def fourier_predict_underlying_noise(y_mean,p):
	""" predicts the underlying noise using fourier series and glm

	Parameters:
	-----------
	y_mean: 1 dimensional np.array
	p: number of fourier series (pairs)

	Returns:
	--------
	X: glm_matrix (first column is all 1s)
	fitted: the fitted values from glm
	residuals: the residuals betwen fitted and y_mean
	MRSS: MRSS from glm function (general output from glm_diagnostics)

	Note:
	-----
	Does a backwards approach to fouriers (possibly sacrificing orthogonality), wants to
	look at maximum period first
	"""
	n= y_mean.shape[0]
	X=fourier_creation(n,p)
	beta, junk=glm_multiple(y_mean,X)
	MRSS, fitted, residuals = glm_diagnostics(beta, X, y_mean)

	return X,MRSS,fitted,residuals
Esempio n. 2
0
def test_glm():
    # Read in the image data.
    img = nib.load(pathtoclassdata + "ds114_sub009_t2r1.nii")
    data = img.get_data()[..., 4:]
    # Read in the convolutions. 
    convolved = np.loadtxt(pathtoclassdata + "ds114_sub009_t2r1_conv.txt")[4:]
    # Create design matrix. 
    actual_design = np.ones((len(convolved), 2))
    actual_design[:, 1] = convolved
    
    # Calculate betas, copied from the exercise. 
    data_2d = np.reshape(data, (-1, data.shape[-1]))
    actual_B = npl.pinv(actual_design).dot(data_2d.T)
    actual_B_4d = np.reshape(actual_B.T, img.shape[:-1] + (-1,))
    
    # Run function.
    exp_B_4d, exp_design = glm(data, convolved)
    assert_almost_equal(actual_B_4d, exp_B_4d)
    assert_almost_equal(actual_design, exp_design)

    # Pick a single voxel to check diagnostics. 
    # Calculate actual fitted values, residuals, and MRSS of voxel.
    actual_fitted = actual_design.dot(actual_B_4d[42, 32, 19])
    actual_residuals = data[42, 32, 19] - actual_fitted
    actual_MRSS = np.sum(actual_residuals**2)/(actual_design.shape[0] - npl.matrix_rank(actual_design))
    
    # Calculate using glm_diagnostics function.
    exp_MRSS, exp_fitted, exp_residuals = glm_diagnostics(exp_B_4d, exp_design, data)
    assert_almost_equal(actual_fitted, exp_fitted[42, 32, 19])
    assert_almost_equal(actual_residuals, exp_residuals[42, 32, 19])
    assert_almost_equal(actual_MRSS, exp_MRSS[42, 32, 19])
Esempio n. 3
0
def compare_outliers(data, conv, plot=False):
    """ Return standard deviation across voxels for 4D array `data`

    Parameters
    ----------
    data : 4D array
        4D array from FMRI run with last axis indexing volumes.  
    conv : 2D array of the convolved time course

    Returns
    -------
    meanMRSS : mean MRSS of simple regression on the convolved time course. 
    outmeanMRSS : mean MRSS of simple regression on the convolved time course after dropping the extended rms outliers. 
    """
    rms_values = vol_rms_diff(data)
    rms_outliers, rms_thresholds = iqr_outliers(rms_values)
    extended_indices = extend_diff_outliers(rms_outliers)

    X = np.ones((len(conv), 2))
    X[:, 1] = conv

    B, junk = glm_multiple(data, X)
    MRSS, fitted, residuals = glm_diagnostics(B, X, data)
    meanMRSS = np.mean(MRSS)

    mask = np.ones(X.shape[0])
    mask[extended_indices] = 0
    outX = X[mask.nonzero()[0],:]

    outB, junk = glm_multiple(data[...,mask.nonzero()[0]], outX)
    outMRSS, outfitted, outresiduals = glm_diagnostics(outB, outX, data[...,mask.nonzero()[0]])
    outmeanMRSS = np.mean(outMRSS)
    
    if plot==True:
        rms_values = np.resize(rms_values, len(rms_values)+1)
        rms_values[-1] = 0
        plt.plot(rms_values, "k")
        plt.plot(extended_indices, rms_values[extended_indices], "ro")
        plt.axhline(rms_thresholds[0], ls="--")
        plt.axhline(rms_thresholds[1], ls="--")

        hand_out = mlines.Line2D([], [], color="r", marker="o", ls="None", label="Outliers")
        hand_thresh = mlines.Line2D([], [], color="b", ls="--", label="Thresholds")
        plt.legend(handles=[hand_out, hand_thresh], numpoints=1)
    
    return meanMRSS, outmeanMRSS
#################################################
# Hemogrlobin response for each condition      #
#################################################

plt.plot(X_np[:,1]+X_np[:,2]+X_np[:,3],label="All Conditions",color="#000019")
plt.plot([0,239],[0,0])
colors=["#000099","#1A1AFF","#9999FF"]
for i in range(3):
	plt.plot(X_np[:,(i+1)]-2*(i+1),label="Condition " +str(i+1),color=colors[i])
	plt.plot([0,239],[-2*(i+1),-2*(i+1)],color="#FF0000")

plt.legend(loc='center right', shadow=True,fontsize="smaller")

plt.title("Hemogoblin predicted response for different conditions")
plt.xlabel("Time")
plt.ylabel("Hemoglobin response")
plt.savefig(location_of_images+'all_cond_time.png')
plt.close()



