Esempio n. 1
0
def keywords_data():
    """情绪关键词数据
    """

    customized = request.args.get('customized', '1')
    query = request.args.get('query', None)
    if query:
        query = query.strip()
    during = request.args.get('during', 24 * 3600)
    during = int(during)

    ts = request.args.get('ts', '')
    ts = long(ts)

    begin_ts = ts - during
    end_ts = ts
    limit = request.args.get('limit', 50)
    limit = int(limit)
    emotion = request.args.get('emotion', 'global')

    results = {}
    search_method = 'topic'
    area = None
    search_func = getattr(keywordsModule, 'search_%s_keywords' % search_method,
                          None)

    if search_func:
        if emotion == 'global':
            keywords_data = {}
            for k, v in emotions_kv.iteritems():
                emotion_results = search_func(end_ts,
                                              during,
                                              v,
                                              query=query,
                                              domain=area,
                                              top=limit,
                                              customized=customized)
                for keyword, count in emotion_results.iteritems():
                    try:
                        keywords_data[keyword] += count
                    except KeyError:
                        keywords_data[keyword] = count
            kcount_tuple = sorted(keywords_data.iteritems(),
                                  key=lambda (k, v): v,
                                  reverse=False)
            for k, v in kcount_tuple[len(kcount_tuple) - limit:]:
                results[k] = v
        else:
            results[emotion] = search_func(end_ts,
                                           during,
                                           emotions_kv[emotion],
                                           query=query,
                                           domain=area,
                                           top=limit,
                                           customized=customized)
    else:
        return json.dumps('search function undefined')

    return json.dumps(results)
Esempio n. 2
0
def read_range_count_results(start_ts, over_ts, during=Hour):
    over_ts = ts2HourlyTime(over_ts, MinInterval)
    interval = (over_ts - start_ts) / during
    
    emotion_dic = {}

    if during <= MinInterval:
        for k, v in emotions_kv.iteritems():
            count = read_count_results(v, over_ts=over_ts, during=during)
            emotion_dic[k] = [over_ts * 1000, count]
    else:
        end_ts = over_ts
        start_ts = end_ts - during 
        for k, v in emotions_kv.iteritems():
            count = read_count_results(v, start_ts=start_ts, over_ts=end_ts, during=during)
            emotion_dic[k] = [end_ts * 1000, count]

    return emotion_dic
Esempio n. 3
0
def sentimentCronTopic(topic, xapian_search_weibo, start_ts, over_ts, sort_field=SORT_FIELD, save_fields=RESP_ITER_KEYS, \
    during=Fifteenminutes, w_limit=TOP_WEIBOS_LIMIT, k_limit=TOP_KEYWORDS_LIMIT):
    if topic and topic != '':
        start_ts = int(start_ts)
        over_ts = int(over_ts)

        over_ts = ts2HourlyTime(over_ts, during)
        interval = (over_ts - start_ts) / during

        for i in range(interval, 0, -1):
            emotions_kcount = {}
            emotions_count = {}
            emotions_weibo = {}

            begin_ts = over_ts - during * i
            end_ts = begin_ts + during
            print begin_ts, end_ts, 'topic %s starts calculate' % topic.encode(
                'utf-8')

            query_dict = {
                'timestamp': {
                    '$gt': begin_ts,
                    '$lt': end_ts
                },
                '$and': [
                    {
                        '$or': [{
                            'message_type': 1
                        }, {
                            'message_type': 3
                        }]
                    },
                ]
            }
            for k, v in emotions_kv.iteritems():
                query_dict['sentiment'] = v
                count, results = xapian_search_weibo.search(query=query_dict,
                                                            fields=save_fields)

                mset = xapian_search_weibo.search(query=query_dict, sort_by=[sort_field], \
                                                  max_offset=w_limit, mset_direct=True)

                kcount = top_keywords(gen_mset_iter(xapian_search_weibo,
                                                    mset,
                                                    fields=['terms']),
                                      top=k_limit)
                top_ws = top_weibos(results, top=w_limit)

                emotions_count[v] = [end_ts, count]
                emotions_kcount[v] = [end_ts, kcount]
                emotions_weibo[v] = [end_ts, top_ws]

            save_rt_results('count', topic, emotions_count, during)
            save_rt_results('kcount', topic, emotions_kcount, during, k_limit,
                            w_limit)
            save_rt_results('weibos', topic, emotions_weibo, during, k_limit,
                            w_limit)
Esempio n. 4
0
def read_range_weibos_results(start_ts, over_ts, during=Hour):
    over_ts = ts2HourlyTime(over_ts, MinInterval)
    interval = (over_ts - start_ts) / during
    
    emotion_dic = {}

    if during <= MinInterval:
        for k, v in emotions_kv.iteritems():
            weibos = read_weibo_results(v, over_ts=over_ts, during=during)
            emotion_dic[k] = weibos
    else:
        end_ts = over_ts
        start_ts = end_ts - during
        
        for k, v in emotions_kv.iteritems():
            weibos = read_weibo_results(v, start_ts=start_ts, over_ts=end_ts, during=during)
            emotion_dic[k] = weibos

    return emotion_dic
Esempio n. 5
0
def weibos_data():
    """关键微博
    """

