    # skeletonErr_list.append(skelErr)

    if bVisualize == False:
        continue

    glViewer.SetFaceParmData(faceData, False)
    glViewer.init_gl()

# Compute error

##Draw Error Figure
avg_skelErr_list = []
total_avg_skelErr = 0
cnt = 0
for p in skeletonErr_list:
    avgValue = np.mean(p)
    avg_skelErr_list.append(avgValue)
    print(avgValue)
    total_avg_skelErr += avgValue * len(p)
    cnt += len(p)
Esempio n. 6
0
        bad_test = train_X_raw[pIdx]
        bad_test = np.max(np.max(bad_test, axis=2), axis=1)

        import matplotlib.pyplot as plt
        plt.plot(bad_test)
        plt.show()

    ##Debug: visualize
    sys.path.append('/ssd/codes/glvis_python/')
    import glViewer
    testParam = train_X_raw[2,
                            [9482, 11381, 15670, 15671, 15672, 17707], :, :100]
    testParam = np.reshape(testParam, (-1, 100))
    testParam = np.swapaxes(testParam, 0, 1)

    glViewer.SetFaceParmData([testParam])
    glViewer.init_gl()

# train_X = train_X[:-1:10,:,:]
# train_Y = train_Y[:-1:10,:]

test_data = np.load(datapath + test_dblist[0] + '.npz')
test_X_raw = test_data[
    'clips']  #Input (3, numClip, chunkLengh, featureDim:200)
test_speech_raw = test_data['speech']  #Input (3, numClip, chunkLengh)

#Attach speech signal
test_X_raw = test_X_raw[:, :, :, :1]
test_speech_raw = np.expand_dims(test_speech_raw, 3)
test_X_raw = np.concatenate((test_X_raw, test_speech_raw), axis=3)
Esempio n. 7
0
    pred = pred.data.cpu().numpy()
    pred = (pred * Ystd[:, :, :featureDim]) + Ymean[:, :, :featureDim]
    pred = pred[:, -1, :]  #(batch, feature)
    vis_data = np.reshape(pred, (-1, featureDim))
    vis_data = np.swapaxes(vis_data, 0, 1)

    #GT visualization
    vis_data_gt = outputData_np_ori[:, -1, :]  #(batch, features)
    vis_data_gt = np.swapaxes(vis_data_gt, 0, 1)  #(features, batch)

    #GT visualization (input)
    vis_data_input = inputData_np_ori[:, -1, :]  #(batch, features)
    vis_data_input = np.swapaxes(vis_data_input, 0, 1)  #(features, batch)

    glViewer.SetFaceParmData([vis_data_input, vis_data_gt, vis_data])
    glViewer.init_gl()

    continue

    #Save Speaking prediction
    pred = output.data.cpu().numpy()
    pred_all = np.concatenate((pred_all, pred[:, -1]), axis=0)

    test_X_vis = np.concatenate((test_X_vis, inputData_np_ori), axis=0)

#Computing Accuracy
pred_binary = pred_all[:] >= 0.5
pred_binary = pred_binary[:, -1]
from sklearn.metrics import accuracy_score
test_Y_cropped = test_Y[:len(pred_binary), -1]