MRSS_my, fitted_my, residuals_my = glm_diagnostics(B_my, X_my, data)
print("MRSS using multiple regression: "+str(np.mean(MRSS_my)))
plt.plot(data[41, 47, 2],label="actual HR response")
plt.plot(fitted_my[41, 47, 2],label="predicted HR response")
plt.title("Subject 001, voxel (41,47,2) HR Fitted vs actual")
plt.legend(loc='upper left', shadow=True,fontsize="smaller")
plt.savefig(location_of_images+"fitted_vs_actual_mult_regression.png")
plt.close()

Esempio n. 5
0
        data_slice = data[:, :, j, :]
        
        #Create design matrix
        X = np.ones((n_vols, 9))
        X[:, 1] = convolve[:, j]
        X[:, 2] = np.linspace(-1, 1, num = X.shape[0]) #drift
        X[:, 3:] = fourier_creation(n_vols, 3)[:, 1:]
        
        
        beta, t, df, p = t_stat_mult_regression(data_slice, X)
        
        #take only first coefficient      
        t = t[1, :]
        p = p[1, :]
        
        MRSS, fitted, residuals = glm_diagnostics(beta, X, data_slice)

        beta = beta[:, 1]
        
        #insert into the proper slice
        beta_final[:, :, j] = beta.reshape(data_slice.shape[:-1])
        t_final[:, :, j] = t.reshape(data_slice.shape[:-1])
        p_final[:, :, j] = p.reshape(data_slice.shape[:-1])        
        residual_final[:, :, j, :] = residuals.reshape(data_slice.shape)
        
    np.save("../data/betas/" + i + "_beta.npy", beta_final)    
    np.save("../data/t_stat/" + i + "_tstat.npy", t_final)
    np.save("../data/residual/" + i + "_residual.npy", residual_final)
    np.save("../data/p-values/" + i + "_pvalue.npy", p_final)
    np.save("../data/X/" + i + "_covX.npy", np.cov(X.T))
        X_cond[:, 3] = hrf_matrix_3[:, j] # 1 more
        X_cond[:, 4] = np.linspace(-1, 1, num = X.shape[0]) #drift # one 
        X_cond[:, 5:11] = fourier_creation(X.shape[0], 3)[:, 1:] # six more
        X_cond[:, 11:] = pca_addition


    #START CREATING MODELS

        ###################
        #   MODEL 1       #
        ###################
        # hrf (simple)

        beta1, t,df1, p = t_stat_mult_regression(data_slice, X[:, 0:2])
    
        MRSS1, fitted, residuals = glm_diagnostics(beta1, X[:, 0:2], data_slice)

        model1_slice = np.zeros(len(MRSS1))
    
        rank1 = npl.matrix_rank(X[:, 0:2])
    
        count = 0

        for value in MRSS1:
            model1_slice[count] = adjR2(value, np.array(data_slice[count, :]), df1, rank1)  
            count += 1


        adjr2_1 = adjr2_1 + model1_slice.tolist()

        aic_1 = aic_1 + AIC_2(MRSS1, data_slice, df1, rank1).tolist()
#################
# First Attempt #
#################

# First approach allowed for fourier strength to be fit to each voxel,
# 	potentially overcorrecting and masking some response to neural stimulation

# X matrix
X = np.ones((n_vols, 9))  # changed since fourier needs more
X[:, 1] = convolution_specialized(cond_all[:, 0], np.ones(len(cond_all)), hrf_single, all_tr_times)
X[:, 2] = np.linspace(-1, 1, num=X.shape[0])  # drift
X[:, 3:] = fourier_creation(X.shape[0], 3)[:, 1:]

# modeling voxel hemodynamic response
beta, junk = glm_multiple(data, X)
MRSS, fitted, residuals = glm_diagnostics(beta, X, data)