    customized = request.args.get('customized', '1')
    query = request.args.get('query', None)
    if query:
        query = query.strip()
    during = request.args.get('during', 24 * 3600)
    during = int(during)
    emotion = request.args.get('emotion', 'global')
    ts = request.args.get('ts', '')
    ts = long(ts)
    begin_ts = ts - during
    end_ts = ts
    limit = request.args.get('limit', 50)
    limit = int(limit)

    results = {}
    search_method = 'topic'
    area = None
    search_func = getattr(weibosModule, 'search_%s_weibos' % search_method,
                          None)

    if search_func:
        if emotion == 'global':
            for k, v in emotions_kv.iteritems():
                results[k] = search_func(end_ts,
                                         during,
                                         v,
                                         query=query,
                                         domain=area,
                                         limit=limit,
                                         customized=customized)
        else:
            results[emotion] = search_func(end_ts,
                                           during,
                                           emotions_kv[emotion],
                                           query=query,
                                           domain=area,
                                           limit=limit,
                                           customized=customized)
    else:
        return json.dumps('search function undefined')

    return json.dumps(results)
Esempio n. 6
0
def data():
    """分类情感数据--绝对值
    """
    customized = request.args.get('customized', '1')  # 该字段已舍弃
    query = request.args.get('query', None)  # 输入topic
    if query:
        query = query.strip()
    during = request.args.get('during', 900)  # 计算粒度,默认为15分钟
    during = int(during)
    ts = request.args.get('ts', '')
    ts = long(ts)
    begin_ts = ts - during
    end_ts = ts

    emotion = request.args.get('emotion', 'global')  # 情绪类型

    results = {}

    search_method = 'topic'
    area = None
    search_func = getattr(countsModule, 'search_%s_counts' % search_method,
                          None)
    if search_func:
        if emotion == 'global':
            for k, v in emotions_kv.iteritems():
                results[k] = search_func(end_ts,
                                         during,
                                         v,
                                         query=query,
                                         domain=area,
                                         customized=customized)
        else:
            results[emotion] = search_func(end_ts,
                                           during,
                                           emotions_kv[emotion],
                                           query=query,
                                           domain=area,
                                           customized=customized)
    else:
        return json.dumps('search function undefined')

    return json.dumps(results)
Esempio n. 7
0
def sentimentCronTopic(topic, xapian_search_weibo, start_ts, over_ts, sort_field=SORT_FIELD, save_fields=RESP_ITER_KEYS, \
    during=Fifteenminutes, w_limit=TOP_WEIBOS_LIMIT, k_limit=TOP_KEYWORDS_LIMIT):
    if topic and topic != '':
        start_ts = int(start_ts)
        over_ts = int(over_ts)

        over_ts = ts2HourlyTime(over_ts, during)
        interval = (over_ts - start_ts) / during

        for i in range(interval, 0, -1):
            emotions_kcount = {}
            emotions_count = {}
            emotions_weibo = {}

            begin_ts = over_ts - during * i
            end_ts = begin_ts + during
            print begin_ts, end_ts, 'topic %s starts calculate' % topic.encode('utf-8')

            query_dict = {
                'timestamp': {'$gt': begin_ts, '$lt': end_ts},
                '$and': [
                    {'$or': [{'message_type': 1}, {'message_type': 3}]},
                ]
            }
            for k, v in emotions_kv.iteritems():
                query_dict['sentiment'] = v
                count, results = xapian_search_weibo.search(query=query_dict, fields=save_fields)

                mset = xapian_search_weibo.search(query=query_dict, sort_by=[sort_field], \
                                                  max_offset=w_limit, mset_direct=True)

                kcount = top_keywords(gen_mset_iter(xapian_search_weibo, mset, fields=['terms']), top=k_limit)
                top_ws = top_weibos(results, top=w_limit)

                emotions_count[v] = [end_ts, count]
                emotions_kcount[v] = [end_ts, kcount]
                emotions_weibo[v] = [end_ts, top_ws]

            save_rt_results('count', topic, emotions_count, during)
            save_rt_results('kcount', topic, emotions_kcount, during, k_limit, w_limit)
            save_rt_results('weibos', topic, emotions_weibo, during, k_limit, w_limit)  
Esempio n. 8
0
def pie():
    '''饼图数据
    '''
    query = request.args.get('query', None)
    if query:
        query = query.strip()
    during = request.args.get('during', 1800)
    during = int(during)
    ts = request.args.get('ts', '')
    ts = long(ts)
    begin_ts = ts - during
    end_ts = ts

    emotion = request.args.get('emotion', 'global')  # 情绪类型

    results = {}

    search_method = 'topic'
    area = None
    search_func = getattr(countsModule, 'search_%s_counts' % search_method,
                          None)
    if search_func:
        if emotion == 'global':
            for k, v in emotions_kv.iteritems():
                results[k] = search_func(end_ts,
                                         during,
                                         v,
                                         query=query,
                                         domain=area)[1]
        else:
            results[emotion] = search_func(end_ts,
                                           during,
                                           emotions_kv[emotion],
                                           query=query,
                                           domain=area)[1]
    else:
        return json.dumps('search function undefined')

    return json.dumps(results)