# individual voxel analysis

plt.plot(all_tr_times, data[41, 47, 2], label="actual", color="b")
plt.plot(all_tr_times, fitted[41, 47, 2], label="predicted", color="r")
plt.title("Data for sub001, voxel [41, 47, 2],fourier 3 fit to voxel")
plt.xlabel("Time")
plt.ylabel("Hemodynamic response")
plt.legend(loc="upper right", shadow=True, fontsize="smaller")
plt.savefig(location_of_images + "noise_correction__fit_to_voxel_fitted.png")
plt.close()

plt.plot(all_tr_times, residuals[41, 47, 2], label="residuals", color="b")
plt.plot([0, max(all_tr_times)], [0, 0], label="origin (residual=0)", color="k")
plt.title("Residual for sub001, voxel [41, 47, 2],fourier 3 fit to voxel")
Esempio n. 8
0
#############################
#############################
# Analysis and diagonistics #
#############################
#############################

#######################
# a. (my) convolution #
#######################

# Now get the estimated coefficients and design matrix for doing
# regression on the convolved time course. 
B_my, X_my = glm(data, my_hrf)

# Some diagnostics. 
MRSS_my, fitted_my, residuals_my = glm_diagnostics(B_my, X_my, data)

# Print out the mean MRSS.
print("MRSS using 'my' convolution function: "+str(np.mean(MRSS_my)))

# Plot the time course for a single voxel with the fitted values. 
# Looks pretty bad. 
plt.plot(data[41, 47, 2]) #change from cherry-picking 
plt.plot(fitted_my[41, 47, 2])
plt.savefig(location_of_images+"glm_plot_my.png")
plt.close()


##################
# b. np.convolve #
##################
Esempio n. 9
0
# First Attempt #
#################

# First approach allowed for fourier strength to be fit to each voxel,
#	potentially overcorrecting and masking some response to neural stimulation

# X matrix
X = np.ones((n_vols, 6))
X[:, 1] = convolution_specialized(cond_all[:, 0], np.ones(len(cond_all)),
                                  hrf_single, all_tr_times)
X[:, 2] = np.linspace(-1, 1, num=X.shape[0])  #drift
X[:, 3:] = fourier_creation(X.shape[0], 3)[:, 1:]

# modeling voxel hemodynamic response
beta, junk = glm_multiple(data, X)
MRSS, fitted, residuals = glm_diagnostics(beta, X, data)

# individual voxel analysis

plt.plot(all_tr_times, data[41, 47, 2], label="actual", color="b")
plt.plot(all_tr_times, fitted[41, 47, 2], label="predicted", color="r")
plt.title("Data for sub001, voxel [41, 47, 2],fourier 3 fit to voxel")
plt.xlabel("Time")
plt.ylabel("Hemodynamic response")
plt.legend(loc='upper right', shadow=True, fontsize="smaller")
plt.savefig(location_of_images + 'noise_correction__fit_to_voxel_fitted.png')
plt.close()

plt.plot(all_tr_times, residuals[41, 47, 2], label="residuals", color="b")
plt.plot([0, max(all_tr_times)], [0, 0],
         label="origin (residual=0)",
N = len(neural_prediction)  # N == n_vols == 173
M = len(hrf_at_trs)  # M == 12
np_hrf=convolved[:N]

###################
# From GLM function
###################

np_B, np_X = glm(data, np_hrf)


####################################
# GLM Diagnostics (to get residuals)
###################################

np_MRSS, np_fitted, np_residuals = glm_diagnostics(np_B, np_X, data)

###########################
#Shapiro-Wilks on Residuals
###########################
# Shapiro-Wilks: tests the null hypothesis that the data was 
# drawn from a normal distribution.

# Using 4-d residuals.
sw_pvals = check_sw(np_residuals)
print("Proportion of voxels with p-value above 0.05 (unmasked): "+str(np.mean(sw_pvals > 0.05)))


# Load mask.
mask = nib.load(pathtodata+'/anatomy/inplane001_brain_mask.nii.gz')
mask_data = mask.get_data()
Esempio n. 11
0
#############################
#############################
# Analysis and diagonistics #
#############################
#############################

#######################
# a. (my) convolution #
#######################

# Now get the estimated coefficients and design matrix for doing
# regression on the convolved time course.
B_my, X_my = glm(data, my_hrf)

# Some diagnostics.
MRSS_my, fitted_my, residuals_my = glm_diagnostics(B_my, X_my, data)

# Print out the mean MRSS.
print("MRSS using 'my' convolution function: " + str(np.mean(MRSS_my)))

# Plot the time course for a single voxel with the fitted values.
# Looks pretty bad.
plt.plot(data[41, 47, 2])  #change from cherry-picking
plt.plot(fitted_my[41, 47, 2])
plt.savefig(location_of_images + "glm_plot_my.png")
plt.close()

##################
# b. np.convolve #
##################
Esempio n. 12
0
                        hrf_at_trs)  # hrf_at_trs sample data
N = len(neural_prediction)  # N == n_vols == 173
M = len(hrf_at_trs)  # M == 12
np_hrf = convolved[:N]

###################
# From GLM function
###################

np_B, np_X = glm(data, np_hrf)

####################################
# GLM Diagnostics (to get residuals)
###################################

np_MRSS, np_fitted, np_residuals = glm_diagnostics(np_B, np_X, data)

###########################
#Shapiro-Wilks on Residuals
###########################
# Shapiro-Wilks: tests the null hypothesis that the data was
# drawn from a normal distribution.

# Using 4-d residuals.
sw_pvals = check_sw(np_residuals)
print("Proportion of voxels with p-value above 0.05 (unmasked): " +
      str(np.mean(sw_pvals > 0.05)))

# Load mask.
mask = nib.load(pathtodata + '/anatomy/inplane001_brain_mask.nii.gz')
mask_data = mask.get_data()
Esempio n. 13
0
        X_cond[:, 2] = hrf_matrix_2[:, j]  # 1 more
        X_cond[:, 3] = hrf_matrix_3[:, j]  # 1 more
        X_cond[:, 4] = np.linspace(-1, 1, num=X.shape[0])  #drift # one
        X_cond[:, 5:11] = fourier_creation(X.shape[0], 3)[:, 1:]  # six more
        X_cond[:, 11:] = pca_addition

        #START CREATING MODELS

        ###################
        #   MODEL 1       #
        ###################
        # 1.1 hrf (simple)

        beta1, t, df1, p = t_stat_mult_regression(data_slice, X[:, 0:2])

        MRSS1, fitted, residuals = glm_diagnostics(beta1, X[:, 0:2],
                                                   data_slice)

        model1_slice = np.zeros(len(MRSS1))

        rank1 = npl.matrix_rank(X[:, 0:2])

        count = 0

        for value in MRSS1:
            model1_slice[count] = adjR2(value, np.array(data_slice[count, :]),
                                        df1, rank1)
            count += 1

        #model1=model1+model1_slice.tolist()

        adjr2_1 = adjr2_1 + model1_slice.tolist()
Esempio n. 14
0
###PCA SHIT###
#to_2d= masking_reshape_start(data,mask)
#X_pca= to_2d - np.mean(to_2d,0) - np.mean(to_2d,1)[:,None]
#cov = X_pca.T.dot(X_pca)
#U, S, V = npl.svd(cov)
#pca_addition= U[:,:6] # ~40% coverage

#Create design matrix
X = np.ones((n_vols, 9))
X[:, 1] = convolve[:, j]
X[:, 2] = np.linspace(-1, 1, num=X.shape[0])  #drift
X[:, 3:] = fourier_creation(n_vols, 3)[:, 1:]

beta, t, df, p = t_stat_mult_regression(data_slice, X)

MRSS, fitted, residuals = glm_diagnostics(beta, X, data_slice)

###########################
# Fitted VS Residual Plot #
###########################

plt.scatter(fitted[30, 40, :], residuals[30, 40, :])
min_max = (np.min(fitted[30, 40, :]), np.max(fitted[30, 40, :]))

plt.plot([min_max[0], min_max[1]], [0, 0], color="k")

plt.xlim(min_max[0], min_max[1])
plt.title("Subject 001, voxel: [30,40,15]")
plt.xlabel("Fitted Values")
plt.ylabel("Residuals")
plt.savefig(location_of_images + 'Fitted_v_Residuals.png')
plt.plot(X_np[:,1]+X_np[:,2]+X_np[:,3],label="All Conditions",color="#000019")
plt.plot([0,239],[0,0])
colors=["#000099","#1A1AFF","#9999FF"]
for i in range(3):
	plt.plot(X_np[:,(i+1)]-2*(i+1),label="Condition " +str(i+1),color=colors[i])
	plt.plot([0,239],[-2*(i+1),-2*(i+1)],color="#FF0000")

plt.legend(loc='center right', shadow=True,fontsize="smaller")

plt.title("Hemogoblin predicted response for different conditions")
plt.xlabel("Time")
plt.ylabel("Hemoglobin response")
plt.savefig(location_of_images+'all_cond_time.png')
plt.close()







MRSS_my, fitted_my, residuals_my = glm_diagnostics(B_my, X_my, data)
print("MRSS using multiple regression: "+str(np.mean(MRSS_my)))
plt.plot(data[41, 47, 2],label="actual HR response")
plt.plot(fitted_my[41, 47, 2],label="predicted HR response")
plt.title("Subject 001, voxel (41,47,2) HR Fitted vs actual")
plt.legend(loc='upper left', shadow=True,fontsize="smaller")
plt.savefig(location_of_images+"fitted_vs_actual_mult_regression.png")
plt.close()